// MIFARE bruteforce tool
// It's Multi threaded and supports all DES/2TDEA/3TDEA/AES crypto authentication modes.
// also supports six different LCG random generators.
// as a consequece this tools also work on MIFARE Ultralight-C challenges
//
//
// Based upon the bruteforcer from X41 D-Sec Gmbh
//
// Copyright Iceman 2022
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
#define __STDC_FORMAT_MACROS
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
//#include
#include "util_posix.h"
#include "aes-ni.h"
#include "detectaes.h"
#include "randoms.h"
#define AEND "\x1b[0m"
#define _RED_(s) "\x1b[31m" s AEND
#define _GREEN_(s) "\x1b[32m" s AEND
#define _YELLOW_(s) "\x1b[33m" s AEND
#define _CYAN_(s) "\x1b[36m" s AEND
static generator_t generators[] = {
{"Borland", make_key_borland_n},
{"Recipies", make_key_recipies_n},
{"GlibC", make_key_glibc_n},
{"AnsiC", make_key_ansic_n},
{"Turbo Pascal", make_key_turbopascal_n},
{"posix rand_r", make_key_posix_rand_r_n},
{"MS Visual/Quick C/C++", make_key_ms_rand_r_n},
{NULL, NULL}
};
#define ARRAYLEN(x) (sizeof(x)/sizeof((x)[0]))
// a global mutex to prevent interlaced printing from different threads
pthread_mutex_t print_lock;
static int global_found = 0;
static int thread_count = 2;
typedef struct thread_args {
int thread;
int idx;
uint8_t generator_idx;
uint8_t algo;
uint64_t starttime;
uint64_t stoptime;
uint8_t tag[16];
uint8_t rdr[32];
} targs;
// source https://wiki.openssl.org/index.php/EVP_Symmetric_Encryption_and_Decryption#Decrypting_the_Message
static void decrypt_aes(uint8_t ciphertext[], int ciphertext_len, uint8_t key[], uint8_t iv[], uint8_t plaintext[]) {
EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
EVP_DecryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv);
// EVP_CIPHER_CTX_set_padding(ctx, 0);
int len = 0;
EVP_DecryptUpdate(ctx, plaintext, &len, ciphertext, ciphertext_len);
EVP_DecryptFinal_ex(ctx, plaintext + len, &len);
EVP_CIPHER_CTX_free(ctx);
}
static void decrypt_3kdes(uint8_t ciphertext[], int ciphertext_len, uint8_t key[], uint8_t iv[], uint8_t plaintext[]) {
EVP_CIPHER_CTX *ctx;
ctx = EVP_CIPHER_CTX_new();
EVP_DecryptInit_ex(ctx, EVP_des_ede3_cbc(), NULL, key, iv);
EVP_CIPHER_CTX_set_padding(ctx, 0);
int len = 0;
EVP_DecryptUpdate(ctx, plaintext, &len, ciphertext, ciphertext_len);
EVP_DecryptFinal_ex(ctx, plaintext + len, &len);
EVP_CIPHER_CTX_free(ctx);
}
static void decrypt_2kdes(uint8_t ciphertext[], int ciphertext_len, uint8_t key[], uint8_t iv[], uint8_t plaintext[]) {
EVP_CIPHER_CTX *ctx;
ctx = EVP_CIPHER_CTX_new();
EVP_DecryptInit_ex(ctx, EVP_des_ede_cbc(), NULL, key, iv);
EVP_CIPHER_CTX_set_padding(ctx, 0);
int len = 0;
EVP_DecryptUpdate(ctx, plaintext, &len, ciphertext, ciphertext_len);
EVP_DecryptFinal_ex(ctx, plaintext + len, &len);
EVP_CIPHER_CTX_free(ctx);
}
static void decrypt_des(uint8_t ciphertext[], int ciphertext_len, uint8_t key[], uint8_t iv[], uint8_t plaintext[]) {
EVP_CIPHER_CTX *ctx;
ctx = EVP_CIPHER_CTX_new();
EVP_DecryptInit_ex(ctx, EVP_des_cbc(), NULL, key, iv);
EVP_CIPHER_CTX_set_padding(ctx, 0);
int len = 0;
EVP_DecryptUpdate(ctx, plaintext, &len, ciphertext, ciphertext_len);
EVP_DecryptFinal_ex(ctx, plaintext + len, &len);
EVP_CIPHER_CTX_free(ctx);
}
static int hexstr_to_byte_array(char hexstr[], uint8_t bytes[], size_t byte_len) {
size_t hexstr_len = strlen(hexstr);
if (hexstr_len % 16) {
return 1;
}
if (byte_len < (hexstr_len / 2)) {
return 2;
}
char *pos = &hexstr[0];
for (size_t count = 0; *pos != 0; count++) {
sscanf(pos, "%2hhx", &bytes[count]);
pos += 2;
}
return 0;
}
static void print_hex(const uint8_t *data, const size_t len) {
if (data == NULL || len == 0) return;
for (size_t i = 0; i < len; i++) {
printf("%02X", data[i]);
}
printf("\n");
}
static void print_time(uint64_t at) {
time_t t = at;
struct tm lt;
#if defined(_WIN32)
(void)localtime_s(<, &t);
#else
(void)localtime_r(&t, <);
#endif
char res[32];
strftime(res, sizeof(res), "%Y-%m-%d %H:%M:%S", <);
printf("%u ( '%s' )\n", (unsigned)t, res);
}
static void *brute_thread(void *arguments) {
//const bool support_aesni = platform_aes_hw_available();
struct thread_args *args = (struct thread_args *) arguments;
uint64_t starttime = args->starttime;
uint64_t stoptime = args->stoptime;
uint8_t local_algo = args->algo;
uint8_t gidx = args->generator_idx;
uint8_t local_tag[16];
uint8_t local_rdr[32];
uint8_t keylen = 16;
if (local_algo == 0) {
memcpy(local_tag, args->tag, 8);
memcpy(local_rdr, args->rdr, 16);
keylen = 8;
} else if (local_algo == 1) {
memcpy(local_tag, args->tag, 8);
memcpy(local_rdr, args->rdr, 16);
keylen = 16;
} else if (local_algo == 2) {
memcpy(local_tag, args->tag, 16);
memcpy(local_rdr, args->rdr, 32);
keylen = 24;
} else if (local_algo == 3) {
memcpy(local_tag, args->tag, 16);
memcpy(local_rdr, args->rdr, 32);
keylen = 16;
}
for (uint64_t i = starttime + args->idx; i < stoptime; i += thread_count) {
if (__atomic_load_n(&global_found, __ATOMIC_ACQUIRE) == 1) {
break;
}
uint8_t key[keylen];
generators[gidx].Parse(i, key, keylen);
//make_key_borland_n(i, key, keylen);
uint8_t iv[keylen << 1];
uint8_t dec_tag[16] = {0x00};
uint8_t dec_rdr[32] = {0x00};
if (local_algo == 0) {
decrypt_des(local_tag, 8, key, iv, dec_tag);
decrypt_des(local_rdr, 16, key, local_tag, dec_rdr);
// check rol byte first
if (dec_tag[0] != dec_rdr[15]) continue;
// compare rest
if (dec_tag[1] != dec_rdr[8]) continue;
if (dec_tag[2] != dec_rdr[9]) continue;
if (dec_tag[3] != dec_rdr[10]) continue;
if (dec_tag[4] != dec_rdr[11]) continue;
if (dec_tag[5] != dec_rdr[12]) continue;
if (dec_tag[6] != dec_rdr[13]) continue;
if (dec_tag[7] != dec_rdr[14]) continue;
} else if (local_algo == 1) {
decrypt_2kdes(local_tag, 8, key, iv, dec_tag);
decrypt_2kdes(local_rdr, 16, key, local_tag, dec_rdr);
// check rol byte first
if (dec_tag[0] != dec_rdr[15]) continue;
// compare rest
if (dec_tag[1] != dec_rdr[8]) continue;
if (dec_tag[2] != dec_rdr[9]) continue;
if (dec_tag[3] != dec_rdr[10]) continue;
if (dec_tag[4] != dec_rdr[11]) continue;
if (dec_tag[5] != dec_rdr[12]) continue;
if (dec_tag[6] != dec_rdr[13]) continue;
if (dec_tag[7] != dec_rdr[14]) continue;
} else if (local_algo == 2) {
decrypt_3kdes(local_tag, 16, key, iv, dec_tag);
decrypt_3kdes(local_rdr, 32, key, local_tag, dec_rdr);
// check rol byte first
if (dec_tag[0] != dec_rdr[31]) continue;
// compare rest
if (dec_tag[1] != dec_rdr[16]) continue;
if (dec_tag[2] != dec_rdr[17]) continue;
if (dec_tag[3] != dec_rdr[18]) continue;
if (dec_tag[4] != dec_rdr[19]) continue;
if (dec_tag[5] != dec_rdr[20]) continue;
if (dec_tag[6] != dec_rdr[21]) continue;
if (dec_tag[7] != dec_rdr[22]) continue;
if (dec_tag[8] != dec_rdr[23]) continue;
if (dec_tag[9] != dec_rdr[24]) continue;
if (dec_tag[10] != dec_rdr[25]) continue;
if (dec_tag[11] != dec_rdr[26]) continue;
if (dec_tag[12] != dec_rdr[27]) continue;
if (dec_tag[13] != dec_rdr[28]) continue;
if (dec_tag[14] != dec_rdr[29]) continue;
if (dec_tag[15] != dec_rdr[30]) continue;
} else if (local_algo == 3) {
decrypt_aes(local_tag, 16, key, iv, dec_tag);
decrypt_aes(local_rdr, 32, key, local_tag, dec_rdr);
// check rol byte first
if (dec_tag[0] != dec_rdr[31]) continue;
// compare rest
if (dec_tag[1] != dec_rdr[16]) continue;
if (dec_tag[2] != dec_rdr[17]) continue;
if (dec_tag[3] != dec_rdr[18]) continue;
if (dec_tag[4] != dec_rdr[19]) continue;
if (dec_tag[5] != dec_rdr[20]) continue;
if (dec_tag[6] != dec_rdr[21]) continue;
if (dec_tag[7] != dec_rdr[22]) continue;
if (dec_tag[8] != dec_rdr[23]) continue;
if (dec_tag[9] != dec_rdr[24]) continue;
if (dec_tag[10] != dec_rdr[25]) continue;
if (dec_tag[11] != dec_rdr[26]) continue;
if (dec_tag[12] != dec_rdr[27]) continue;
if (dec_tag[13] != dec_rdr[28]) continue;
if (dec_tag[14] != dec_rdr[29]) continue;
if (dec_tag[15] != dec_rdr[30]) continue;
}
__sync_fetch_and_add(&global_found, 1);
// lock this section to avoid interlacing prints from different threats
pthread_mutex_lock(&print_lock);
printf("Found timestamp........ ");
print_time(i);
printf("Key.................... \x1b[32m");
print_hex(key, keylen);
printf(AEND);
pthread_mutex_unlock(&print_lock);
break;
}
free(args);
return NULL;
}
static int usage(const char *s) {
printf("\n");
printf(_CYAN_("Multi Brute tool\n"));
printf("Works on authentication challenges from MIFARE DESfire, MIFARE UL-C.\n");
printf("If the key was generated by taking the Unixstamp as seed to a LCG random generator this software might find it.\n");
printf("This version is multi-threaded, multi-crypto support and multi LCG generator support.\n");
printf("\n");
printf(_CYAN_("syntax") "\n");
printf(" %s <16 byte tag challenge> <32 byte reader response challenge>\n\n", s);
printf(" crypt algo - \n");
printf(" generator - <0-5>\n");
printf("\n");
printf(_CYAN_("samples") "\n");
printf(" %s DES 0 1599999999 118565f6e5e6c839 d570fd1578079e6b22aaa187b99f0a2a\n", s);
printf(" %s 2TDEA 0 1599999999 02bdc73fd33cc07d 0e2281d59686bda6a6c5ad218dbfaa8c\n", s);
printf(" %s 3TDEA 0 1599999999 1fe1f0330e9da5407cd2bc9294e56a7e 920037b5e02872b2fd9a070eade2b172ddc0fe6b10e5e55dd32cebdcc94747b4 \n", s);
printf(" %s AES 0 1599999999 bb6aea729414a5b1eff7b16328ce37fd 82f5f498dbc29f7570102397a2e5ef2b6dc14a864f665b3c54d11765af81e95c\n", s);
printf("\n");
return 1;
}
int main(int argc, char *argv[]) {
if (argc != 6) {
return usage(argv[0]);
}
char *algostr = argv[1];
if (strlen(algostr) > 5 || strlen(algostr) < 3) {
printf("No valid crypto algo\n");
return 1;
}
int8_t algo = -1;
if (strcasecmp(algostr, "des") == 0) {
algo = 0;
} else if (strcasecmp(algostr, "2tdea") == 0) {
algo = 1;
} else if (strcasecmp(algostr, "3tdea") == 0) {
algo = 2;
} else if (strcasecmp(algostr, "aes") == 0) {
algo = 3;
}
if (algo == -1) {
printf("No valid crypto algo\n");
return 1;
}
uint8_t g_idx = atoi(argv[2]);
// -2 (zero index and last item is NULL);
if (g_idx > ARRAYLEN(generators) - 2) {
printf("generator index is out-of-range\n");
return 1;
}
uint64_t start_time = atoi(argv[3]);
const bool support_aesni = platform_aes_hw_available();
printf("Crypto algo............ " _GREEN_("%s") "\n", algostr);
printf("LCR Random generator... " _GREEN_("%s") "\n", generators[g_idx].Name);
printf("AES-NI detected........ " _GREEN_("%s") "\n", (support_aesni) ? "yes" : "no");
printf("Starting timestamp..... ");
print_time(start_time);
uint8_t tag_challenge[16] = {0x00};
uint8_t rdr_resp_challenge[32] = {0x00};
if (algo == 0) {
if (hexstr_to_byte_array(argv[4], tag_challenge, 8))
return 2;
if (hexstr_to_byte_array(argv[5], rdr_resp_challenge, 16))
return 3;
printf("Tag Challenge.......... ");
print_hex(tag_challenge, 8);
printf("Rdr Resp & Challenge... ");
print_hex(rdr_resp_challenge, 16);
} else if (algo == 1) {
if (hexstr_to_byte_array(argv[4], tag_challenge, 8))
return 2;
if (hexstr_to_byte_array(argv[5], rdr_resp_challenge, 16))
return 3;
printf("Tag Challenge.......... ");
print_hex(tag_challenge, 8);
printf("Rdr Resp & Challenge... ");
print_hex(rdr_resp_challenge, 16);
} else if (algo == 2) {
if (hexstr_to_byte_array(argv[4], tag_challenge, 16))
return 2;
if (hexstr_to_byte_array(argv[5], rdr_resp_challenge, 32))
return 3;
printf("Tag Challenge.......... ");
print_hex(tag_challenge, 16);
printf("Rdr Resp & Challenge... ");
print_hex(rdr_resp_challenge, 32);
} else if (algo == 3) {
if (hexstr_to_byte_array(argv[4], tag_challenge, 16))
return 2;
if (hexstr_to_byte_array(argv[5], rdr_resp_challenge, 32))
return 3;
printf("Tag Challenge.......... ");
print_hex(tag_challenge, 16);
printf("Rdr Resp & Challenge... ");
print_hex(rdr_resp_challenge, 32);
}
uint64_t t1 = msclock();
#if !defined(_WIN32) || !defined(__WIN32__)
thread_count = sysconf(_SC_NPROCESSORS_CONF);
if (thread_count < 2)
thread_count = 2;
#endif /* _WIN32 */
printf("\nBruteforce using " _YELLOW_("%d") " threads\n", thread_count);
pthread_t threads[thread_count];
void *res;
// create a mutex to avoid interlacing print commands from our different threads
pthread_mutex_init(&print_lock, NULL);
// threads
uint64_t stop_time = time(NULL);
for (int i = 0; i < thread_count; ++i) {
struct thread_args *a = calloc(1, sizeof(struct thread_args));
a->thread = i;
a->idx = i;
a->generator_idx = g_idx;
a->algo = (uint8_t)algo;
a->starttime = start_time;
a->stoptime = stop_time;
if (algo == 0) {
memcpy(a->tag, tag_challenge, 8);
memcpy(a->rdr, rdr_resp_challenge, 16);
} else if (algo == 1) {
memcpy(a->tag, tag_challenge, 8);
memcpy(a->rdr, rdr_resp_challenge, 16);
} else if (algo == 2) {
memcpy(a->tag, tag_challenge, 16);
memcpy(a->rdr, rdr_resp_challenge, 32);
} else if (algo == 3) {
memcpy(a->tag, tag_challenge, 16);
memcpy(a->rdr, rdr_resp_challenge, 32);
}
pthread_create(&threads[i], NULL, brute_thread, (void *)a);
}
// wait for threads to terminate:
for (int i = 0; i < thread_count; ++i) {
pthread_join(threads[i], &res);
free(res);
}
if (global_found == false) {
printf("\n" _RED_("!!!") " failed to find a key\n\n");
}
t1 = msclock() - t1;
if (t1 > 0) {
printf("Execution time " _YELLOW_("%.2f") " sec\n", (float)t1 / 1000.0);
}
// clean up mutex
pthread_mutex_destroy(&print_lock);
return 0;
}