//----------------------------------------------------------------------------- // Jonathan Westhues, Mar 2006 // Edits by Gerhard de Koning Gans, Sep 2007 (##) // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // The main application code. This is the first thing called after start.c // executes. //----------------------------------------------------------------------------- #include #include "usb_cdc.h" #include "proxmark3.h" #include "apps.h" #include "util.h" #include "printf.h" #include "string.h" #include "legicrf.h" #include "lfsampling.h" #include "BigBuf.h" #include "mifareutil.h" #ifdef WITH_LCD #include "LCD.h" #endif // Craig Young - 14a stand-alone code #ifdef WITH_ISO14443a_StandAlone #include "iso14443a.h" #include "protocols.h" #endif //============================================================================= // A buffer where we can queue things up to be sent through the FPGA, for // any purpose (fake tag, as reader, whatever). We go MSB first, since that // is the order in which they go out on the wire. //============================================================================= #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits uint8_t ToSend[TOSEND_BUFFER_SIZE]; int ToSendMax = 0; static int ToSendBit; struct common_area common_area __attribute__((section(".commonarea"))); void ToSendReset(void) { ToSendMax = -1; ToSendBit = 8; } void ToSendStuffBit(int b) { if(ToSendBit >= 8) { ++ToSendMax; ToSend[ToSendMax] = 0; ToSendBit = 0; } if(b) ToSend[ToSendMax] |= (1 << (7 - ToSendBit)); ++ToSendBit; if(ToSendMax >= sizeof(ToSend)) { ToSendBit = 0; DbpString("ToSendStuffBit overflowed!"); } } void PrintToSendBuffer(void){ DbpString("Printing ToSendBuffer:"); Dbhexdump(ToSendMax, ToSend, 0); } void print_result(char *name, uint8_t *buf, size_t len) { uint8_t *p = buf; if ( len % 16 == 0 ) { for(; p-buf < len; p += 16) Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x", name, p-buf, len, p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15] ); } else { for(; p-buf < len; p += 8) Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x", name, p-buf, len, p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7]); } } //============================================================================= // Debug print functions, to go out over USB, to the usual PC-side client. //============================================================================= void DbpStringEx(char *str, uint32_t cmd){ byte_t len = strlen(str); cmd_send(CMD_DEBUG_PRINT_STRING,len, cmd,0,(byte_t*)str,len); } void DbpString(char *str) { DbpStringEx(str, 0); } #if 0 void DbpIntegers(int x1, int x2, int x3) { cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0); } #endif void DbprintfEx(uint32_t cmd, const char *fmt, ...) { // should probably limit size here; oh well, let's just use a big buffer char output_string[128] = {0x00}; va_list ap; va_start(ap, fmt); kvsprintf(fmt, output_string, 10, ap); va_end(ap); DbpStringEx(output_string, cmd); } void Dbprintf(const char *fmt, ...) { // should probably limit size here; oh well, let's just use a big buffer char output_string[128] = {0x00}; va_list ap; va_start(ap, fmt); kvsprintf(fmt, output_string, 10, ap); va_end(ap); DbpString(output_string); } // prints HEX & ASCII void Dbhexdump(int len, uint8_t *d, bool bAsci) { int l=0, i; char ascii[9]; while (len>0) { l = (len>8) ? 8 : len; memcpy(ascii,d,l); ascii[l]=0; // filter safe ascii for (i=0; i126) ascii[i]='.'; if (bAsci) Dbprintf("%-8s %*D",ascii,l,d," "); else Dbprintf("%*D",l,d," "); len -= 8; d += 8; } } //----------------------------------------------------------------------------- // Read an ADC channel and block till it completes, then return the result // in ADC units (0 to 1023). Also a routine to average 32 samples and // return that. //----------------------------------------------------------------------------- static int ReadAdc(int ch) { uint32_t d; AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST; AT91C_BASE_ADC->ADC_MR = ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value. // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged. // // The maths are: // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be // // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%) // // Note: with the "historic" values in the comments above, the error was 34% !!! AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch); AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; while (!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch))) ; d = AT91C_BASE_ADC->ADC_CDR[ch]; return d; } int AvgAdc(int ch) // was static - merlok { int i, a = 0; for(i = 0; i < 32; ++i) a += ReadAdc(ch); return (a + 15) >> 5; } void MeasureAntennaTuning(void) { uint8_t LF_Results[256]; int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV memset(LF_Results, 0, sizeof(LF_Results)); LED_B_ON(); /* * Sweeps the useful LF range of the proxmark from * 46.8kHz (divisor=255) to 600kHz (divisor=19) and * read the voltage in the antenna, the result left * in the buffer is a graph which should clearly show * the resonating frequency of your LF antenna * ( hopefully around 95 if it is tuned to 125kHz!) */ FpgaDownloadAndGo(FPGA_BITSTREAM_LF); FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); for (i = 255; i >= 19; i--) { WDT_HIT(); FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i); SpinDelay(20); adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10); if (i==95) vLf125 = adcval; // voltage at 125Khz if (i==89) vLf134 = adcval; // voltage at 134Khz LF_Results[i] = adcval >> 8; // scale int to fit in byte for graphing purposes if(LF_Results[i] > peak) { peakv = adcval; peak = LF_Results[i]; peakf = i; } } LED_A_ON(); // Let the FPGA drive the high-frequency antenna around 13.56 MHz. FpgaDownloadAndGo(FPGA_BITSTREAM_HF); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); SpinDelay(20); vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10; cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125 | (vLf134 << 16), vHf, peakf | (peakv << 16), LF_Results, 256); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); } void MeasureAntennaTuningHf(void) { int vHf = 0; // in mV // Let the FPGA drive the high-frequency antenna around 13.56 MHz. FpgaDownloadAndGo(FPGA_BITSTREAM_HF); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); while ( !BUTTON_PRESS() ){ SpinDelay(20); vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10; //Dbprintf("%d mV",vHf); DbprintfEx(CMD_MEASURE_ANTENNA_TUNING_HF, "%d mV",vHf); } FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); DbpString("cancelled"); } void ReadMem(int addr) { const uint8_t *data = ((uint8_t *)addr); Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x", addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]); } /* osimage version information is linked in */ extern struct version_information version_information; /* bootrom version information is pointed to from _bootphase1_version_pointer */ extern char *_bootphase1_version_pointer, _flash_start, _flash_end, _bootrom_start, _bootrom_end, __data_src_start__; void SendVersion(void) { char temp[USB_CMD_DATA_SIZE]; /* Limited data payload in USB packets */ char VersionString[USB_CMD_DATA_SIZE] = { '\0' }; /* Try to find the bootrom version information. Expect to find a pointer at * symbol _bootphase1_version_pointer, perform slight sanity checks on the * pointer, then use it. */ char *bootrom_version = *(char**)&_bootphase1_version_pointer; if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) { strcat(VersionString, "bootrom version information appears invalid\n"); } else { FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version); strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1); } FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information); strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1); FpgaGatherVersion(FPGA_BITSTREAM_LF, temp, sizeof(temp)); strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1); FpgaGatherVersion(FPGA_BITSTREAM_HF, temp, sizeof(temp)); strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1); // Send Chip ID and used flash memory uint32_t text_and_rodata_section_size = (uint32_t)&__data_src_start__ - (uint32_t)&_flash_start; uint32_t compressed_data_section_size = common_area.arg1; cmd_send(CMD_ACK, *(AT91C_DBGU_CIDR), text_and_rodata_section_size + compressed_data_section_size, 0, VersionString, strlen(VersionString)); } // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time. // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included. void printUSBSpeed(void) { Dbprintf("USB Speed:"); Dbprintf(" Sending USB packets to client..."); #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds uint8_t *test_data = BigBuf_get_addr(); uint32_t end_time; uint32_t start_time = end_time = GetTickCount(); uint32_t bytes_transferred = 0; LED_B_ON(); while(end_time < start_time + USB_SPEED_TEST_MIN_TIME) { cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K, 0, USB_CMD_DATA_SIZE, 0, test_data, USB_CMD_DATA_SIZE); end_time = GetTickCount(); bytes_transferred += USB_CMD_DATA_SIZE; } LED_B_OFF(); Dbprintf(" Time elapsed: %dms", end_time - start_time); Dbprintf(" Bytes transferred: %d", bytes_transferred); Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s", 1000 * bytes_transferred / (end_time - start_time)); } /** * Prints runtime information about the PM3. **/ void SendStatus(void) { BigBuf_print_status(); Fpga_print_status(); printConfig(); //LF Sampling config printUSBSpeed(); Dbprintf("Various"); Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL); Dbprintf(" ToSendMax..........%d", ToSendMax); Dbprintf(" ToSendBit..........%d", ToSendBit); Dbprintf(" ToSend BUFFERSIZE..%d", TOSEND_BUFFER_SIZE); cmd_send(CMD_ACK,1,0,0,0,0); } #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF) #define OPTS 2 void StandAloneMode() { DbpString("Stand-alone mode! No PC necessary."); // Oooh pretty -- notify user we're in elite samy mode now LED(LED_RED, 200); LED(LED_ORANGE, 200); LED(LED_GREEN, 200); LED(LED_ORANGE, 200); LED(LED_RED, 200); LED(LED_ORANGE, 200); LED(LED_GREEN, 200); LED(LED_ORANGE, 200); LED(LED_RED, 200); } #endif #ifdef WITH_ISO14443a_StandAlone typedef struct { uint8_t uid[10]; uint8_t uidlen; uint8_t atqa[2]; uint8_t sak; } __attribute__((__packed__)) card_clone_t; void StandAloneMode14a() { StandAloneMode(); FpgaDownloadAndGo(FPGA_BITSTREAM_HF); int selected = 0, playing = 0, iGotoRecord = 0, iGotoClone = 0; int cardRead[OPTS] = {0}; card_clone_t uids[OPTS]; iso14a_card_select_t card_info[OPTS]; uint8_t params = (MAGIC_SINGLE | MAGIC_DATAIN); LED(selected + 1, 0); for (;;) { usb_poll(); WDT_HIT(); SpinDelay(300); if (iGotoRecord == 1 || cardRead[selected] == 0) { iGotoRecord = 0; LEDsoff(); LED(selected + 1, 0); LED(LED_RED2, 0); // record Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected); /* need this delay to prevent catching some weird data */ SpinDelay(500); iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD); for ( ; ; ) { WDT_HIT(); if (BUTTON_PRESS()) { if (cardRead[selected]) { Dbprintf("Button press detected -- replaying card in bank[%d]", selected); break; } else if (cardRead[(selected+1) % OPTS]) { Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected, (selected+1)%OPTS); selected = (selected+1) % OPTS; break; // playing = 1; } else { Dbprintf("Button press detected but no stored tag to play. (Ignoring button)"); SpinDelay(300); } } if (!iso14443a_select_card(NULL, &card_info[selected], NULL, true, 0)) continue; else { Dbprintf("Read UID:"); Dbhexdump(card_info[selected].uidlen, card_info[selected].uid, 0); if (memcmp(uids[(selected+1)%OPTS].uid, card_info[selected].uid, card_info[selected].uidlen ) == 0 ) { Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping."); } else { uids[selected].sak = card_info[selected].sak; uids[selected].uidlen = card_info[selected].uidlen; memcpy(uids[selected].uid , card_info[selected].uid, uids[selected].uidlen); memcpy(uids[selected].atqa, card_info[selected].atqa, 2); if (uids[selected].uidlen > 4) Dbprintf("Bank[%d] received a 7-byte UID", selected); else Dbprintf("Bank[%d] received a 4-byte UID", selected); break; } } } Dbprintf("ATQA = %02X%02X", uids[selected].atqa[0], uids[selected].atqa[1]); Dbprintf("SAK = %02X", uids[selected].sak); LEDsoff(); LED(LED_GREEN, 200); LED(LED_ORANGE, 200); LED(LED_GREEN, 200); LED(LED_ORANGE, 200); LEDsoff(); LED(selected + 1, 0); // Next state is replay: playing = 1; cardRead[selected] = 1; } /* MF Classic UID clone */ else if (iGotoClone==1) { iGotoClone=0; LEDsoff(); LED(selected + 1, 0); LED(LED_ORANGE, 250); // magiccards holds 4bytes uid. uint64_t tmpuid = bytes_to_num(uids[selected].uid, 4); // record Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected, tmpuid & 0xFFFFFFFF); // wait for button to be released // Delay cloning until card is in place while(BUTTON_PRESS()) WDT_HIT(); Dbprintf("Starting clone. [Bank: %u]", selected); // need this delay to prevent catching some weird data SpinDelay(500); // Begin clone function here: /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards: UsbCommand c = {CMD_MIFARE_CSETBLOCK, {params & (0xFE | (uid == NULL ? 0:1)), blockNo, 0}}; memcpy(c.d.asBytes, data, 16); SendCommand(&c); Block read is similar: UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, blockNo, 0}}; We need to imitate that call with blockNo 0 to set a uid. The get and set commands are handled in this file: // Work with "magic Chinese" card case CMD_MIFARE_CSETBLOCK: MifareCSetBlock(c->arg[0], c->arg[1], c->d.asBytes); break; case CMD_MIFARE_CGETBLOCK: MifareCGetBlock(c->arg[0], c->arg[1], c->d.asBytes); break; mfCSetUID provides example logic for UID set workflow: -Read block0 from card in field with MifareCGetBlock() -Configure new values without replacing reserved bytes memcpy(block0, uid, 4); // Copy UID bytes from byte array // Mifare UID BCC block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5 Bytes 5-7 are reserved SAK and ATQA for mifare classic -Use mfCSetBlock(0, block0, oldUID, wantWipe, MAGIC_SINGLE) to write it */ uint8_t oldBlock0[16] = {0}, newBlock0[16] = {0}, testBlock0[16] = {0}; // arg0 = Flags, arg1=blockNo MifareCGetBlock(params, 0, oldBlock0); if (oldBlock0[0] == 0 && oldBlock0[0] == oldBlock0[1] && oldBlock0[1] == oldBlock0[2] && oldBlock0[2] == oldBlock0[3]) { Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected); playing = 1; } else { Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0[0], oldBlock0[1], oldBlock0[2], oldBlock0[3]); memcpy(newBlock0, oldBlock0, 16); // Copy uid for bank (2nd is for longer UIDs not supported if classic) memcpy(newBlock0, uids[selected].uid, 4); newBlock0[4] = newBlock0[0] ^ newBlock0[1] ^ newBlock0[2] ^ newBlock0[3]; // arg0 = workFlags, arg1 = blockNo, datain MifareCSetBlock(params, 0, newBlock0); MifareCGetBlock(params, 0, testBlock0); if (memcmp(testBlock0, newBlock0, 16)==0) { DbpString("Cloned successfull!"); cardRead[selected] = 0; // Only if the card was cloned successfully should we clear it playing = 0; iGotoRecord = 1; selected = (selected + 1) % OPTS; } else { Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected); playing = 1; } } LEDsoff(); LED(selected + 1, 0); } // Change where to record (or begin playing) else if (playing==1) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected]) { LEDsoff(); LED(selected + 1, 0); // Begin transmitting if (playing) { LED(LED_GREEN, 0); DbpString("Playing"); for ( ; ; ) { WDT_HIT(); int button_action = BUTTON_HELD(1000); if (button_action == 0) { // No button action, proceed with sim uint8_t flags = FLAG_4B_UID_IN_DATA; uint8_t data[USB_CMD_DATA_SIZE] = {0}; // in case there is a read command received we shouldn't break memcpy(data, uids[selected].uid, uids[selected].uidlen); uint64_t tmpuid = bytes_to_num(uids[selected].uid, uids[selected].uidlen); if ( uids[selected].uidlen == 7 ) { flags = FLAG_7B_UID_IN_DATA; Dbprintf("Simulating ISO14443a tag with uid: %02x%08x [Bank: %u]", tmpuid >> 32, tmpuid & 0xFFFFFFFF , selected); } else { Dbprintf("Simulating ISO14443a tag with uid: %08x [Bank: %u]", tmpuid & 0xFFFFFFFF , selected); } if (uids[selected].sak == 0x08 && uids[selected].atqa[0] == 0x04 && uids[selected].atqa[1] == 0) { DbpString("Mifare Classic 1k"); SimulateIso14443aTag(1, flags, data); } else if (uids[selected].sak == 0x18 && uids[selected].atqa[0] == 0x02 && uids[selected].atqa[1] == 0) { DbpString("Mifare Classic 4k (4b uid)"); SimulateIso14443aTag(8, flags, data); } else if (uids[selected].sak == 0x08 && uids[selected].atqa[0] == 0x44 && uids[selected].atqa[1] == 0) { DbpString("Mifare Classic 4k (7b uid)"); SimulateIso14443aTag(8, flags, data); } else if (uids[selected].sak == 0x00 && uids[selected].atqa[0] == 0x44 && uids[selected].atqa[1] == 0) { DbpString("Mifare Ultralight"); SimulateIso14443aTag(2, flags, data); } else if (uids[selected].sak == 0x20 && uids[selected].atqa[0] == 0x04 && uids[selected].atqa[1] == 0x03) { DbpString("Mifare DESFire"); SimulateIso14443aTag(3, flags, data); } else { Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation"); SimulateIso14443aTag(1, flags, data); } } else if (button_action == BUTTON_SINGLE_CLICK) { selected = (selected + 1) % OPTS; Dbprintf("Done playing. Switching to record mode on bank %d",selected); iGotoRecord = 1; break; } else if (button_action == BUTTON_HOLD) { Dbprintf("Playtime over. Begin cloning..."); iGotoClone = 1; break; } WDT_HIT(); } /* We pressed a button so ignore it here with a delay */ SpinDelay(300); LEDsoff(); LED(selected + 1, 0); } else while(BUTTON_PRESS()) WDT_HIT(); } } } #elif WITH_LF // samy's sniff and repeat routine void SamyRun() { StandAloneMode(); FpgaDownloadAndGo(FPGA_BITSTREAM_LF); int high[OPTS], low[OPTS]; int selected = 0; int playing = 0; int cardRead = 0; // Turn on selected LED LED(selected + 1, 0); for (;;) { usb_poll(); WDT_HIT(); // Was our button held down or pressed? int button_pressed = BUTTON_HELD(1000); SpinDelay(300); // Button was held for a second, begin recording if (button_pressed > 0 && cardRead == 0) { LEDsoff(); LED(selected + 1, 0); LED(LED_RED2, 0); // record DbpString("Starting recording"); // wait for button to be released while(BUTTON_PRESS()) WDT_HIT(); /* need this delay to prevent catching some weird data */ SpinDelay(500); CmdHIDdemodFSK(1, &high[selected], &low[selected], 0); Dbprintf("Recorded %x %x %08x", selected, high[selected], low[selected]); LEDsoff(); LED(selected + 1, 0); // Finished recording // If we were previously playing, set playing off // so next button push begins playing what we recorded playing = 0; cardRead = 1; } else if (button_pressed > 0 && cardRead == 1) { LEDsoff(); LED(selected + 1, 0); LED(LED_ORANGE, 0); // record Dbprintf("Cloning %x %x %08x", selected, high[selected], low[selected]); // wait for button to be released while(BUTTON_PRESS()) WDT_HIT(); /* need this delay to prevent catching some weird data */ SpinDelay(500); CopyHIDtoT55x7(0, high[selected], low[selected], 0); Dbprintf("Cloned %x %x %08x", selected, high[selected], low[selected]); LEDsoff(); LED(selected + 1, 0); // Finished recording // If we were previously playing, set playing off // so next button push begins playing what we recorded playing = 0; cardRead = 0; } // Change where to record (or begin playing) else if (button_pressed) { // Next option if we were previously playing if (playing) selected = (selected + 1) % OPTS; playing = !playing; LEDsoff(); LED(selected + 1, 0); // Begin transmitting if (playing) { LED(LED_GREEN, 0); DbpString("Playing"); // wait for button to be released while(BUTTON_PRESS()) WDT_HIT(); Dbprintf("%x %x %08x", selected, high[selected], low[selected]); CmdHIDsimTAG(high[selected], low[selected], 0); DbpString("Done playing"); if (BUTTON_HELD(1000) > 0) { DbpString("Exiting"); LEDsoff(); return; } /* We pressed a button so ignore it here with a delay */ SpinDelay(300); // when done, we're done playing, move to next option selected = (selected + 1) % OPTS; playing = !playing; LEDsoff(); LED(selected + 1, 0); } else while(BUTTON_PRESS()) WDT_HIT(); } } } #endif /* OBJECTIVE Listen and detect an external reader. Determine the best location for the antenna. INSTRUCTIONS: Inside the ListenReaderField() function, there is two mode. By default, when you call the function, you will enter mode 1. If you press the PM3 button one time, you will enter mode 2. If you press the PM3 button a second time, you will exit the function. DESCRIPTION OF MODE 1: This mode just listens for an external reader field and lights up green for HF and/or red for LF. This is the original mode of the detectreader function. DESCRIPTION OF MODE 2: This mode will visually represent, using the LEDs, the actual strength of the current compared to the maximum current detected. Basically, once you know what kind of external reader is present, it will help you spot the best location to place your antenna. You will probably not get some good results if there is a LF and a HF reader at the same place! :-) LIGHT SCHEME USED: */ static const char LIGHT_SCHEME[] = { 0x0, /* ---- | No field detected */ 0x1, /* X--- | 14% of maximum current detected */ 0x2, /* -X-- | 29% of maximum current detected */ 0x4, /* --X- | 43% of maximum current detected */ 0x8, /* ---X | 57% of maximum current detected */ 0xC, /* --XX | 71% of maximum current detected */ 0xE, /* -XXX | 86% of maximum current detected */ 0xF, /* XXXX | 100% of maximum current detected */ }; static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]); void ListenReaderField(int limit) { #define LF_ONLY 1 #define HF_ONLY 2 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE int lf_av, lf_av_new, lf_baseline= 0, lf_max; int hf_av, hf_av_new, hf_baseline= 0, hf_max; int mode=1, display_val, display_max, i; // switch off FPGA - we don't want to measure our own signal FpgaDownloadAndGo(FPGA_BITSTREAM_HF); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); lf_av = lf_max = AvgAdc(ADC_CHAN_LF); if(limit != HF_ONLY) { Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE * lf_av) >> 10); lf_baseline = lf_av; } hf_av = hf_max = AvgAdc(ADC_CHAN_HF); if (limit != LF_ONLY) { Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE * hf_av) >> 10); hf_baseline = hf_av; } for(;;) { if (BUTTON_PRESS()) { SpinDelay(500); switch (mode) { case 1: mode=2; DbpString("Signal Strength Mode"); break; case 2: default: DbpString("Stopped"); LEDsoff(); return; break; } } WDT_HIT(); if (limit != HF_ONLY) { if(mode == 1) { if (ABS(lf_av - lf_baseline) > REPORT_CHANGE) LED_D_ON(); else LED_D_OFF(); } lf_av_new = AvgAdc(ADC_CHAN_LF); // see if there's a significant change if(ABS(lf_av - lf_av_new) > REPORT_CHANGE) { Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE * lf_av_new) >> 10); lf_av = lf_av_new; if (lf_av > lf_max) lf_max = lf_av; } } if (limit != LF_ONLY) { if (mode == 1){ if (ABS(hf_av - hf_baseline) > REPORT_CHANGE) LED_B_ON(); else LED_B_OFF(); } hf_av_new = AvgAdc(ADC_CHAN_HF); // see if there's a significant change if(ABS(hf_av - hf_av_new) > REPORT_CHANGE) { Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE * hf_av_new) >> 10); hf_av = hf_av_new; if (hf_av > hf_max) hf_max = hf_av; } } if(mode == 2) { if (limit == LF_ONLY) { display_val = lf_av; display_max = lf_max; } else if (limit == HF_ONLY) { display_val = hf_av; display_max = hf_max; } else { /* Pick one at random */ if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) { display_val = hf_av; display_max = hf_max; } else { display_val = lf_av; display_max = lf_max; } } for (i=0; i= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) { if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF(); if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF(); if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF(); if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF(); break; } } } } } void UsbPacketReceived(uint8_t *packet, int len) { UsbCommand *c = (UsbCommand *)packet; //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]); switch(c->cmd) { #ifdef WITH_LF case CMD_SET_LF_SAMPLING_CONFIG: setSamplingConfig((sample_config *) c->d.asBytes); break; case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K: cmd_send(CMD_ACK, SampleLF(c->arg[0]),0,0,0,0); break; case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K: ModThenAcquireRawAdcSamples125k(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); break; case CMD_LF_SNOOP_RAW_ADC_SAMPLES: cmd_send(CMD_ACK,SnoopLF(),0,0,0,0); break; case CMD_HID_DEMOD_FSK: CmdHIDdemodFSK(c->arg[0], 0, 0, 1); break; case CMD_HID_SIM_TAG: CmdHIDsimTAG(c->arg[0], c->arg[1], 1); break; case CMD_FSK_SIM_TAG: CmdFSKsimTAG(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); break; case CMD_ASK_SIM_TAG: CmdASKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); break; case CMD_PSK_SIM_TAG: CmdPSKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); break; case CMD_HID_CLONE_TAG: CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]); break; case CMD_IO_DEMOD_FSK: CmdIOdemodFSK(c->arg[0], 0, 0, 1); break; case CMD_IO_CLONE_TAG: CopyIOtoT55x7(c->arg[0], c->arg[1]); break; case CMD_EM410X_DEMOD: CmdEM410xdemod(c->arg[0], 0, 0, 1); break; case CMD_EM410X_WRITE_TAG: WriteEM410x(c->arg[0], c->arg[1], c->arg[2]); break; case CMD_READ_TI_TYPE: ReadTItag(); break; case CMD_WRITE_TI_TYPE: WriteTItag(c->arg[0],c->arg[1],c->arg[2]); break; case CMD_SIMULATE_TAG_125K: LED_A_ON(); SimulateTagLowFrequency(c->arg[0], c->arg[1], 1); LED_A_OFF(); break; case CMD_LF_SIMULATE_BIDIR: SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]); break; case CMD_INDALA_CLONE_TAG: CopyIndala64toT55x7(c->arg[0], c->arg[1]); break; case CMD_INDALA_CLONE_TAG_L: CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]); break; case CMD_T55XX_READ_BLOCK: T55xxReadBlock(c->arg[0], c->arg[1], c->arg[2]); break; case CMD_T55XX_WRITE_BLOCK: T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]); break; case CMD_T55XX_WAKEUP: T55xxWakeUp(c->arg[0]); break; case CMD_T55XX_RESET_READ: T55xxResetRead(); break; case CMD_PCF7931_READ: ReadPCF7931(); break; case CMD_PCF7931_WRITE: WritePCF7931(c->d.asBytes[0],c->d.asBytes[1],c->d.asBytes[2],c->d.asBytes[3],c->d.asBytes[4],c->d.asBytes[5],c->d.asBytes[6], c->d.asBytes[9], c->d.asBytes[7]-128,c->d.asBytes[8]-128, c->arg[0], c->arg[1], c->arg[2]); break; case CMD_EM4X_READ_WORD: EM4xReadWord(c->arg[0], c->arg[1], c->arg[2]); break; case CMD_EM4X_WRITE_WORD: EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2]); break; case CMD_AWID_DEMOD_FSK: // Set realtime AWID demodulation CmdAWIDdemodFSK(c->arg[0], 0, 0, 1); break; case CMD_VIKING_CLONE_TAG: CopyVikingtoT55xx(c->arg[0], c->arg[1], c->arg[2]); break; case CMD_COTAG: Cotag(c->arg[0]); break; #endif #ifdef WITH_HITAG case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type SnoopHitag(c->arg[0]); break; case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes); break; case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes); break; case CMD_SIMULATE_HITAG_S:// Simulate Hitag s tag, args = memory content SimulateHitagSTag((bool)c->arg[0],(byte_t*)c->d.asBytes); break; case CMD_TEST_HITAGS_TRACES:// Tests every challenge within the given file check_challenges((bool)c->arg[0],(byte_t*)c->d.asBytes); break; case CMD_READ_HITAG_S: //Reader for only Hitag S tags, args = key or challenge ReadHitagS((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes); break; case CMD_WR_HITAG_S: //writer for Hitag tags args=data to write,page and key or challenge WritePageHitagS((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes,c->arg[2]); break; #endif #ifdef WITH_ISO15693 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693: AcquireRawAdcSamplesIso15693(); break; case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693: RecordRawAdcSamplesIso15693(); break; case CMD_ISO_15693_COMMAND: DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes); break; case CMD_ISO_15693_FIND_AFI: BruteforceIso15693Afi(c->arg[0]); break; case CMD_ISO_15693_DEBUG: SetDebugIso15693(c->arg[0]); break; case CMD_READER_ISO_15693: ReaderIso15693(c->arg[0]); break; case CMD_SIMTAG_ISO_15693: SimTagIso15693(c->arg[0], c->d.asBytes); break; #endif #ifdef WITH_LEGICRF case CMD_SIMULATE_TAG_LEGIC_RF: LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]); break; case CMD_WRITER_LEGIC_RF: LegicRfWriter( c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); break; case CMD_READER_LEGIC_RF: LegicRfReader(c->arg[0], c->arg[1], c->arg[2]); break; case CMD_LEGIC_INFO: LegicRfInfo(); break; case CMD_LEGIC_ESET: LegicEMemSet(c->arg[0], c->arg[1], c->d.asBytes); break; #endif #ifdef WITH_ISO14443b case CMD_READ_SRI_TAG: ReadSTMemoryIso14443b(c->arg[0]); break; case CMD_SNOOP_ISO_14443B: SnoopIso14443b(); break; case CMD_SIMULATE_TAG_ISO_14443B: SimulateIso14443bTag(c->arg[0]); break; case CMD_ISO_14443B_COMMAND: //SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes); SendRawCommand14443B_Ex(c); break; #endif #ifdef WITH_ISO14443a case CMD_SNOOP_ISO_14443a: SniffIso14443a(c->arg[0]); break; case CMD_READER_ISO_14443a: ReaderIso14443a(c); break; case CMD_SIMULATE_TAG_ISO_14443a: SimulateIso14443aTag(c->arg[0], c->arg[1], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID break; case CMD_EPA_PACE_COLLECT_NONCE: EPA_PACE_Collect_Nonce(c); break; case CMD_EPA_PACE_REPLAY: EPA_PACE_Replay(c); break; case CMD_READER_MIFARE: ReaderMifare(c->arg[0], c->arg[1], c->arg[2]); break; case CMD_MIFARE_READBL: MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); break; case CMD_MIFAREU_READBL: MifareUReadBlock(c->arg[0],c->arg[1], c->d.asBytes); break; case CMD_MIFAREUC_AUTH: MifareUC_Auth(c->arg[0],c->d.asBytes); break; case CMD_MIFAREU_READCARD: MifareUReadCard(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); break; case CMD_MIFAREUC_SETPWD: MifareUSetPwd(c->arg[0], c->d.asBytes); break; case CMD_MIFARE_READSC: MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); break; case CMD_MIFARE_WRITEBL: MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); break; //case CMD_MIFAREU_WRITEBL_COMPAT: //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes); //break; case CMD_MIFAREU_WRITEBL: MifareUWriteBlock(c->arg[0], c->arg[1], c->d.asBytes); break; case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES: MifareAcquireEncryptedNonces(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); break; case CMD_MIFARE_NESTED: MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); break; case CMD_MIFARE_CHKKEYS: MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); break; case CMD_SIMULATE_MIFARE_CARD: Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); break; // emulator case CMD_MIFARE_SET_DBGMODE: MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); break; case CMD_MIFARE_EML_MEMCLR: MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); break; case CMD_MIFARE_EML_MEMSET: MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); break; case CMD_MIFARE_EML_MEMGET: MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); break; case CMD_MIFARE_EML_CARDLOAD: MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); break; // Work with "magic Chinese" card case CMD_MIFARE_CSETBLOCK: MifareCSetBlock(c->arg[0], c->arg[1], c->d.asBytes); break; case CMD_MIFARE_CGETBLOCK: MifareCGetBlock(c->arg[0], c->arg[1], c->d.asBytes); break; case CMD_MIFARE_CIDENT: MifareCIdent(); break; // mifare sniffer case CMD_MIFARE_SNIFFER: SniffMifare(c->arg[0]); break; case CMD_MIFARE_SETMOD: MifareSetMod(c->arg[0], c->d.asBytes); break; //mifare desfire case CMD_MIFARE_DESFIRE_READBL: break; case CMD_MIFARE_DESFIRE_WRITEBL: break; case CMD_MIFARE_DESFIRE_AUTH1: MifareDES_Auth1(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); break; case CMD_MIFARE_DESFIRE_AUTH2: //MifareDES_Auth2(c->arg[0],c->d.asBytes); break; case CMD_MIFARE_DES_READER: //readermifaredes(c->arg[0], c->arg[1], c->d.asBytes); break; case CMD_MIFARE_DESFIRE_INFO: MifareDesfireGetInformation(); break; case CMD_MIFARE_DESFIRE: MifareSendCommand(c->arg[0], c->arg[1], c->d.asBytes); break; case CMD_MIFARE_COLLECT_NONCES: break; #endif #ifdef WITH_EMV case CMD_EMV_TRANSACTION: EMVTransaction(); break; case CMD_EMV_GET_RANDOM_NUM: //EMVgetUDOL(); break; case CMD_EMV_LOAD_VALUE: EMVloadvalue(c->arg[0], c->d.asBytes); break; case CMD_EMV_DUMP_CARD: EMVdumpcard(); break; /* case CMD_EMV_READ_RECORD: EMVReadRecord(c->arg[0], c->arg[1], NULL); break; case CMD_EMV_CLONE: EMVClone(c->arg[0], c->arg[1]); break; case CMD_EMV_SIM: EMVSim(); break; case CMD_EMV_TEST: EMVTest(); break; case CMD_EMV_FUZZ_RATS: EMVFuzz_RATS(c->arg[0],c->d.asBytes); break; */ #endif #ifdef WITH_ICLASS // Makes use of ISO14443a FPGA Firmware case CMD_SNOOP_ICLASS: SnoopIClass(); break; case CMD_SIMULATE_TAG_ICLASS: SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); break; case CMD_READER_ICLASS: ReaderIClass(c->arg[0]); break; case CMD_READER_ICLASS_REPLAY: ReaderIClass_Replay(c->arg[0], c->d.asBytes); break; case CMD_ICLASS_EML_MEMSET: emlSet(c->d.asBytes,c->arg[0], c->arg[1]); break; case CMD_ICLASS_WRITEBLOCK: iClass_WriteBlock(c->arg[0], c->d.asBytes); break; case CMD_ICLASS_READCHECK: // auth step 1 iClass_ReadCheck(c->arg[0], c->arg[1]); break; case CMD_ICLASS_READBLOCK: iClass_ReadBlk(c->arg[0]); break; case CMD_ICLASS_AUTHENTICATION: //check iClass_Authentication(c->d.asBytes); break; case CMD_ICLASS_DUMP: iClass_Dump(c->arg[0], c->arg[1]); break; case CMD_ICLASS_CLONE: iClass_Clone(c->arg[0], c->arg[1], c->d.asBytes); break; #endif #ifdef WITH_HFSNOOP case CMD_HF_SNIFFER: HfSnoop(c->arg[0], c->arg[1]); break; #endif case CMD_BUFF_CLEAR: BigBuf_Clear(); break; case CMD_MEASURE_ANTENNA_TUNING: MeasureAntennaTuning(); break; case CMD_MEASURE_ANTENNA_TUNING_HF: MeasureAntennaTuningHf(); break; case CMD_LISTEN_READER_FIELD: ListenReaderField(c->arg[0]); break; case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); SpinDelay(200); LED_D_OFF(); // LED D indicates field ON or OFF break; case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K: { LED_B_ON(); uint8_t *BigBuf = BigBuf_get_addr(); size_t len = 0; size_t startidx = c->arg[0]; uint8_t isok = FALSE; // arg0 = startindex // arg1 = length bytes to transfer // arg2 = RFU //Dbprintf("transfer to client parameters: %" PRIu64 " | %" PRIu64 " | %" PRIu64, c->arg[0], c->arg[1], c->arg[2]); for(size_t i = 0; i < c->arg[1]; i += USB_CMD_DATA_SIZE) { len = MIN( (c->arg[1] - i), USB_CMD_DATA_SIZE); isok = cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K, i, len, BigBuf_get_traceLen(), BigBuf + startidx + i, len); if (!isok) Dbprintf("transfer to client failed :: | bytes %d", len); } // Trigger a finish downloading signal with an ACK frame cmd_send(CMD_ACK, 1, 0, BigBuf_get_traceLen(), getSamplingConfig(), sizeof(sample_config)); LED_B_OFF(); break; } case CMD_DOWNLOADED_SIM_SAMPLES_125K: { // iceman; since changing fpga_bitstreams clears bigbuff, Its better to call it before. // to be able to use this one for uploading data to device // arg1 = 0 upload for LF usage // 1 upload for HF usage if ( c->arg[1] == 0 ) FpgaDownloadAndGo(FPGA_BITSTREAM_LF); else FpgaDownloadAndGo(FPGA_BITSTREAM_HF); uint8_t *b = BigBuf_get_addr(); memcpy( b + c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE); cmd_send(CMD_ACK,1,0,0,0,0); break; } case CMD_DOWNLOAD_EML_BIGBUF: { LED_B_ON(); uint8_t *cardmem = BigBuf_get_EM_addr(); size_t len = 0; for(size_t i=0; i < c->arg[1]; i += USB_CMD_DATA_SIZE) { len = MIN((c->arg[1] - i), USB_CMD_DATA_SIZE); cmd_send(CMD_DOWNLOADED_EML_BIGBUF, i, len, CARD_MEMORY_SIZE, cardmem + c->arg[0] + i, len); } // Trigger a finish downloading signal with an ACK frame cmd_send(CMD_ACK, 1, 0, CARD_MEMORY_SIZE, 0, 0); LED_B_OFF(); break; } case CMD_READ_MEM: ReadMem(c->arg[0]); break; case CMD_SET_LF_DIVISOR: FpgaDownloadAndGo(FPGA_BITSTREAM_LF); FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]); break; case CMD_SET_ADC_MUX: switch(c->arg[0]) { case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break; case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break; case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break; case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break; } break; case CMD_VERSION: SendVersion(); break; case CMD_STATUS: SendStatus(); break; case CMD_PING: cmd_send(CMD_ACK,0,0,0,0,0); break; #ifdef WITH_LCD case CMD_LCD_RESET: LCDReset(); break; case CMD_LCD: LCDSend(c->arg[0]); break; #endif case CMD_SETUP_WRITE: case CMD_FINISH_WRITE: case CMD_HARDWARE_RESET: usb_disable(); SpinDelay(2000); AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST; for(;;) { // We're going to reset, and the bootrom will take control. } break; case CMD_START_FLASH: if(common_area.flags.bootrom_present) { common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE; } usb_disable(); AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST; for(;;); break; case CMD_DEVICE_INFO: { uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS; if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT; cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0); break; } default: Dbprintf("%s: 0x%04x","unknown command:",c->cmd); break; } } void __attribute__((noreturn)) AppMain(void) { SpinDelay(100); clear_trace(); if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) { /* Initialize common area */ memset(&common_area, 0, sizeof(common_area)); common_area.magic = COMMON_AREA_MAGIC; common_area.version = 1; } common_area.flags.osimage_present = 1; LEDsoff(); // Init USB device usb_enable(); // The FPGA gets its clock from us from PCK0 output, so set that up. AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0; AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0; AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0; // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK | AT91C_PMC_PRES_CLK_4; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0; // Reset SPI AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST; // Reset SSC AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST; // Load the FPGA image, which we have stored in our flash. // (the HF version by default) FpgaDownloadAndGo(FPGA_BITSTREAM_HF); StartTickCount(); #ifdef WITH_LCD LCDInit(); #endif byte_t rx[sizeof(UsbCommand)]; size_t rx_len; for(;;) { if ( usb_poll_validate_length() ) { rx_len = usb_read(rx, sizeof(UsbCommand)); if (rx_len) UsbPacketReceived(rx, rx_len); } WDT_HIT(); #ifdef WITH_LF #ifndef WITH_ISO14443a_StandAlone if (BUTTON_HELD(1000) > 0) SamyRun(); #endif #endif #ifdef WITH_ISO14443a #ifdef WITH_ISO14443a_StandAlone if (BUTTON_HELD(1000) > 0) StandAloneMode14a(); #endif #endif } }