//----------------------------------------------------------------------------- // Copyright (C) Proxmark3 contributors. See AUTHORS.md for details. // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // See LICENSE.txt for the text of the license. //----------------------------------------------------------------------------- // with optional support for iso15 2sc mode slected with compiler define WITH_HF_15 module hi_reader( input ck_1356meg, input [7:0] adc_d, input [1:0] subcarrier_frequency, input [3:0] minor_mode, input ssp_dout, output ssp_din, output reg ssp_frame, output reg ssp_clk, output adc_clk, output pwr_lo, output reg pwr_hi, output pwr_oe1, output pwr_oe2, output pwr_oe3, output reg pwr_oe4, output debug ); assign adc_clk = ck_1356meg; // sample frequency is 13,56 MHz // When we're a reader, we just need to do the BPSK demod; but when we're an // eavesdropper, we also need to pick out the commands sent by the reader, // using AM. Do this the same way that we do it for the simulated tag. reg after_hysteresis, after_hysteresis_prev, after_hysteresis_prev_prev; reg [11:0] has_been_low_for; always @(negedge adc_clk) begin if (& adc_d[7:0]) after_hysteresis <= 1'b1; else if (~(| adc_d[7:0])) after_hysteresis <= 1'b0; if (after_hysteresis) begin has_been_low_for <= 12'd0; end else begin if (has_been_low_for == 12'd4095) begin has_been_low_for <= 12'd0; after_hysteresis <= 1'b1; end else has_been_low_for <= has_been_low_for + 1; end end // Let us report a correlation every 64 samples. I.e. // one Q/I pair after 4 subcarrier cycles for the 848kHz subcarrier, // one Q/I pair after 2 subcarrier cycles for the 424kHz subcarriers, // one Q/I pair for each subcarrier cyle for the 212kHz subcarrier. // We need a 6-bit counter for the timing. reg [5:0] corr_i_cnt; always @(negedge adc_clk) corr_i_cnt <= corr_i_cnt + 1; `ifdef WITH_HF_15 reg [1:0] fskout = 2'd0; reg last0 = 1'b0; reg [7:0] avg = 8'd0; reg [127:0] avg128 = 128'd0; reg [7:0] diff16 = 8'd0; reg [7:0] diff28 = 8'd0; reg [7:0] diff32 = 8'd0; reg [11:0] match16 = 12'd0; reg [11:0] match32 = 12'd0; reg [11:0] match28 = 12'd0; always @(negedge adc_clk) begin if (corr_i_cnt[0] == 1'b0) // every 2 clock avg = adc_d[7:1]; else begin avg = avg + adc_d[7:1]; if (corr_i_cnt[0] == 1'b1) // every 2 clock begin if (avg > avg128[63:56]) diff16 = avg - avg128[63:56]; else diff16 = avg128[63:56] - avg; if (avg > avg128[111:104]) diff28 = avg - avg128[111:104]; else diff28 = avg128[111:104] - avg; if (avg > avg128[127:120]) diff32 = avg - avg128[127:120]; else diff32 = avg128[127:120] - avg; avg128[127:8] = avg128[119:0]; avg128[7:0] = avg; if (corr_i_cnt[4:1] == 4'b0000) // every 32 clock (8*4) begin match16 = diff16; match28 = diff28; match32 = diff32; end else begin match16 = match16 + diff16; match28 = match28 + diff28; match32 = match32 + diff32; if (corr_i_cnt[4:1] == 4'b1111) // every 32 clock (8*4) begin last0 = (fskout == 2'b0); if (match16 < 12'd64 && last0) fskout = 2'b00; // not yet started else if ((match16 | match28 | match32) == 12'b0) fskout = 2'b00; // signal likely ended else if (((match16 <= match28 + 12'd16) && (match16 <= match32+ 12'd16)) || (match28 <= 12'd16 && match32 <= 12'd16)) begin if (!last0) fskout = 2'b11; // 16 match better than 28 or 32 but already started end else begin if (match28 < match32) begin diff28 = match32 - match28; diff16 = match16 - match28; if (diff28*2 > diff16) fskout = 2'b01; else if (!last0) begin fskout = 2'b01; end end else //if (match32 <= match28) begin diff32 = match28 - match32; diff16 = match16 - match32; if (diff32*2 > diff16) fskout = 2'b10; else if (!last0) begin fskout = 2'b10; end end end end end end end end `endif // A couple of registers in which to accumulate the correlations. From the 64 samples // we would add at most 32 times the difference between unmodulated and modulated signal. It should // be safe to assume that a tag will not be able to modulate the carrier signal by more than 25%. // 32 * 255 * 0,25 = 2040, which can be held in 11 bits. Add 1 bit for sign. // Temporary we might need more bits. For the 212kHz subcarrier we could possible add 32 times the // maximum signal value before a first subtraction would occur. 32 * 255 = 8160 can be held in 13 bits. // Add one bit for sign -> need 14 bit registers but final result will fit into 12 bits. reg signed [13:0] corr_i_accum; reg signed [13:0] corr_q_accum; // we will report maximum 8 significant bits reg signed [7:0] corr_i_out; reg signed [7:0] corr_q_out; // the amplitude of the subcarrier is sqrt(ci^2 + cq^2). // approximate by amplitude = max(|ci|,|cq|) + 1/2*min(|ci|,|cq|) reg [13:0] corr_amplitude, abs_ci, abs_cq, max_ci_cq; reg [12:0] min_ci_cq_2; // min_ci_cq / 2 always @(*) begin if (corr_i_accum[13] == 1'b0) abs_ci <= corr_i_accum; else abs_ci <= -corr_i_accum; if (corr_q_accum[13] == 1'b0) abs_cq <= corr_q_accum; else abs_cq <= -corr_q_accum; if (abs_ci > abs_cq) begin max_ci_cq <= abs_ci; min_ci_cq_2 <= abs_cq / 2; end else begin max_ci_cq <= abs_cq; min_ci_cq_2 <= abs_ci / 2; end corr_amplitude <= max_ci_cq + min_ci_cq_2; end // The subcarrier reference signals reg subcarrier_I; reg subcarrier_Q; always @(*) begin if (subcarrier_frequency == `FPGA_HF_READER_SUBCARRIER_848_KHZ) begin subcarrier_I = ~corr_i_cnt[3]; subcarrier_Q = ~(corr_i_cnt[3] ^ corr_i_cnt[2]); end else if (subcarrier_frequency == `FPGA_HF_READER_SUBCARRIER_212_KHZ) begin subcarrier_I = ~corr_i_cnt[5]; subcarrier_Q = ~(corr_i_cnt[5] ^ corr_i_cnt[4]); end else begin // 424 kHz subcarrier_I = ~corr_i_cnt[4]; subcarrier_Q = ~(corr_i_cnt[4] ^ corr_i_cnt[3]); end end // ADC data appears on the rising edge, so sample it on the falling edge always @(negedge adc_clk) begin // These are the correlators: we correlate against in-phase and quadrature // versions of our reference signal, and keep the (signed) results or the // resulting amplitude to send out later over the SSP. if (corr_i_cnt == 6'd0) begin if (minor_mode == `FPGA_HF_READER_MODE_SNIFF_AMPLITUDE) begin `ifdef WITH_HF_15 if (subcarrier_frequency == `FPGA_HF_READER_2SUBCARRIERS_424_484_KHZ) begin // send amplitude + 2 bits fsk (2sc) signal + 2 bits reader signal corr_i_out <= corr_amplitude[13:6]; corr_q_out <= {corr_amplitude[5:2], fskout, after_hysteresis_prev_prev, after_hysteresis_prev}; end else `endif begin // send amplitude plus 2 bits reader signal corr_i_out <= corr_amplitude[13:6]; corr_q_out <= {corr_amplitude[5:0], after_hysteresis_prev_prev, after_hysteresis_prev}; end end else if (minor_mode == `FPGA_HF_READER_MODE_SNIFF_IQ) begin // Send 7 most significant bits of in phase tag signal (signed), plus 1 bit reader signal if (corr_i_accum[13:11] == 3'b000 || corr_i_accum[13:11] == 3'b111) corr_i_out <= {corr_i_accum[11:5], after_hysteresis_prev_prev}; else // truncate to maximum value if (corr_i_accum[13] == 1'b0) corr_i_out <= {7'b0111111, after_hysteresis_prev_prev}; else corr_i_out <= {7'b1000000, after_hysteresis_prev_prev}; // Send 7 most significant bits of quadrature phase tag signal (signed), plus 1 bit reader signal if (corr_q_accum[13:11] == 3'b000 || corr_q_accum[13:11] == 3'b111) corr_q_out <= {corr_q_accum[11:5], after_hysteresis_prev}; else // truncate to maximum value if (corr_q_accum[13] == 1'b0) corr_q_out <= {7'b0111111, after_hysteresis_prev}; else corr_q_out <= {7'b1000000, after_hysteresis_prev}; end else if (minor_mode == `FPGA_HF_READER_MODE_RECEIVE_AMPLITUDE) begin `ifdef WITH_HF_15 if (subcarrier_frequency == `FPGA_HF_READER_2SUBCARRIERS_424_484_KHZ) begin // send 2 bits fsk (2sc) signal + amplitude corr_i_out <= {fskout, corr_amplitude[13:8]}; corr_q_out <= corr_amplitude[7:0]; end else `endif begin // send amplitude corr_i_out <= {2'b00, corr_amplitude[13:8]}; corr_q_out <= corr_amplitude[7:0]; end end else if (minor_mode == `FPGA_HF_READER_MODE_RECEIVE_IQ) begin // Send 8 bits of in phase tag signal if (corr_i_accum[13:11] == 3'b000 || corr_i_accum[13:11] == 3'b111) corr_i_out <= corr_i_accum[11:4]; else // truncate to maximum value if (corr_i_accum[13] == 1'b0) corr_i_out <= 8'b01111111; else corr_i_out <= 8'b10000000; // Send 8 bits of quadrature phase tag signal if (corr_q_accum[13:11] == 3'b000 || corr_q_accum[13:11] == 3'b111) corr_q_out <= corr_q_accum[11:4]; else // truncate to maximum value if (corr_q_accum[13] == 1'b0) corr_q_out <= 8'b01111111; else corr_q_out <= 8'b10000000; end // for each Q/I pair report two reader signal samples when sniffing. Store the 1st. after_hysteresis_prev_prev <= after_hysteresis; // Initialize next correlation. // Both I and Q reference signals are high when corr_i_nct == 0. Therefore need to accumulate. corr_i_accum <= $signed({1'b0, adc_d}); corr_q_accum <= $signed({1'b0, adc_d}); end else begin if (subcarrier_I) corr_i_accum <= corr_i_accum + $signed({1'b0, adc_d}); else corr_i_accum <= corr_i_accum - $signed({1'b0, adc_d}); if (subcarrier_Q) corr_q_accum <= corr_q_accum + $signed({1'b0, adc_d}); else corr_q_accum <= corr_q_accum - $signed({1'b0, adc_d}); end // for each Q/I pair report two reader signal samples when sniffing. Store the 2nd. if (corr_i_cnt == 6'd32) after_hysteresis_prev <= after_hysteresis; // Then the result from last time is serialized and send out to the ARM. // We get one report each cycle, and each report is 16 bits, so the // ssp_clk should be the adc_clk divided by 64/16 = 4. // ssp_clk frequency = 13,56MHz / 4 = 3.39MHz if (corr_i_cnt[1:0] == 2'b00) begin // Don't shift if we just loaded new data, obviously. if (corr_i_cnt != 6'd0) begin corr_i_out[7:0] <= {corr_i_out[6:0], corr_q_out[7]}; corr_q_out[7:1] <= corr_q_out[6:0]; end end end // ssp clock and frame signal for communication to and from ARM // _____ _____ _____ _ // ssp_clk | |_____| |_____| |_____| // _____ // ssp_frame ___| |____________________________ // ___________ ___________ ___________ _ // ssp_d_in X___________X___________X___________X_ // // corr_i_cnt 0 1 2 3 4 5 6 7 8 9 10 11 12 ... // always @(negedge adc_clk) begin if (corr_i_cnt[1:0] == 2'b00) ssp_clk <= 1'b1; if (corr_i_cnt[1:0] == 2'b10) ssp_clk <= 1'b0; // set ssp_frame signal for corr_i_cnt = 1..3 // (send one frame with 16 Bits) if (corr_i_cnt == 6'd1) ssp_frame <= 1'b1; if (corr_i_cnt == 6'd3) ssp_frame <= 1'b0; end assign ssp_din = corr_i_out[7]; // a jamming signal reg jam_signal; reg [3:0] jam_counter; always @(negedge adc_clk) begin if (corr_i_cnt == 6'd0) begin jam_counter <= jam_counter + 1; jam_signal <= jam_counter[1] ^ jam_counter[3]; end end always @(*) begin if (minor_mode == `FPGA_HF_READER_MODE_SEND_SHALLOW_MOD) begin pwr_hi = ck_1356meg; pwr_oe4 = ssp_dout; end else if (minor_mode == `FPGA_HF_READER_MODE_SEND_FULL_MOD) begin pwr_hi = ck_1356meg & ~ssp_dout; pwr_oe4 = 1'b0; end else if (minor_mode == `FPGA_HF_READER_MODE_SEND_JAM) begin pwr_hi = ck_1356meg & jam_signal; pwr_oe4 = 1'b0; end else if (minor_mode == `FPGA_HF_READER_MODE_SNIFF_IQ || minor_mode == `FPGA_HF_READER_MODE_SNIFF_AMPLITUDE || minor_mode == `FPGA_HF_READER_MODE_SNIFF_PHASE) begin // all off pwr_hi = 1'b0; pwr_oe4 = 1'b0; end else // receiving from tag begin pwr_hi = ck_1356meg; pwr_oe4 = 1'b0; end end // always on assign pwr_oe1 = 1'b0; assign pwr_oe3 = 1'b0; // Unused. assign pwr_lo = 1'b0; assign pwr_oe2 = 1'b0; // Debug Output assign debug = corr_i_cnt[3]; endmodule