//----------------------------------------------------------------------------- // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Low frequency fdx-b tag commands // Differential Biphase, rf/32, 128 bits (known) //----------------------------------------------------------------------------- #include "cmdlffdxb.h" #include #include #include #include // tolower #include "cmdparser.h" // command_t #include "comms.h" #include "commonutil.h" #include "ui.h" // PrintAndLog #include "cmddata.h" #include "cmdlf.h" // lf read #include "crc16.h" // for checksum crc-16_ccitt #include "protocols.h" // for T55xx config register definitions #include "lfdemod.h" // parityTest #include "cmdlft55xx.h" // verifywrite /* FDX-B ISO11784/85 demod (aka animal tag) BIPHASE, inverted, rf/32, with preamble of 00000000001 (128bits) 8 databits + 1 parity (1) CIITT 16 checksum NATIONAL CODE, ICAR database COUNTRY CODE (ISO3166) or http://cms.abvma.ca/uploads/ManufacturersISOsandCountryCodes.pdf FLAG (animal/non-animal) 38 IDbits 10 country code 1 extra app bit 14 reserved bits 1 animal bit 16 ccitt CRC chksum over 64bit ID CODE. 24 appli bits. sample: 985121004515220 [ 37FF65B88EF94 ] */ static int CmdHelp(const char *Cmd); static int usage_lf_fdxb_clone(void) { PrintAndLogEx(NORMAL, "Clone a FDX-B animal tag to a T55x7 or Q5/T5555 tag."); PrintAndLogEx(NORMAL, "Usage: lf fdxb clone [h] [c ] [a ] [e ] "); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h : This help"); PrintAndLogEx(NORMAL, " c : (dec) Country code"); PrintAndLogEx(NORMAL, " n : (dec) National code"); PrintAndLogEx(NORMAL, " e : (hex) Extended data"); PrintAndLogEx(NORMAL, " s : Set animal bit"); PrintAndLogEx(NORMAL, " : Specify writing to Q5/T5555 tag"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, _YELLOW_(" lf fdxb clone c 999 n 112233 s")); PrintAndLogEx(NORMAL, _YELLOW_(" lf fdxb clone c 999 n 112233 e 16a")); return PM3_SUCCESS; } static int usage_lf_fdxb_read(void) { PrintAndLogEx(NORMAL, "Read FDX-B animal tag"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Usage: lf fdxb read [h] [@]"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h : This help"); PrintAndLogEx(NORMAL, " @ : run continuously until a key is pressed (optional)"); PrintAndLogEx(NORMAL, "Note that the continuous mode is less verbose"); return PM3_SUCCESS; } static int usage_lf_fdxb_sim(void) { PrintAndLogEx(NORMAL, "Enables simulation of FDX-B animal tag"); PrintAndLogEx(NORMAL, "Simulation runs until the button is pressed or another USB command is issued."); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Usage: lf fdxb sim [h] [c ] [n ] [e ] "); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h : This help"); PrintAndLogEx(NORMAL, " c : (dec) Country code"); PrintAndLogEx(NORMAL, " n : (dec) National code"); PrintAndLogEx(NORMAL, " e : (hex) Extended data"); PrintAndLogEx(NORMAL, " s : Set animal bit"); PrintAndLogEx(NORMAL, " : Specify writing to Q5/T5555 tag"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, _YELLOW_(" lf fdxb sim c 999 n 112233 s")); PrintAndLogEx(NORMAL, _YELLOW_(" lf fdxb sim c 999 n 112233 e 16a")); return PM3_SUCCESS; } // clearing the topbit needed for the preambl detection. static void verify_values(uint64_t *animalid, uint32_t *countryid, uint32_t *extended, uint8_t *is_animal) { if ((*animalid & 0x3FFFFFFFFF) != *animalid) { *animalid &= 0x3FFFFFFFFF; PrintAndLogEx(INFO, "Animal ID truncated to 38bits: " _YELLOW_("%"PRIx64), *animalid); } if ((*countryid & 0x3FF) != *countryid) { *countryid &= 0x3FF; PrintAndLogEx(INFO, "Country ID truncated to 10bits:" _YELLOW_("%03d"), *countryid); } if ((*extended & 0xFFF) != *extended) { *extended &= 0xFFF; PrintAndLogEx(INFO, "Extended truncated to 24bits: " _YELLOW_("0x%03X"), *extended); } *is_animal &= 0x01; } static inline uint32_t bitcount(uint32_t a) { #if defined __GNUC__ return __builtin_popcountl(a); #else a = a - ((a >> 1) & 0x55555555); a = (a & 0x33333333) + ((a >> 2) & 0x33333333); return (((a + (a >> 4)) & 0x0f0f0f0f) * 0x01010101) >> 24; #endif } // FDX-B ISO11784/85 demod (aka animal tag) BIPHASE, inverted, rf/32, with preamble of 00000000001 (128bits) // 8 databits + 1 parity (1) // CIITT 16 chksum // NATIONAL CODE, ICAR database // COUNTRY CODE (ISO3166) or http://cms.abvma.ca/uploads/ManufacturersISOsandCountryCodes.pdf // FLAG (animal/non-animal) /* 38 IDbits 10 country code 1 extra app bit 14 reserved bits 1 animal bit 16 ccitt CRC chksum over 64bit ID CODE. 24 appli bits. -- sample: 985121004515220 [ 37FF65B88EF94 ] */ /* static int CmdFDXBdemodBI(const char *Cmd) { (void)Cmd; // Cmd is not used so far int clk = 32; int invert = 1, errCnt = 0, offset = 0, maxErr = 100; uint8_t bs[MAX_DEMOD_BUF_LEN]; size_t size = getFromGraphBuf(bs); errCnt = askdemod(bs, &size, &clk, &invert, maxErr, 0, 0); if (errCnt < 0 || errCnt > maxErr) { PrintAndLogEx(DEBUG, "DEBUG: Error - FDXB no data or error found %d, clock: %d", errCnt, clk); return PM3_ESOFT; } errCnt = BiphaseRawDecode(bs, &size, &offset, 1); if (errCnt < 0 || errCnt > maxErr) { PrintAndLogEx(DEBUG, "DEBUG: Error - FDXB BiphaseRawDecode: %d", errCnt); return PM3_ESOFT; } int preambleIndex = detectFDXB(bs, &size); if (preambleIndex < 0) { PrintAndLogEx(DEBUG, "DEBUG: Error - FDXB preamble not found :: %d", preambleIndex); return PM3_ESOFT; } if (size != 128) { PrintAndLogEx(DEBUG, "DEBUG: Error - FDXB incorrect data length found"); return PM3_ESOFT; } setDemodBuff(bs, 128, preambleIndex); // remove marker bits (1's every 9th digit after preamble) (pType = 2) size = removeParity(bs, preambleIndex + 11, 9, 2, 117); if (size != 104) { PrintAndLogEx(DEBUG, "DEBUG: Error - FDXB error removeParity:: %d", size); return PM3_ESOFT; } PrintAndLogEx(SUCCESS, "\nFDX-B / ISO 11784/5 Animal Tag ID Found:"); //got a good demod uint64_t NationalCode = ((uint64_t)(bytebits_to_byteLSBF(bs + 32, 6)) << 32) | bytebits_to_byteLSBF(bs, 32); uint32_t countryCode = bytebits_to_byteLSBF(bs + 38, 10); uint8_t dataBlockBit = bs[48]; uint32_t reservedCode = bytebits_to_byteLSBF(bs + 49, 14); uint8_t animalBit = bs[63]; uint32_t crc_16 = bytebits_to_byteLSBF(bs + 64, 16); uint32_t extended = bytebits_to_byteLSBF(bs + 80, 24); uint64_t rawid = ((uint64_t)bytebits_to_byte(bs, 32) << 32) | bytebits_to_byte(bs + 32, 32); uint8_t raw[8]; num_to_bytes(rawid, 8, raw); PrintAndLogEx(SUCCESS, "Raw ID Hex: %s", sprint_hex(raw, 8)); uint16_t calcCrc = crc16_kermit(raw, 8); PrintAndLogEx(SUCCESS, "Animal ID: %04u-%012" PRIu64, countryCode, NationalCode); PrintAndLogEx(SUCCESS, "National Code: %012" PRIu64, NationalCode); PrintAndLogEx(SUCCESS, "CountryCode: %04u", countryCode); PrintAndLogEx(SUCCESS, "Reserved/RFU: %u", reservedCode); PrintAndLogEx(SUCCESS, "Animal Tag: %s", animalBit ? _YELLOW_("True") : "False"); PrintAndLogEx(SUCCESS, "Has extended data: %s [0x%X]", dataBlockBit ? _YELLOW_("True") : "False", extended); PrintAndLogEx(SUCCESS, "CRC: 0x%04X - [%04X] - %s", crc_16, calcCrc, (calcCrc == crc_16) ? _GREEN_("Passed") : _RED_("Fail") ); if (g_debugMode) { PrintAndLogEx(DEBUG, "Start marker %d; Size %d", preambleIndex, size); char *bin = sprint_bin_break(bs, size, 16); PrintAndLogEx(DEBUG, "DEBUG BinStream:\n%s", bin); } return PM3_SUCCESS; } */ //see ASKDemod for what args are accepted //almost the same demod as cmddata.c/CmdFDXBdemodBI int demodFDXB(bool verbose) { //Differential Biphase / di-phase (inverted biphase) //get binary from ask wave if (ASKbiphaseDemod(0, 32, 1, 100, false) != PM3_SUCCESS) { PrintAndLogEx(DEBUG, "DEBUG: Error - FDX-B ASKbiphaseDemod failed"); return PM3_ESOFT; } size_t size = DemodBufferLen; int preambleIndex = detectFDXB(DemodBuffer, &size); if (preambleIndex < 0) { if (preambleIndex == -1) PrintAndLogEx(DEBUG, "DEBUG: Error - FDX-B too few bits found"); else if (preambleIndex == -2) PrintAndLogEx(DEBUG, "DEBUG: Error - FDX-B preamble not found"); else if (preambleIndex == -3) PrintAndLogEx(DEBUG, "DEBUG: Error - FDX-B Size not correct: %zu", size); else PrintAndLogEx(DEBUG, "DEBUG: Error - FDX-B ans: %d", preambleIndex); return PM3_ESOFT; } // set and leave DemodBuffer intact setDemodBuff(DemodBuffer, 128, preambleIndex); setClockGrid(g_DemodClock, g_DemodStartIdx + (preambleIndex * g_DemodClock)); // remove marker bits (1's every 9th digit after preamble) (pType = 2) size = removeParity(DemodBuffer, 11, 9, 2, 117); if (size != 104) { PrintAndLogEx(DEBUG, "DEBUG: Error - FDX-B error removeParity: %zu", size); return PM3_ESOFT; } //got a good demod uint8_t offset; // ISO: bits 27..64 uint64_t NationalCode = ((uint64_t)(bytebits_to_byteLSBF(DemodBuffer + 32, 6)) << 32) | bytebits_to_byteLSBF(DemodBuffer, 32); offset = 38; // ISO: bits 17..26 uint16_t countryCode = bytebits_to_byteLSBF(DemodBuffer + offset, 10); offset += 10; // ISO: bits 16 uint8_t dataBlockBit = DemodBuffer[offset]; offset++; // ISO: bits 15 uint8_t rudiBit = DemodBuffer[offset]; offset++; // ISO: bits 10..14 uint32_t reservedCode = bytebits_to_byteLSBF(DemodBuffer + offset, 5); offset += 5; // ISO: bits 5..9 uint32_t userInfo = bytebits_to_byteLSBF(DemodBuffer + offset, 5); offset += 5; // ISO: bits 2..4 uint32_t replacementNr = bytebits_to_byteLSBF(DemodBuffer + offset, 3); offset += 3; uint8_t animalBit = DemodBuffer[offset]; offset++; uint16_t crc = bytebits_to_byteLSBF(DemodBuffer + offset, 16); offset += 16; uint32_t extended = bytebits_to_byteLSBF(DemodBuffer + offset, 24); uint64_t rawid = (uint64_t)(bytebits_to_byte(DemodBuffer, 32)) << 32 | bytebits_to_byte(DemodBuffer + 32, 32); uint8_t raw[8]; num_to_bytes(rawid, 8, raw); if (!verbose) { PROMPT_CLEARLINE; PrintAndLogEx(SUCCESS, "Animal ID " _GREEN_("%04u-%012"PRIu64), countryCode, NationalCode); return PM3_SUCCESS; } PrintAndLogEx(SUCCESS, "FDX-B / ISO 11784/5 Animal"); PrintAndLogEx(SUCCESS, "Animal ID " _GREEN_("%04u-%012"PRIu64), countryCode, NationalCode); PrintAndLogEx(SUCCESS, "National Code " _GREEN_("%012" PRIu64) " (0x%" PRIX64 ")", NationalCode, NationalCode); PrintAndLogEx(SUCCESS, "Country Code " _GREEN_("%04u"), countryCode); PrintAndLogEx(SUCCESS, "Reserved/RFU %u (0x%04X)", reservedCode, reservedCode); PrintAndLogEx(SUCCESS, " Animal bit set? %s", animalBit ? _YELLOW_("True") : "False"); PrintAndLogEx(SUCCESS, " Data block? %s [value 0x%X]", dataBlockBit ? _YELLOW_("True") : "False", extended); PrintAndLogEx(SUCCESS, " RUDI bit? %s", rudiBit ? _YELLOW_("True") " (advanced transponder)" : "False"); PrintAndLogEx(SUCCESS, " User Info? %u %s", userInfo, userInfo == 0 ? "(RFU)":""); PrintAndLogEx(SUCCESS, " Replacement No? %u %s", replacementNr, replacementNr == 0 ? "(RFU)":""); uint8_t c[] = {0, 0}; compute_crc(CRC_11784, raw, sizeof(raw), &c[0], &c[1]); PrintAndLogEx(SUCCESS, "CRC-16 0x%04X (%s)", crc, (crc == (c[1] << 8 | c[0])) ? _GREEN_("ok") : _RED_("fail")); // iceman: crc doesn't protect the extended data? PrintAndLogEx(SUCCESS, "Raw " _GREEN_("%s"), sprint_hex(raw, 8)); if (g_debugMode) { PrintAndLogEx(DEBUG, "Start marker %d; Size %zu", preambleIndex, size); char *bin = sprint_bin_break(DemodBuffer, size, 16); PrintAndLogEx(DEBUG, "DEBUG bin stream:\n%s", bin); } uint8_t bt_par = (extended & 0x100) >> 8; uint8_t bt_temperature = extended & 0xff; uint8_t bt_calc_parity = (bitcount(bt_temperature) & 0x1) ? 0 : 1; uint8_t is_bt_temperature = (bt_calc_parity == bt_par) && !(extended & 0xe00) ; if (is_bt_temperature) { float bt_F = 74 + bt_temperature * 0.2; float bt_C = (bt_F - 32) / 1.8; PrintAndLogEx(NORMAL, ""); PrintAndLogEx(SUCCESS, "Bio-Thermo detected"); PrintAndLogEx(INFO, " temperature " _GREEN_("%.1f")" F / " _GREEN_("%.1f") " C", bt_F, bt_C); } // set block 0 for later //g_DemodConfig = T55x7_MODULATION_DIPHASE | T55x7_BITRATE_RF_32 | 4 << T55x7_MAXBLOCK_SHIFT; return PM3_SUCCESS; } static int CmdFdxBDemod(const char *Cmd) { (void)Cmd; // Cmd is not used so far return demodFDXB(true); } static int CmdFdxBRead(const char *Cmd) { sample_config config; memset(&config, 0, sizeof(sample_config)); int retval = lf_getconfig(&config); if (retval != PM3_SUCCESS) { PrintAndLogEx(ERR, "failed to get current device LF config"); return retval; } bool errors = false; bool continuous = false; uint8_t cmdp = 0; while (param_getchar(Cmd, cmdp) != 0x00 && !errors) { switch (tolower(param_getchar(Cmd, cmdp))) { case 'h': return usage_lf_fdxb_read(); case '@': continuous = true; cmdp++; break; default: PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } } //Validations if (errors) return usage_lf_fdxb_read(); int16_t tmp_div = config.divisor; if (tmp_div != LF_DIVISOR_134) { config.divisor = LF_DIVISOR_134; config.verbose = false; retval = lf_config(&config); if (retval != PM3_SUCCESS) { PrintAndLogEx(ERR, "failed to change LF configuration"); return retval; } } if (continuous) { PrintAndLogEx(INFO, "Press " _GREEN_("Enter") " to exit"); } int ret = PM3_SUCCESS; do { retval = lf_read(false, 10000); if (retval != PM3_SUCCESS) { PrintAndLogEx(ERR, "failed to get LF read from device"); return retval; } ret = demodFDXB(!continuous); // be verbose only if not in continuous mode if (kbd_enter_pressed()) { break; } PrintAndLogEx(INPLACE, ""); } while (continuous); if (tmp_div != LF_DIVISOR_134) { config.divisor = tmp_div; retval = lf_config(&config); if (retval != PM3_SUCCESS) { PrintAndLogEx(ERR, "failed to restore LF configuration"); return retval; } } return ret; } static int CmdFdxBClone(const char *Cmd) { uint32_t country_code = 0, extended = 0; uint64_t national_code = 0; uint8_t is_animal = 0, cmdp = 0; bool errors = false, has_extended = false, q5 = false; while (param_getchar(Cmd, cmdp) != 0x00 && !errors) { switch (tolower(param_getchar(Cmd, cmdp))) { case 'h': return usage_lf_fdxb_clone(); case 'c': { country_code = param_get32ex(Cmd, cmdp + 1, 0, 10); cmdp += 2; break; } case 'n': { national_code = param_get64ex(Cmd, cmdp + 1, 0, 10); cmdp += 2; break; } case 'e': { extended = param_get32ex(Cmd, cmdp + 1, 0, 16); has_extended = true; cmdp += 2; break; } case 's': { is_animal = 1; cmdp++; break; } case 'q': { q5 = true; cmdp++; break; } default: { PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } } } if (errors || strlen(Cmd) == 0) return usage_lf_fdxb_clone(); verify_values(&national_code, &country_code, &extended, &is_animal); PrintAndLogEx(INFO, " Country code %"PRIu32, country_code); PrintAndLogEx(INFO, " National code %"PRIu64, national_code); PrintAndLogEx(INFO, " Set animal bit %c", (is_animal) ? 'Y' : 'N'); PrintAndLogEx(INFO, "Set data block bit %c", (has_extended) ? 'Y' : 'N'); PrintAndLogEx(INFO, " Extended data 0x%"PRIX32, extended); PrintAndLogEx(INFO, " RFU 0"); uint8_t *bits = calloc(128, sizeof(uint8_t)); if (getFDXBBits(national_code, country_code, is_animal, has_extended, extended, bits) != PM3_SUCCESS) { PrintAndLogEx(ERR, "Error with tag bitstream generation."); free(bits); return PM3_ESOFT; } uint32_t blocks[5] = {T55x7_MODULATION_DIPHASE | T55x7_BITRATE_RF_32 | 4 << T55x7_MAXBLOCK_SHIFT, 0, 0, 0, 0}; //Q5 if (q5) blocks[0] = T5555_FIXED | T5555_MODULATION_BIPHASE | T5555_INVERT_OUTPUT | T5555_SET_BITRATE(32) | 4 << T5555_MAXBLOCK_SHIFT; // convert from bit stream to block data blocks[1] = bytebits_to_byte(bits, 32); blocks[2] = bytebits_to_byte(bits + 32, 32); blocks[3] = bytebits_to_byte(bits + 64, 32); blocks[4] = bytebits_to_byte(bits + 96, 32); free(bits); PrintAndLogEx(INFO, "Preparing to clone FDX-B to " _YELLOW_("%s") " with animal ID: " _GREEN_("%04u-%"PRIu64), (q5) ? "Q5/T5555" : "T55x7", country_code, national_code); print_blocks(blocks, ARRAYLEN(blocks)); int res = clone_t55xx_tag(blocks, ARRAYLEN(blocks)); PrintAndLogEx(SUCCESS, "Done"); PrintAndLogEx(HINT, "Hint: try " _YELLOW_("`lf fdxb read`") " to verify"); return res; } static int CmdFdxBSim(const char *Cmd) { uint32_t country_code = 0, extended = 0; uint64_t national_code = 0; uint8_t is_animal = 0, cmdp = 0; bool errors = false, has_extended = false; while (param_getchar(Cmd, cmdp) != 0x00 && !errors) { switch (tolower(param_getchar(Cmd, cmdp))) { case 'h': return usage_lf_fdxb_sim(); case 'c': { country_code = param_get32ex(Cmd, cmdp + 1, 0, 10); cmdp += 2; break; } case 'n': { national_code = param_get64ex(Cmd, cmdp + 1, 0, 10); cmdp += 2; break; } case 'e': { extended = param_get32ex(Cmd, cmdp + 1, 0, 10); has_extended = true; cmdp += 2; break; } case 's': { is_animal = 1; cmdp++; break; } default: { PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } } } if (errors) return usage_lf_fdxb_sim(); verify_values(&national_code, &country_code, &extended, &is_animal); PrintAndLogEx(INFO, " Country code %"PRIu32, country_code); PrintAndLogEx(INFO, " National code %"PRIu64, national_code); PrintAndLogEx(INFO, " Set animal bit %c", (is_animal) ? 'Y' : 'N'); PrintAndLogEx(INFO, "Set data block bit %c", (has_extended) ? 'Y' : 'N'); PrintAndLogEx(INFO, " Extended data 0x%"PRIX32, extended); PrintAndLogEx(INFO, " RFU 0"); PrintAndLogEx(SUCCESS, "Simulating FDX-B animal ID: " _GREEN_("%04u-%"PRIu64), country_code, national_code); uint8_t *bits = calloc(128, sizeof(uint8_t)); if (getFDXBBits(national_code, country_code, is_animal, (extended > 0), extended, bits) != PM3_SUCCESS) { PrintAndLogEx(ERR, "Error with tag bitstream generation."); free(bits); return PM3_ESOFT; } // 32, no STT, BIPHASE INVERTED == diphase lf_asksim_t *payload = calloc(1, sizeof(lf_asksim_t) + 128); payload->encoding = 2; payload->invert = 1; payload->separator = 0; payload->clock = 32; memcpy(payload->data, bits, 128); clearCommandBuffer(); SendCommandNG(CMD_LF_ASK_SIMULATE, (uint8_t *)payload, sizeof(lf_asksim_t) + 128); free(bits); free(payload); PacketResponseNG resp; WaitForResponse(CMD_LF_ASK_SIMULATE, &resp); PrintAndLogEx(INFO, "Done"); if (resp.status != PM3_EOPABORTED) return resp.status; return PM3_SUCCESS; } static command_t CommandTable[] = { {"help", CmdHelp, AlwaysAvailable, "this help"}, {"demod", CmdFdxBDemod, AlwaysAvailable, "demodulate a FDX-B ISO11784/85 tag from the GraphBuffer"}, {"read", CmdFdxBRead, IfPm3Lf, "attempt to read at 134kHz and extract tag data"}, {"clone", CmdFdxBClone, IfPm3Lf, "clone animal ID tag to T55x7 or Q5/T5555"}, {"sim", CmdFdxBSim, IfPm3Lf, "simulate Animal ID tag"}, {NULL, NULL, NULL, NULL} }; static int CmdHelp(const char *Cmd) { (void)Cmd; // Cmd is not used so far CmdsHelp(CommandTable); return PM3_SUCCESS; } int CmdLFFdxB(const char *Cmd) { clearCommandBuffer(); return CmdsParse(CommandTable, Cmd); } // Ask/Biphase Demod then try to locate an ISO 11784/85 ID // BitStream must contain previously askrawdemod and biphasedemoded data int detectFDXB(uint8_t *dest, size_t *size) { //make sure buffer has enough data if (*size < 128 * 2) return -1; size_t startIdx = 0; uint8_t preamble[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}; if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx)) return -2; //preamble not found if (*size < 128) return -3; //wrong demoded size //return start position return (int)startIdx; } int getFDXBBits(uint64_t national_code, uint16_t country_code, uint8_t is_animal, uint8_t is_extended, uint32_t extended, uint8_t *bits) { // add preamble ten 0x00 and one 0x01 memset(bits, 0x00, 10); bits[10] = 1; // 128bits // every 9th bit is 0x01, but we can just fill the rest with 0x01 and overwrite memset(bits, 0x01, 128); // add preamble ten 0x00 and one 0x01 memset(bits, 0x00, 10); // add reserved num_to_bytebitsLSBF(0x00, 7, bits + 66); num_to_bytebitsLSBF(0x00 >> 7, 7, bits + 74); // add animal flag - OK bits[81] = is_animal; // add extended flag - OK bits[65] = is_extended; // add national code 40bits - OK num_to_bytebitsLSBF(national_code >> 0, 8, bits + 11); num_to_bytebitsLSBF(national_code >> 8, 8, bits + 20); num_to_bytebitsLSBF(national_code >> 16, 8, bits + 29); num_to_bytebitsLSBF(national_code >> 24, 8, bits + 38); num_to_bytebitsLSBF(national_code >> 32, 6, bits + 47); // add country code - OK num_to_bytebitsLSBF(country_code >> 0, 2, bits + 53); num_to_bytebitsLSBF(country_code >> 2, 8, bits + 56); // add crc-16 - OK uint8_t raw[8]; for (uint8_t i = 0; i < 8; ++i) raw[i] = bytebits_to_byte(bits + 11 + i * 9, 8); init_table(CRC_11784); uint16_t crc = crc16_fdxb(raw, 8); num_to_bytebitsLSBF(crc >> 0, 8, bits + 83); num_to_bytebitsLSBF(crc >> 8, 8, bits + 92); // extended data - OK num_to_bytebitsLSBF(extended >> 0, 8, bits + 101); num_to_bytebitsLSBF(extended >> 8, 8, bits + 110); num_to_bytebitsLSBF(extended >> 16, 8, bits + 119); // 8 16 24 32 40 48 49 // A8 28 0C 92 EA 6F 00 01 // A8 28 0C 92 EA 6F 80 00 return PM3_SUCCESS; }