//----------------------------------------------------------------------------- // Copyright (C) Merlok - 2017 // iceman 2018 // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Command: hf mf list. It shows data from arm buffer. //----------------------------------------------------------------------------- #include "cmdhflist.h" enum MifareAuthSeq { masNone, masNt, masNrAr, masAt, masAuthComplete, masFirstData, masData, masError, }; static enum MifareAuthSeq MifareAuthState; static TAuthData AuthData; void ClearAuthData() { AuthData.uid = 0; AuthData.nt = 0; AuthData.first_auth = true; AuthData.ks2 = 0; AuthData.ks3 = 0; } /** * @brief iso14443A_CRC_check Checks CRC in command or response * @param isResponse * @param data * @param len * @return 0 : CRC-command, CRC not ok * 1 : CRC-command, CRC ok * 2 : Not crc-command */ uint8_t iso14443A_CRC_check(bool isResponse, uint8_t* d, uint8_t n) { if (n < 3) return 2; if (isResponse & (n < 6)) return 2; return check_crc(CRC_14443_A, d, n); } uint8_t mifare_CRC_check(bool isResponse, uint8_t* data, uint8_t len) { switch(MifareAuthState) { case masNone: case masError: return iso14443A_CRC_check(isResponse, data, len); default: return 2; } } /** * @brief iso14443B_CRC_check Checks CRC * @param data * @param len * @return 0 : CRC-command, CRC not ok * 1 : CRC-command, CRC ok * 2 : Not crc-command */ uint8_t iso14443B_CRC_check(uint8_t* d, uint8_t n) { return check_crc(CRC_14443_B, d, n); } uint8_t iso15693_CRC_check(uint8_t* d, uint8_t n) { return check_crc(CRC_15693, d, n); } /** * @brief iclass_CRC_Ok Checks CRC in command or response * @param isResponse * @param data * @param len * @return 0 : CRC-command, CRC not ok * 1 : CRC-command, CRC ok * 2 : Not crc-command */ uint8_t iclass_CRC_check(bool isResponse, uint8_t* d, uint8_t n) { //CRC commands (and responses) are all at least 4 bytes if (n < 4) return 2; //Commands to tag //Don't include the command byte if (!isResponse) { /** These commands should have CRC. Total length leftmost 4 READ 4 READ4 12 UPDATE - unsecured, ends with CRC16 14 UPDATE - secured, ends with signature instead 4 PAGESEL **/ //Covers three of them if (n == 4 || n == 12) { return check_crc( CRC_ICLASS, d+1, n-1); } return 2; } /** These tag responses should have CRC. Total length leftmost 10 READ data[8] crc[2] 34 READ4 data[32]crc[2] 10 UPDATE data[8] crc[2] 10 SELECT csn[8] crc[2] 10 IDENTIFY asnb[8] crc[2] 10 PAGESEL block1[8] crc[2] 10 DETECT csn[8] crc[2] These should not 4 CHECK chip_response[4] 8 READCHECK data[8] 1 ACTALL sof[1] 1 ACT sof[1] In conclusion, without looking at the command; any response of length 10 or 34 should have CRC **/ if (n != 10 && n != 34) return true; return check_crc( CRC_ICLASS, d, n); } int applyIso14443a(char *exp, size_t size, uint8_t* cmd, uint8_t cmdsize) { switch ( cmd[0] ){ case ISO14443A_CMD_WUPA: snprintf(exp,size,"WUPA"); break; case ISO14443A_CMD_ANTICOLL_OR_SELECT:{ // 93 20 = Anticollision (usage: 9320 - answer: 4bytes UID+1byte UID-bytes-xor) // 93 70 = Select (usage: 9370+5bytes 9320 answer - answer: 1byte SAK) if(cmd[1] == 0x70) snprintf(exp,size,"SELECT_UID"); else snprintf(exp,size,"ANTICOLL"); break; } case ISO14443A_CMD_ANTICOLL_OR_SELECT_2:{ //95 20 = Anticollision of cascade level2 //95 70 = Select of cascade level2 if(cmd[2] == 0x70) snprintf(exp,size,"SELECT_UID-2"); else snprintf(exp,size,"ANTICOLL-2"); break; } case ISO14443A_CMD_REQA: snprintf(exp,size,"REQA"); break; case ISO14443A_CMD_READBLOCK: snprintf(exp,size,"READBLOCK(%d)",cmd[1]); break; case ISO14443A_CMD_WRITEBLOCK: snprintf(exp,size,"WRITEBLOCK(%d)",cmd[1]); break; case ISO14443A_CMD_HALT: snprintf(exp,size,"HALT"); MifareAuthState = masNone; break; case ISO14443A_CMD_RATS: snprintf(exp,size,"RATS"); break; case MIFARE_CMD_INC: snprintf(exp,size,"INC(%d)",cmd[1]); break; case MIFARE_CMD_DEC: snprintf(exp,size,"DEC(%d)",cmd[1]); break; case MIFARE_CMD_RESTORE: snprintf(exp,size,"RESTORE(%d)",cmd[1]); break; case MIFARE_CMD_TRANSFER: snprintf(exp,size,"TRANSFER(%d)",cmd[1]); break; case MIFARE_AUTH_KEYA:{ if ( cmdsize > 3) { snprintf(exp,size,"AUTH-A(%d)",cmd[1]); MifareAuthState = masNt; } else { // case MIFARE_ULEV1_VERSION : both 0x60. snprintf(exp,size,"EV1 VERSION"); } break; } case MIFARE_AUTH_KEYB: { MifareAuthState = masNt; snprintf(exp,size,"AUTH-B(%d)",cmd[1]); break; } case MIFARE_MAGICWUPC1: snprintf(exp,size,"MAGIC WUPC1"); break; case MIFARE_MAGICWUPC2: snprintf(exp,size,"MAGIC WUPC2"); break; case MIFARE_MAGICWIPEC: snprintf(exp,size,"MAGIC WIPEC"); break; case MIFARE_ULC_AUTH_1 : snprintf(exp,size,"AUTH "); break; case MIFARE_ULC_AUTH_2 : snprintf(exp,size,"AUTH_ANSW"); break; case MIFARE_ULEV1_AUTH : if ( cmdsize == 7 ) snprintf(exp,size,"PWD-AUTH KEY: 0x%02x%02x%02x%02x", cmd[1], cmd[2], cmd[3], cmd[4] ); else snprintf(exp,size,"PWD-AUTH"); break; case MIFARE_ULEV1_FASTREAD : { if ( cmdsize >=3 && cmd[2] <= 0xE6) snprintf(exp,size,"READ RANGE (%d-%d)",cmd[1],cmd[2]); else snprintf(exp,size,"?"); break; } case MIFARE_ULC_WRITE : { if ( cmd[1] < 0x21 ) snprintf(exp,size,"WRITEBLOCK(%d)",cmd[1]); else snprintf(exp,size,"?"); break; } case MIFARE_ULEV1_READ_CNT :{ if ( cmd[1] < 5 ) snprintf(exp,size,"READ CNT(%d)",cmd[1]); else snprintf(exp,size,"?"); break; } case MIFARE_ULEV1_INCR_CNT : { if ( cmd[1] < 5 ) snprintf(exp,size,"INCR(%d)",cmd[1]); else snprintf(exp,size,"?"); break; } case MIFARE_ULEV1_READSIG : snprintf(exp,size,"READ_SIG"); break; case MIFARE_ULEV1_CHECKTEAR : snprintf(exp,size,"CHK_TEARING(%d)",cmd[1]); break; case MIFARE_ULEV1_VCSL : snprintf(exp,size,"VCSL"); break; default: return 0; } return 1; } void annotateIso14443a(char *exp, size_t size, uint8_t* cmd, uint8_t cmdsize) { applyIso14443a(exp, size, cmd, cmdsize); } void annotateIclass(char *exp, size_t size, uint8_t* cmd, uint8_t cmdsize) { switch (cmd[0]) { case ICLASS_CMD_ACTALL: snprintf(exp,size,"ACTALL"); break; case ICLASS_CMD_READ_OR_IDENTIFY:{ if(cmdsize > 1){ snprintf(exp,size,"READ(%d)",cmd[1]); }else{ snprintf(exp,size,"IDENTIFY"); } break; } case ICLASS_CMD_SELECT: snprintf(exp,size,"SELECT"); break; case ICLASS_CMD_PAGESEL: snprintf(exp,size,"PAGESEL(%d)", cmd[1]); break; case ICLASS_CMD_READCHECK_KC:snprintf(exp,size,"READCHECK[Kc](%d)", cmd[1]); break; case ICLASS_CMD_READCHECK_KD:snprintf(exp,size,"READCHECK[Kd](%d)", cmd[1]); break; case ICLASS_CMD_CHECK: snprintf(exp,size,"CHECK"); break; case ICLASS_CMD_DETECT: snprintf(exp,size,"DETECT"); break; case ICLASS_CMD_HALT: snprintf(exp,size,"HALT"); break; case ICLASS_CMD_UPDATE: snprintf(exp,size,"UPDATE(%d)",cmd[1]); break; case ICLASS_CMD_ACT: snprintf(exp,size,"ACT"); break; case ICLASS_CMD_READ4: snprintf(exp,size,"READ4(%d)",cmd[1]); break; default: snprintf(exp,size,"?"); break; } return; } void annotateIso15693(char *exp, size_t size, uint8_t* cmd, uint8_t cmdsize) { switch(cmd[1]){ case ISO15693_INVENTORY :snprintf(exp, size, "INVENTORY");return; case ISO15693_STAYQUIET :snprintf(exp, size, "STAY_QUIET");return; case ISO15693_READBLOCK :snprintf(exp, size, "READBLOCK");return; case ISO15693_WRITEBLOCK :snprintf(exp, size, "WRITEBLOCK");return; case ISO15693_LOCKBLOCK :snprintf(exp, size, "LOCKBLOCK");return; case ISO15693_READ_MULTI_BLOCK :snprintf(exp, size, "READ_MULTI_BLOCK");return; case ISO15693_SELECT :snprintf(exp, size, "SELECT");return; case ISO15693_RESET_TO_READY :snprintf(exp, size, "RESET_TO_READY");return; case ISO15693_WRITE_AFI :snprintf(exp, size, "WRITE_AFI");return; case ISO15693_LOCK_AFI :snprintf(exp, size, "LOCK_AFI");return; case ISO15693_WRITE_DSFID :snprintf(exp, size, "WRITE_DSFID");return; case ISO15693_LOCK_DSFID :snprintf(exp, size, "LOCK_DSFID");return; case ISO15693_GET_SYSTEM_INFO :snprintf(exp, size, "GET_SYSTEM_INFO");return; case ISO15693_READ_MULTI_SECSTATUS :snprintf(exp, size, "READ_MULTI_SECSTATUS");return; default: break; } if ( cmd[1] >= 0x2D && cmd[1] <= 0x9F ) snprintf(exp, size, "Optional RFU"); else if ( cmd[1] >= 0xA0 && cmd[1] <= 0xDF ) snprintf(exp, size, "Cust IC MFG dependent"); else if ( cmd[1] >= 0xE0 && cmd[1] <= 0xFF ) snprintf(exp, size, "Proprietary IC MFG dependent"); else snprintf(exp, size, "?"); } void annotateTopaz(char *exp, size_t size, uint8_t* cmd, uint8_t cmdsize){ switch(cmd[0]) { case TOPAZ_REQA :snprintf(exp, size, "REQA");break; case TOPAZ_WUPA :snprintf(exp, size, "WUPA");break; case TOPAZ_RID :snprintf(exp, size, "RID");break; case TOPAZ_RALL :snprintf(exp, size, "RALL");break; case TOPAZ_READ :snprintf(exp, size, "READ");break; case TOPAZ_WRITE_E :snprintf(exp, size, "WRITE-E");break; case TOPAZ_WRITE_NE :snprintf(exp, size, "WRITE-NE");break; case TOPAZ_RSEG :snprintf(exp, size, "RSEG");break; case TOPAZ_READ8 :snprintf(exp, size, "READ8");break; case TOPAZ_WRITE_E8 :snprintf(exp, size, "WRITE-E8");break; case TOPAZ_WRITE_NE8 :snprintf(exp, size, "WRITE-NE8");break; default :snprintf(exp,size,"?"); break; } } // iso 7816-3 void annotateIso7816(char *exp, size_t size, uint8_t* cmd, uint8_t cmdsize){ // S-block if ( (cmd[0] & 0xC0) && (cmdsize == 3) ) { switch ( (cmd[0] & 0x3f) ) { case 0x00 : snprintf(exp, size, "S-block RESYNCH req"); break; case 0x20 : snprintf(exp, size, "S-block RESYNCH resp"); break; case 0x01 : snprintf(exp, size, "S-block IFS req"); break; case 0x21 : snprintf(exp, size, "S-block IFS resp"); break; case 0x02 : snprintf(exp, size, "S-block ABORT req"); break; case 0x22 : snprintf(exp, size, "S-block ABORT resp"); break; case 0x03 : snprintf(exp, size, "S-block WTX reqt"); break; case 0x23 : snprintf(exp, size, "S-block WTX resp"); break; default : snprintf(exp, size, "S-block"); break; } } // R-block (ack) else if ( ((cmd[0] & 0xD0) == 0x80) && ( cmdsize > 2) ) { if ( (cmd[0] & 0x10) == 0 ) snprintf(exp, size, "R-block ACK"); else snprintf(exp, size, "R-block NACK"); } // I-block else { int pos = (cmd[0] == 2 || cmd[0] == 3) ? 2 : 3; switch ( cmd[pos] ){ case ISO7816_READ_BINARY :snprintf(exp, size, "READ BIN");break; case ISO7816_WRITE_BINARY :snprintf(exp, size, "WRITE BIN");break; case ISO7816_UPDATE_BINARY :snprintf(exp, size, "UPDATE BIN");break; case ISO7816_ERASE_BINARY :snprintf(exp, size, "ERASE BIN");break; case ISO7816_READ_RECORDS :snprintf(exp, size, "READ RECORDS");break; case ISO7816_WRITE_RECORDS :snprintf(exp, size, "WRITE RECORDS");break; case ISO7816_APPEND_RECORD :snprintf(exp, size, "APPEND RECORD");break; case ISO7816_UPDATE_RECORD :snprintf(exp, size, "UPDATE RECORD");break; case ISO7816_GET_DATA :snprintf(exp, size, "GET DATA");break; case ISO7816_PUT_DATA :snprintf(exp, size, "PUT DATA");break; case ISO7816_SELECT_FILE :snprintf(exp, size, "SELECT FILE");break; case ISO7816_VERIFY :snprintf(exp, size, "VERIFY");break; case ISO7816_INTERNAL_AUTHENTICATION :snprintf(exp, size, "INTERNAL AUTH");break; case ISO7816_EXTERNAL_AUTHENTICATION :snprintf(exp, size, "EXTERNAL AUTH");break; case ISO7816_GET_CHALLENGE :snprintf(exp, size, "GET CHALLENGE");break; case ISO7816_MANAGE_CHANNEL :snprintf(exp, size, "MANAGE CHANNEL");break; default :snprintf(exp,size,"?"); break; } } } // MIFARE DESFire void annotateMfDesfire(char *exp, size_t size, uint8_t* cmd, uint8_t cmdsize){ // it's basically a ISO14443a tag, so try annotation from there if (!applyIso14443a(exp, size, cmd, cmdsize)){ // S-block 11xxx010 if ( (cmd[0] & 0xC0) && (cmdsize == 3) ) { switch ( (cmd[0] & 0x30) ) { case 0x30 : snprintf(exp, size, "S-block DESELECT"); break; case 0x00 : snprintf(exp, size, "S-block WTX"); break; default : snprintf(exp, size, "S-block"); break; } } // R-block (ack) 101xx01x else if ( ((cmd[0] & 0xB0) == 0xA0) && ( cmdsize > 2) ) { if ( (cmd[0] & 0x10) == 0 ) snprintf(exp, size, "R-block ACK(%d)", (cmd[0] & 0x01)); else snprintf(exp, size, "R-block NACK(%d)", (cmd[0] & 0x01)); } // I-block 000xCN1x else if ( (cmd[0] & 0xC0) == 0x00){ // PCB [CID] [NAD] [INF] CRC CRC int pos = 1; if ( (cmd[0] & 0x08) == 0x08) // cid byte following pos = pos + 1; if ( (cmd[0] & 0x04) == 0x04) // nad byte following pos = pos + 1; switch ( cmd[pos] ){ case MFDES_CREATE_APPLICATION :snprintf(exp, size, "CREATE APPLICATION");break; case MFDES_DELETE_APPLICATION :snprintf(exp, size, "DELETE APPLICATION");break; case MFDES_GET_APPLICATION_IDS :snprintf(exp, size, "GET APPLICATION IDS");break; case MFDES_SELECT_APPLICATION :snprintf(exp, size, "SELECT APPLICATION");break; case MFDES_FORMAT_PICC :snprintf(exp, size, "FORMAT PICC");break; case MFDES_GET_VERSION :snprintf(exp, size, "GET VERSION");break; case MFDES_READ_DATA :snprintf(exp, size, "READ DATA");break; case MFDES_WRITE_DATA :snprintf(exp, size, "WRITE DATA");break; case MFDES_GET_VALUE :snprintf(exp, size, "GET VALUE");break; case MFDES_CREDIT :snprintf(exp, size, "CREDIT");break; case MFDES_DEBIT :snprintf(exp, size, "DEBIT");break; case MFDES_LIMITED_CREDIT :snprintf(exp, size, "LIMITED CREDIT");break; case MFDES_WRITE_RECORD :snprintf(exp, size, "WRITE RECORD");break; case MFDES_READ_RECORDS :snprintf(exp, size, "READ RECORDS");break; case MFDES_CLEAR_RECORD_FILE :snprintf(exp, size, "CLEAR RECORD FILE");break; case MFDES_COMMIT_TRANSACTION :snprintf(exp, size, "COMMIT TRANSACTION");break; case MFDES_ABORT_TRANSACTION :snprintf(exp, size, "ABORT TRANSACTION");break; case MFDES_GET_FREE_MEMORY :snprintf(exp, size, "GET FREE MEMORY");break; case MFDES_GET_FILE_IDS :snprintf(exp, size, "GET FILE IDS");break; case MFDES_GET_ISOFILE_IDS :snprintf(exp, size, "GET ISOFILE IDS");break; case MFDES_GET_FILE_SETTINGS :snprintf(exp, size, "GET FILE SETTINGS");break; case MFDES_CHANGE_FILE_SETTINGS :snprintf(exp, size, "CHANGE FILE SETTINGS");break; case MFDES_CREATE_STD_DATA_FILE :snprintf(exp, size, "CREATE STD DATA FILE");break; case MFDES_CREATE_BACKUP_DATA_FILE :snprintf(exp, size, "CREATE BACKUP DATA FILE");break; case MFDES_CREATE_VALUE_FILE :snprintf(exp, size, "CREATE VALUE FILE");break; case MFDES_CREATE_LINEAR_RECORD_FILE :snprintf(exp, size, "CREATE LINEAR RECORD FILE");break; case MFDES_CREATE_CYCLIC_RECORD_FILE :snprintf(exp, size, "CREATE CYCLIC RECORD FILE");break; case MFDES_DELETE_FILE :snprintf(exp, size, "DELETE FILE");break; case MFDES_AUTHENTICATE :snprintf(exp, size, "AUTH NATIVE (keyNo %d)", cmd[pos+1]);break; // AUTHENTICATE_NATIVE case MFDES_AUTHENTICATE_ISO :snprintf(exp, size, "AUTH ISO (keyNo %d)", cmd[pos+1]);break; // AUTHENTICATE_STANDARD case MFDES_AUTHENTICATE_AES :snprintf(exp, size, "AUTH AES (keyNo %d)", cmd[pos+1]);break; case MFDES_CHANGE_KEY_SETTINGS :snprintf(exp, size, "CHANGE KEY SETTINGS");break; case MFDES_GET_KEY_SETTINGS :snprintf(exp, size, "GET KEY SETTINGS");break; case MFDES_CHANGE_KEY :snprintf(exp, size, "CHANGE KEY");break; case MFDES_GET_KEY_VERSION :snprintf(exp, size, "GET KEY VERSION");break; case MFDES_AUTHENTICATION_FRAME :snprintf(exp, size, "AUTH FRAME / NEXT FRAME");break; default :break; } }else{ // anything else snprintf(exp,size,"?"); } } } /** 06 00 = INITIATE 0E xx = SELECT ID (xx = Chip-ID) 0B = Get UID 08 yy = Read Block (yy = block number) 09 yy dd dd dd dd = Write Block (yy = block number; dd dd dd dd = data to be written) 0C = Reset to Inventory 0F = Completion 0A 11 22 33 44 55 66 = Authenticate (11 22 33 44 55 66 = data to authenticate) **/ void annotateIso14443b(char *exp, size_t size, uint8_t* cmd, uint8_t cmdsize) { switch(cmd[0]){ case ISO14443B_REQB : { switch ( cmd[2] & 0x07 ) { case 0: snprintf(exp, size,"1 slot ");break; case 1: snprintf(exp, size,"2 slots ");break; case 2: snprintf(exp, size,"4 slots ");break; case 3: snprintf(exp, size,"8 slots ");break; default: snprintf(exp, size,"16 slots ");break; } if ( (cmd[2] & 0x8) ) snprintf(exp, size,"WUPB"); else snprintf(exp, size,"REQB"); break; } case ISO14443B_ATTRIB : snprintf(exp,size,"ATTRIB");break; case ISO14443B_HALT : snprintf(exp,size,"HALT");break; case ISO14443B_INITIATE : snprintf(exp,size,"INITIATE");break; case ISO14443B_SELECT : snprintf(exp,size,"SELECT(%d)",cmd[1]);break; case ISO14443B_GET_UID : snprintf(exp,size,"GET UID");break; case ISO14443B_READ_BLK : snprintf(exp,size,"READ_BLK(%d)", cmd[1]);break; case ISO14443B_WRITE_BLK : snprintf(exp,size,"WRITE_BLK(%d)",cmd[1]);break; case ISO14443B_RESET : snprintf(exp,size,"RESET");break; case ISO14443B_COMPLETION : snprintf(exp,size,"COMPLETION");break; case ISO14443B_AUTHENTICATE : snprintf(exp,size,"AUTHENTICATE");break; case ISO14443B_PING : snprintf(exp,size,"PING");break; case ISO14443B_PONG : snprintf(exp,size,"PONG");break; default : snprintf(exp,size ,"?");break; } } // LEGIC // 1 = read // 0 = write // Quite simpel tag void annotateLegic(char *exp, size_t size, uint8_t* cmd, uint8_t cmdsize){ uint8_t bitsend = cmd[0]; uint8_t cmdBit = (cmd[1] & 1); switch (bitsend){ case 7: snprintf(exp, size, "IV 0x%02X", cmd[1]); break; case 6: { switch ( cmd[1] ) { case LEGIC_MIM_22: snprintf(exp, size, "MIM22"); break; case LEGIC_MIM_256: snprintf(exp, size, "MIM256"); break; case LEGIC_MIM_1024: snprintf(exp, size, "MIM1024"); break; case LEGIC_ACK_22: snprintf(exp, size, "ACK 22"); break; case LEGIC_ACK_256: snprintf(exp, size, "ACK 256/1024"); break; } break; } case 9: case 11: { uint16_t address = (cmd[2] << 7) | cmd[1] >> 1; if (cmdBit == LEGIC_READ) snprintf(exp, size, "READ Byte(%d)", address); if (cmdBit == LEGIC_WRITE ) snprintf(exp, size, "WRITE Byte(%d)", address); break; } case 21: { if (cmdBit == LEGIC_WRITE ) { uint16_t address = ((cmd[2] << 7) | cmd[1] >> 1) & 0xFF; uint8_t val = (cmd[3] & 1 ) << 7 | cmd[2] >> 1; snprintf(exp, size, "WRITE Byte(%d) %02X", address, val); } break; } case 23: { if (cmdBit == LEGIC_WRITE ) { uint16_t address = ((cmd[2] << 7) | cmd[1] >> 1) & 0x3FF; uint8_t val = (cmd[3] & 0x7 ) << 5 | cmd[2] >> 3; snprintf(exp, size, "WRITE Byte(%d) %02X", address, val); } break; } case 12: default: break; } } void annotateFelica(char *exp, size_t size, uint8_t* cmd, uint8_t cmdsize){ switch(cmd[0]){ default : snprintf(exp,size ,"?");break; } } void annotateMifare(char *exp, size_t size, uint8_t* cmd, uint8_t cmdsize, uint8_t* parity, uint8_t paritysize, bool isResponse) { if (!isResponse && cmdsize == 1) { switch(cmd[0]) { case ISO14443A_CMD_WUPA: case ISO14443A_CMD_REQA: MifareAuthState = masNone; break; default: break; } } // get UID if (MifareAuthState == masNone) { if (cmdsize == 9 && cmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT && cmd[1] == 0x70) { ClearAuthData(); AuthData.uid = bytes_to_num(&cmd[2], 4); } if (cmdsize == 9 && cmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2 && cmd[1] == 0x70) { ClearAuthData(); AuthData.uid = bytes_to_num(&cmd[2], 4); } if (cmdsize == 9 && cmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_3 && cmd[1] == 0x70) { ClearAuthData(); AuthData.uid = bytes_to_num(&cmd[2], 4); } } switch(MifareAuthState) { case masNt: if (cmdsize == 4 && isResponse) { snprintf(exp, size, "AUTH: nt %s", (AuthData.first_auth) ? "" : "(enc)"); MifareAuthState = masNrAr; if (AuthData.first_auth) { AuthData.nt = bytes_to_num(cmd, 4); } else { AuthData.nt_enc = bytes_to_num(cmd, 4); AuthData.nt_enc_par = parity[0]; } return; } else { MifareAuthState = masError; } break; case masNrAr: if (cmdsize == 8 && !isResponse) { snprintf(exp, size, "AUTH: nr ar (enc)"); MifareAuthState = masAt; AuthData.nr_enc = bytes_to_num(cmd, 4); AuthData.ar_enc = bytes_to_num(&cmd[4], 4); AuthData.ar_enc_par = parity[0] << 4; return; } else { MifareAuthState = masError; } break; case masAt: if (cmdsize == 4 && isResponse) { snprintf(exp, size, "AUTH: at (enc)"); MifareAuthState = masAuthComplete; AuthData.at_enc = bytes_to_num(cmd, 4); AuthData.at_enc_par = parity[0]; return; } else { MifareAuthState = masError; } break; default: break; } if (!isResponse && ((MifareAuthState == masNone) || (MifareAuthState == masError))) annotateIso14443a(exp, size, cmd, cmdsize); } bool DecodeMifareData(uint8_t *cmd, uint8_t cmdsize, uint8_t *parity, bool isResponse, uint8_t *mfData, size_t *mfDataLen) { static struct Crypto1State *traceCrypto1; static uint64_t mfLastKey; *mfDataLen = 0; if (MifareAuthState == masAuthComplete) { if (traceCrypto1) { crypto1_destroy(traceCrypto1); traceCrypto1 = NULL; } MifareAuthState = masFirstData; return false; } if (cmdsize > 32) return false; if (MifareAuthState == masFirstData) { if (AuthData.first_auth) { AuthData.ks2 = AuthData.ar_enc ^ prng_successor(AuthData.nt, 64); AuthData.ks3 = AuthData.at_enc ^ prng_successor(AuthData.nt, 96); mfLastKey = GetCrypto1ProbableKey(&AuthData); PrintAndLogEx(NORMAL, " | | * |%49s %012"PRIx64" prng %s | |", "key", mfLastKey, validate_prng_nonce(AuthData.nt) ? "WEAK": "HARD"); AuthData.first_auth = false; traceCrypto1 = lfsr_recovery64(AuthData.ks2, AuthData.ks3); } else { if (traceCrypto1) { crypto1_destroy(traceCrypto1); traceCrypto1 = NULL; } // check last used key if (mfLastKey) { if (NestedCheckKey(mfLastKey, &AuthData, cmd, cmdsize, parity)) { PrintAndLogEx(NORMAL, " | | * |%60s %012"PRIx64"| |", "last used key", mfLastKey); traceCrypto1 = lfsr_recovery64(AuthData.ks2, AuthData.ks3); }; } // check default keys if (!traceCrypto1) { for (int i = 0; i < MIFARE_DEFAULTKEYS_SIZE; i++){ if (NestedCheckKey(g_mifare_default_keys[i], &AuthData, cmd, cmdsize, parity)) { PrintAndLogEx(NORMAL, " | | * |%61s %012"PRIx64"| |", "key", g_mifare_default_keys[i]); mfLastKey = g_mifare_default_keys[i]; traceCrypto1 = lfsr_recovery64(AuthData.ks2, AuthData.ks3); break; }; } } // nested if (!traceCrypto1 && validate_prng_nonce(AuthData.nt)) { uint32_t ntx = prng_successor(AuthData.nt, 90); for (int i = 0; i < 16383; i++) { ntx = prng_successor(ntx, 1); if (NTParityChk(&AuthData, ntx)){ uint32_t ks2 = AuthData.ar_enc ^ prng_successor(ntx, 64); uint32_t ks3 = AuthData.at_enc ^ prng_successor(ntx, 96); struct Crypto1State *pcs = lfsr_recovery64(ks2, ks3); memcpy(mfData, cmd, cmdsize); mf_crypto1_decrypt(pcs, mfData, cmdsize, 0); crypto1_destroy(pcs); if (CheckCrypto1Parity(cmd, cmdsize, mfData, parity) && check_crc(CRC_14443_A, mfData, cmdsize)) { AuthData.ks2 = ks2; AuthData.ks3 = ks3; AuthData.nt = ntx; mfLastKey = GetCrypto1ProbableKey(&AuthData); PrintAndLogEx(NORMAL, " | | * | nested probable key:%012"PRIx64" ks2:%08x ks3:%08x | |", mfLastKey, AuthData.ks2, AuthData.ks3); traceCrypto1 = lfsr_recovery64(AuthData.ks2, AuthData.ks3); break; } } } } //hardnested if (!traceCrypto1) { PrintAndLogEx(NORMAL, "hardnested not implemented. uid:%x nt:%x ar_enc:%x at_enc:%x\n", AuthData.uid, AuthData.nt, AuthData.ar_enc, AuthData.at_enc); MifareAuthState = masError; /* TOO SLOW( needs to have more strong filter. with this filter - aprox 4 mln tests uint32_t t = msclock(); uint32_t t1 = t; int n = 0; for (uint32_t i = 0; i < 0xFFFFFFFF; i++) { if (NTParityChk(&AuthData, i)){ uint32_t ks2 = AuthData.ar_enc ^ prng_successor(i, 64); uint32_t ks3 = AuthData.at_enc ^ prng_successor(i, 96); struct Crypto1State *pcs = lfsr_recovery64(ks2, ks3); n++; if (!(n % 100000)) { PrintAndLogEx(NORMAL, "delta=%d n=%d ks2=%x ks3=%x \n", msclock() - t1 , n, ks2, ks3); t1 = msclock(); } } } PrintAndLogEx(NORMAL, "delta=%d n=%d\n", msclock() - t, n); */ } } MifareAuthState = masData; } if (MifareAuthState == masData && traceCrypto1) { memcpy(mfData, cmd, cmdsize); mf_crypto1_decrypt(traceCrypto1, mfData, cmdsize, 0); *mfDataLen = cmdsize; } return *mfDataLen > 0; } bool NTParityChk(TAuthData *ad, uint32_t ntx) { if ( (oddparity8(ntx >> 8 & 0xff) ^ (ntx & 0x01) ^ ((ad->nt_enc_par >> 5) & 0x01) ^ (ad->nt_enc & 0x01)) || (oddparity8(ntx >> 16 & 0xff) ^ (ntx >> 8 & 0x01) ^ ((ad->nt_enc_par >> 6) & 0x01) ^ (ad->nt_enc >> 8 & 0x01)) || (oddparity8(ntx >> 24 & 0xff) ^ (ntx >> 16 & 0x01) ^ ((ad->nt_enc_par >> 7) & 0x01) ^ (ad->nt_enc >> 16 & 0x01)) ) return false; uint32_t ar = prng_successor(ntx, 64); if ( (oddparity8(ar >> 8 & 0xff) ^ (ar & 0x01) ^ ((ad->ar_enc_par >> 5) & 0x01) ^ (ad->ar_enc & 0x01)) || (oddparity8(ar >> 16 & 0xff) ^ (ar >> 8 & 0x01) ^ ((ad->ar_enc_par >> 6) & 0x01) ^ (ad->ar_enc >> 8 & 0x01)) || (oddparity8(ar >> 24 & 0xff) ^ (ar >> 16 & 0x01) ^ ((ad->ar_enc_par >> 7) & 0x01) ^ (ad->ar_enc >> 16 & 0x01)) ) return false; uint32_t at = prng_successor(ntx, 96); if ( (oddparity8(ar & 0xff) ^ (at >> 24 & 0x01) ^ ((ad->ar_enc_par >> 4) & 0x01) ^ (ad->at_enc >> 24 & 0x01)) || (oddparity8(at >> 8 & 0xff) ^ (at & 0x01) ^ ((ad->at_enc_par >> 5) & 0x01) ^ (ad->at_enc & 0x01)) || (oddparity8(at >> 16 & 0xff) ^ (at >> 8 & 0x01) ^ ((ad->at_enc_par >> 6) & 0x01) ^ (ad->at_enc >> 8 & 0x01)) || (oddparity8(at >> 24 & 0xff) ^ (at >> 16 & 0x01) ^ ((ad->at_enc_par >> 7) & 0x01) ^ (ad->at_enc >> 16 & 0x01)) ) return false; return true; } bool NestedCheckKey(uint64_t key, TAuthData *ad, uint8_t *cmd, uint8_t cmdsize, uint8_t *parity) { uint8_t buf[32] = {0}; struct Crypto1State *pcs; AuthData.ks2 = 0; AuthData.ks3 = 0; pcs = crypto1_create(key); uint32_t nt1 = crypto1_word(pcs, ad->nt_enc ^ ad->uid, 1) ^ ad->nt_enc; uint32_t ar = prng_successor(nt1, 64); uint32_t at = prng_successor(nt1, 96); crypto1_word(pcs, ad->nr_enc, 1); // uint32_t nr1 = crypto1_word(pcs, ad->nr_enc, 1) ^ ad->nr_enc; // if needs deciphered nr uint32_t ar1 = crypto1_word(pcs, 0, 0) ^ ad->ar_enc; uint32_t at1 = crypto1_word(pcs, 0, 0) ^ ad->at_enc; if (!(ar == ar1 && at == at1 && NTParityChk(ad, nt1))) return false; memcpy(buf, cmd, cmdsize); mf_crypto1_decrypt(pcs, buf, cmdsize, 0); crypto1_destroy(pcs); if (!CheckCrypto1Parity(cmd, cmdsize, buf, parity)) return false; if (!check_crc(CRC_14443_A, buf, cmdsize)) return false; AuthData.nt = nt1; AuthData.ks2 = AuthData.ar_enc ^ ar; AuthData.ks3 = AuthData.at_enc ^ at; return true; } bool CheckCrypto1Parity(uint8_t *cmd_enc, uint8_t cmdsize, uint8_t *cmd, uint8_t *parity_enc) { for (int i = 0; i < cmdsize - 1; i++) { if (oddparity8(cmd[i]) ^ (cmd[i + 1] & 0x01) ^ ((parity_enc[i / 8] >> (7 - i % 8)) & 0x01) ^ (cmd_enc[i + 1] & 0x01)) return false; } return true; } // Another implementation of mfkey64 attack, more "valid" than "probable" // uint64_t GetCrypto1ProbableKey(TAuthData *ad) { struct Crypto1State *revstate = lfsr_recovery64(ad->ks2, ad->ks3); lfsr_rollback_word(revstate, 0, 0); lfsr_rollback_word(revstate, 0, 0); lfsr_rollback_word(revstate, ad->nr_enc, 1); lfsr_rollback_word(revstate, ad->uid ^ ad->nt, 0); uint64_t key = 0; crypto1_get_lfsr(revstate, &key); crypto1_destroy(revstate); return key; }