//----------------------------------------------------------------------------- // (c) 2009 Henryk Plötz // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // LEGIC RF simulation code //----------------------------------------------------------------------------- #include "proxmark3.h" #include "apps.h" #include "util.h" #include "string.h" #include "legicrf.h" #include "legic_prng.h" #include "crc.h" static struct legic_frame { int bits; uint32_t data; } current_frame; static enum { STATE_DISCON, STATE_IV, STATE_CON, } legic_state; static crc_t legic_crc; static int legic_read_count; static uint32_t legic_prng_bc; static uint32_t legic_prng_iv; static int legic_phase_drift; static int legic_frame_drift; static int legic_reqresp_drift; AT91PS_TC timer; AT91PS_TC prng_timer; static void setup_timer(void) { /* Set up Timer 1 to use for measuring time between pulses. Since we're bit-banging * this it won't be terribly accurate but should be good enough. */ AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1); timer = AT91C_BASE_TC1; timer->TC_CCR = AT91C_TC_CLKDIS; timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK; timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; /* * Set up Timer 2 to use for measuring time between frames in * tag simulation mode. Runs 4x faster as Timer 1 */ AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC2); prng_timer = AT91C_BASE_TC2; prng_timer->TC_CCR = AT91C_TC_CLKDIS; prng_timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV2_CLOCK; prng_timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; } /* At TIMER_CLOCK3 (MCK/32) */ #define RWD_TIME_1 150 /* RWD_TIME_PAUSE off, 80us on = 100us */ #define RWD_TIME_0 90 /* RWD_TIME_PAUSE off, 40us on = 60us */ #define RWD_TIME_PAUSE 30 /* 20us */ #define RWD_TIME_FUZZ 20 /* rather generous 13us, since the peak detector + hysteresis fuzz quite a bit */ #define TAG_TIME_BIT 150 /* 100us for every bit */ #define TAG_TIME_WAIT 490 /* time from RWD frame end to tag frame start, experimentally determined */ #define SIM_DIVISOR 586 /* prng_time/SIM_DIVISOR count prng needs to be forwared */ #define SIM_SHIFT 900 /* prng_time+SIM_SHIFT shift of delayed start */ #define SESSION_IV 0x55 #define OFFSET_LOG 1024 #define FUZZ_EQUAL(value, target, fuzz) ((value) > ((target)-(fuzz)) && (value) < ((target)+(fuzz))) /* Generate Keystream */ static uint32_t get_key_stream(int skip, int count) { uint32_t key=0; int i; /* Use int to enlarge timer tc to 32bit */ legic_prng_bc += prng_timer->TC_CV; prng_timer->TC_CCR = AT91C_TC_SWTRG; /* If skip == -1, forward prng time based */ if(skip == -1) { i = (legic_prng_bc+SIM_SHIFT)/SIM_DIVISOR; /* Calculate Cycles based on timer */ i -= legic_prng_count(); /* substract cycles of finished frames */ i -= count; /* substract current frame length, rewidn to bedinning */ legic_prng_forward(i); } else { legic_prng_forward(skip); } /* Write Time Data into LOG */ uint8_t *BigBuf = BigBuf_get_addr(); i = (count == 6) ? -1 : legic_read_count; BigBuf[OFFSET_LOG+128+i] = legic_prng_count(); BigBuf[OFFSET_LOG+256+i*4] = (legic_prng_bc >> 0) & 0xff; BigBuf[OFFSET_LOG+256+i*4+1] = (legic_prng_bc >> 8) & 0xff; BigBuf[OFFSET_LOG+256+i*4+2] = (legic_prng_bc >>16) & 0xff; BigBuf[OFFSET_LOG+256+i*4+3] = (legic_prng_bc >>24) & 0xff; BigBuf[OFFSET_LOG+384+i] = count; /* Generate KeyStream */ for(i=0; iPIO_CODR = GPIO_SSC_DOUT; AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; /* Use time to crypt frame */ if(crypt) { legic_prng_forward(2); /* TAG_TIME_WAIT -> shift by 2 */ int i; int key = 0; for(i=0; iTC_CV < (TAG_TIME_WAIT - 30)) ; int i; for(i=0; iTC_CV + TAG_TIME_BIT; int bit = response & 1; response = response >> 1; if(bit) AT91C_BASE_PIOA->PIO_SODR = GPIO_SSC_DOUT; else AT91C_BASE_PIOA->PIO_CODR = GPIO_SSC_DOUT; while(timer->TC_CV < nextbit) ; } AT91C_BASE_PIOA->PIO_CODR = GPIO_SSC_DOUT; } /* Send a frame in reader mode, the FPGA must have been set up by * LegicRfReader */ static void frame_send_rwd(uint32_t data, int bits) { /* Start clock */ timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; while(timer->TC_CV > 1) ; /* Wait till the clock has reset */ int i; for(i=0; iTC_CV; int pause_end = starttime + RWD_TIME_PAUSE, bit_end; int bit = data & 1; data = data >> 1; if(bit ^ legic_prng_get_bit()) bit_end = starttime + RWD_TIME_1; else bit_end = starttime + RWD_TIME_0; /* RWD_TIME_PAUSE time off, then some time on, so that the complete bit time is * RWD_TIME_x, where x is the bit to be transmitted */ AT91C_BASE_PIOA->PIO_CODR = GPIO_SSC_DOUT; while(timer->TC_CV < pause_end) ; AT91C_BASE_PIOA->PIO_SODR = GPIO_SSC_DOUT; legic_prng_forward(1); /* bit duration is longest. use this time to forward the lfsr */ while(timer->TC_CV < bit_end); } /* One final pause to mark the end of the frame */ int pause_end = timer->TC_CV + RWD_TIME_PAUSE; AT91C_BASE_PIOA->PIO_CODR = GPIO_SSC_DOUT; while(timer->TC_CV < pause_end) ; AT91C_BASE_PIOA->PIO_SODR = GPIO_SSC_DOUT; /* Reset the timer, to measure time until the start of the tag frame */ timer->TC_CCR = AT91C_TC_SWTRG; while(timer->TC_CV > 1) ; /* Wait till the clock has reset */ } /* Receive a frame from the card in reader emulation mode, the FPGA and * timer must have been set up by LegicRfReader and frame_send_rwd. * * The LEGIC RF protocol from card to reader does not include explicit * frame start/stop information or length information. The reader must * know beforehand how many bits it wants to receive. (Notably: a card * sending a stream of 0-bits is indistinguishable from no card present.) * * Receive methodology: There is a fancy correlator in hi_read_rx_xcorr, but * I'm not smart enough to use it. Instead I have patched hi_read_tx to output * the ADC signal with hysteresis on SSP_DIN. Bit-bang that signal and look * for edges. Count the edges in each bit interval. If they are approximately * 0 this was a 0-bit, if they are approximately equal to the number of edges * expected for a 212kHz subcarrier, this was a 1-bit. For timing we use the * timer that's still running from frame_send_rwd in order to get a synchronization * with the frame that we just sent. * * FIXME: Because we're relying on the hysteresis to just do the right thing * the range is severely reduced (and you'll probably also need a good antenna). * So this should be fixed some time in the future for a proper receiver. */ static void frame_receive_rwd(struct legic_frame * const f, int bits, int crypt) { uint32_t the_bit = 1; /* Use a bitmask to save on shifts */ uint32_t data=0; int i, old_level=0, edges=0; int next_bit_at = TAG_TIME_WAIT; if(bits > 32) { bits = 32; } AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN; AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN; /* we have some time now, precompute the cipher * since we cannot compute it on the fly while reading */ legic_prng_forward(2); if(crypt) { for(i=0; iTC_CV < next_bit_at) ; next_bit_at += TAG_TIME_BIT; for(i=0; iTC_CV < next_bit_at) { int level = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN); if(level != old_level) edges++; old_level = level; } next_bit_at += TAG_TIME_BIT; if(edges > 20 && edges < 60) { /* expected are 42 edges */ data ^= the_bit; } the_bit <<= 1; } f->data = data; f->bits = bits; /* Reset the timer, to synchronize the next frame */ timer->TC_CCR = AT91C_TC_SWTRG; while(timer->TC_CV > 1) ; /* Wait till the clock has reset */ } static void frame_append_bit(struct legic_frame * const f, int bit) { if (f->bits >= 31) return; /* Overflow, won't happen */ f->data |= (bit << f->bits); f->bits++; } static void frame_clean(struct legic_frame * const f) { f->data = 0; f->bits = 0; } static uint32_t perform_setup_phase_rwd(int iv) { /* Switch on carrier and let the tag charge for 1ms */ AT91C_BASE_PIOA->PIO_SODR = GPIO_SSC_DOUT; SpinDelay(1); legic_prng_init(0); /* no keystream yet */ frame_send_rwd(iv, 7); legic_prng_init(iv); frame_clean(¤t_frame); frame_receive_rwd(¤t_frame, 6, 1); legic_prng_forward(1); /* we wait anyways */ while(timer->TC_CV < 387) ; /* ~ 258us */ frame_send_rwd(0x19, 6); return current_frame.data; } static void LegicCommonInit(void) { FpgaDownloadAndGo(FPGA_BITSTREAM_HF); SetAdcMuxFor(GPIO_MUXSEL_HIPKD); FpgaSetupSsc(); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX); /* Bitbang the transmitter */ AT91C_BASE_PIOA->PIO_CODR = GPIO_SSC_DOUT; AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; setup_timer(); crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0); } static void switch_off_tag_rwd(void) { /* Switch off carrier, make sure tag is reset */ AT91C_BASE_PIOA->PIO_CODR = GPIO_SSC_DOUT; SpinDelay(10); WDT_HIT(); } /* calculate crc for a legic command */ static int LegicCRC(int byte_index, int value, int cmd_sz) { crc_clear(&legic_crc); crc_update(&legic_crc, 1, 1); /* CMD_READ */ crc_update(&legic_crc, byte_index, cmd_sz-1); crc_update(&legic_crc, value, 8); return crc_finish(&legic_crc); } int legic_read_byte(int byte_index, int cmd_sz) { int byte; legic_prng_forward(4); /* we wait anyways */ while(timer->TC_CV < 387) ; /* ~ 258us + 100us*delay */ frame_send_rwd(1 | (byte_index << 1), cmd_sz); frame_clean(¤t_frame); frame_receive_rwd(¤t_frame, 12, 1); byte = current_frame.data & 0xff; if( LegicCRC(byte_index, byte, cmd_sz) != (current_frame.data >> 8) ) { Dbprintf("!!! crc mismatch: expected %x but got %x !!!", LegicCRC(byte_index, current_frame.data & 0xff, cmd_sz), current_frame.data >> 8); return -1; } return byte; } /* legic_write_byte() is not included, however it's trivial to implement * and here are some hints on what remains to be done: * * * assemble a write_cmd_frame with crc and send it * * wait until the tag sends back an ACK ('1' bit unencrypted) * * forward the prng based on the timing */ int legic_write_byte(int byte, int addr, int addr_sz) { //do not write UID, CRC, DCF if(addr <= 0x06) return 0; //== send write command ============================== crc_clear(&legic_crc); crc_update(&legic_crc, 0, 1); /* CMD_WRITE */ crc_update(&legic_crc, addr, addr_sz); crc_update(&legic_crc, byte, 8); uint32_t crc = crc_finish(&legic_crc); uint32_t cmd = ((crc <<(addr_sz+1+8)) //CRC |(byte <<(addr_sz+1)) //Data |(addr <<1) //Address |(0x00 <<0)); //CMD = W uint32_t cmd_sz = addr_sz+1+8+4; //crc+data+cmd legic_prng_forward(2); /* we wait anyways */ while(timer->TC_CV < 387) ; /* ~ 258us */ frame_send_rwd(cmd, cmd_sz); //== wait for ack ==================================== int t, old_level=0, edges=0; int next_bit_at =0; while(timer->TC_CV < 387) ; /* ~ 258us */ for(t=0; t<80; t++) { edges = 0; next_bit_at += TAG_TIME_BIT; while(timer->TC_CV < next_bit_at) { int level = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN); if(level != old_level) { edges++; } old_level = level; } if(edges > 20 && edges < 60) { /* expected are 42 edges */ int t = timer->TC_CV; int c = t/TAG_TIME_BIT; timer->TC_CCR = AT91C_TC_SWTRG; while(timer->TC_CV > 1) ; /* Wait till the clock has reset */ legic_prng_forward(c); return 0; } } timer->TC_CCR = AT91C_TC_SWTRG; while(timer->TC_CV > 1) ; /* Wait till the clock has reset */ return -1; } int LegicRfReader(int offset, int bytes) { int byte_index=0, cmd_sz=0, card_sz=0; LegicCommonInit(); uint8_t *BigBuf = BigBuf_get_addr(); memset(BigBuf, 0, 1024); DbpString("setting up legic card"); uint32_t tag_type = perform_setup_phase_rwd(SESSION_IV); switch_off_tag_rwd(); //we lose to mutch time with dprintf switch(tag_type) { case 0x1d: DbpString("MIM 256 card found, reading card ..."); cmd_sz = 9; card_sz = 256; break; case 0x3d: DbpString("MIM 1024 card found, reading card ..."); cmd_sz = 11; card_sz = 1024; break; default: Dbprintf("Unknown card format: %x",tag_type); return -1; } if(bytes == -1) bytes = card_sz; if(bytes+offset >= card_sz) bytes = card_sz-offset; perform_setup_phase_rwd(SESSION_IV); LED_B_ON(); while(byte_index < bytes) { int r = legic_read_byte(byte_index+offset, cmd_sz); if(r == -1 ||BUTTON_PRESS()) { DbpString("operation aborted"); switch_off_tag_rwd(); LED_B_OFF(); LED_C_OFF(); return -1; } BigBuf[byte_index] = r; WDT_HIT(); byte_index++; if(byte_index & 0x10) LED_C_ON(); else LED_C_OFF(); } LED_B_OFF(); LED_C_OFF(); switch_off_tag_rwd(); Dbprintf("Card read, use 'hf legic decode' or"); Dbprintf("'data hexsamples %d' to view results", (bytes+7) & ~7); return 0; } void LegicRfWriter(int bytes, int offset) { int byte_index=0, addr_sz=0; uint8_t *BigBuf = BigBuf_get_addr(); LegicCommonInit(); DbpString("setting up legic card"); uint32_t tag_type = perform_setup_phase_rwd(SESSION_IV); switch_off_tag_rwd(); switch(tag_type) { case 0x1d: if(offset+bytes > 0x100) { Dbprintf("Error: can not write to 0x%03.3x on MIM 256", offset+bytes); return; } addr_sz = 8; Dbprintf("MIM 256 card found, writing 0x%02.2x - 0x%02.2x ...", offset, offset+bytes); break; case 0x3d: if(offset+bytes > 0x400) { Dbprintf("Error: can not write to 0x%03.3x on MIM 1024", offset+bytes); return; } addr_sz = 10; Dbprintf("MIM 1024 card found, writing 0x%03.3x - 0x%03.3x ...", offset, offset+bytes); break; default: Dbprintf("No or unknown card found, aborting"); return; } LED_B_ON(); perform_setup_phase_rwd(SESSION_IV); legic_prng_forward(2); while(byte_index < bytes) { int r = legic_write_byte(BigBuf[byte_index+offset], byte_index+offset, addr_sz); if((r != 0) || BUTTON_PRESS()) { Dbprintf("operation aborted @ 0x%03.3x", byte_index); switch_off_tag_rwd(); LED_B_OFF(); LED_C_OFF(); return; } WDT_HIT(); byte_index++; if(byte_index & 0x10) LED_C_ON(); else LED_C_OFF(); } LED_B_OFF(); LED_C_OFF(); DbpString("write successful"); } int timestamp; /* Handle (whether to respond) a frame in tag mode */ static void frame_handle_tag(struct legic_frame const * const f) { uint8_t *BigBuf = BigBuf_get_addr(); /* First Part of Handshake (IV) */ if(f->bits == 7) { if(f->data == SESSION_IV) { LED_C_ON(); prng_timer->TC_CCR = AT91C_TC_SWTRG; legic_prng_init(f->data); frame_send_tag(0x3d, 6, 1); /* 0x3d^0x26 = 0x1b */ legic_state = STATE_IV; legic_read_count = 0; legic_prng_bc = 0; legic_prng_iv = f->data; /* TIMEOUT */ timer->TC_CCR = AT91C_TC_SWTRG; while(timer->TC_CV > 1); while(timer->TC_CV < 280); return; } else if((prng_timer->TC_CV % 50) > 40) { legic_prng_init(f->data); frame_send_tag(0x3d, 6, 1); SpinDelay(20); return; } } /* 0x19==??? */ if(legic_state == STATE_IV) { if((f->bits == 6) && (f->data == (0x19 ^ get_key_stream(1, 6)))) { legic_state = STATE_CON; /* TIMEOUT */ timer->TC_CCR = AT91C_TC_SWTRG; while(timer->TC_CV > 1); while(timer->TC_CV < 200); return; } else { legic_state = STATE_DISCON; LED_C_OFF(); Dbprintf("0x19 - Frame: %03.3x", f->data); return; } } /* Read */ if(f->bits == 11) { if(legic_state == STATE_CON) { int key = get_key_stream(-1, 11); //legic_phase_drift, 11); int addr = f->data ^ key; addr = addr >> 1; int data = BigBuf[addr]; int hash = LegicCRC(addr, data, 11) << 8; BigBuf[OFFSET_LOG+legic_read_count] = (uint8_t)addr; legic_read_count++; //Dbprintf("Data:%03.3x, key:%03.3x, addr: %03.3x, read_c:%u", f->data, key, addr, read_c); legic_prng_forward(legic_reqresp_drift); frame_send_tag(hash | data, 12, 1); /* SHORT TIMEOUT */ timer->TC_CCR = AT91C_TC_SWTRG; while(timer->TC_CV > 1); legic_prng_forward(legic_frame_drift); while(timer->TC_CV < 180); return; } } /* Write */ if(f->bits == 23) { int key = get_key_stream(-1, 23); //legic_frame_drift, 23); int addr = f->data ^ key; addr = addr >> 1; addr = addr & 0x3ff; int data = f->data ^ key; data = data >> 11; data = data & 0xff; /* write command */ legic_state = STATE_DISCON; LED_C_OFF(); Dbprintf("write - addr: %x, data: %x", addr, data); return; } if(legic_state != STATE_DISCON) { Dbprintf("Unexpected: sz:%u, Data:%03.3x, State:%u, Count:%u", f->bits, f->data, legic_state, legic_read_count); int i; Dbprintf("IV: %03.3x", legic_prng_iv); for(i = 0; iPIO_ODR = GPIO_SSC_DIN; AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN; setup_timer(); crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0); int old_level = 0; int active = 0; legic_state = STATE_DISCON; LED_B_ON(); DbpString("Starting Legic emulator, press button to end"); while(!BUTTON_PRESS() && !usb_poll_validate_length()) { int level = !!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN); int time = timer->TC_CV; if(level != old_level) { if(level == 1) { timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; if(FUZZ_EQUAL(time, RWD_TIME_1, RWD_TIME_FUZZ)) { /* 1 bit */ emit(1); active = 1; LED_A_ON(); } else if(FUZZ_EQUAL(time, RWD_TIME_0, RWD_TIME_FUZZ)) { /* 0 bit */ emit(0); active = 1; LED_A_ON(); } else if(active) { /* invalid */ emit(-1); active = 0; LED_A_OFF(); } } } if(time >= (RWD_TIME_1+RWD_TIME_FUZZ) && active) { /* Frame end */ emit(-1); active = 0; LED_A_OFF(); } if(time >= (20*RWD_TIME_1) && (timer->TC_SR & AT91C_TC_CLKSTA)) { timer->TC_CCR = AT91C_TC_CLKDIS; } old_level = level; WDT_HIT(); } DbpString("Stopped"); LED_B_OFF(); LED_A_OFF(); LED_C_OFF(); }