//----------------------------------------------------------------------------- // Copyright (C) Proxmark3 contributors. See AUTHORS.md for details. // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // See LICENSE.txt for the text of the license. //----------------------------------------------------------------------------- // // track min and max peak values (envelope follower) // // NB: the min value (resp. max value) is updated only when the next high peak // (resp. low peak) is reached/detected, since you can't know it isn't a // local minima (resp. maxima) until then. // This also means the peaks are detected with an unpredictable delay. // This algorithm therefore can't be used directly for realtime peak detections, // but it can be used as a simple envelope follower. module min_max_tracker( input clk, input [7:0] adc_d, input [7:0] threshold, output [7:0] min, output [7:0] max ); reg [7:0] min_val = 255; reg [7:0] max_val = 0; reg [7:0] cur_min_val = 255; reg [7:0] cur_max_val = 0; reg [1:0] state = 0; always @(posedge clk) begin case (state) 0: // initialize begin if (cur_max_val >= ({1'b0, adc_d} + threshold)) state <= 2; else if (adc_d >= ({1'b0, cur_min_val} + threshold)) state <= 1; if (cur_max_val <= adc_d) cur_max_val <= adc_d; else if (adc_d <= cur_min_val) cur_min_val <= adc_d; end 1: // high phase begin if (cur_max_val <= adc_d) cur_max_val <= adc_d; else if (({1'b0, adc_d} + threshold) <= cur_max_val) begin state <= 2; cur_min_val <= adc_d; max_val <= cur_max_val; end end 2: // low phase begin if (adc_d <= cur_min_val) cur_min_val <= adc_d; else if (adc_d >= ({1'b0, cur_min_val} + threshold)) begin state <= 1; cur_max_val <= adc_d; min_val <= cur_min_val; end end endcase end assign min = min_val; assign max = max_val; endmodule