//----------------------------------------------------------------------------- // Copyright (C) 2010 iZsh // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Hardware commands // low-level hardware control //----------------------------------------------------------------------------- #include #include #include #include #include "ui.h" #include "proxmark3.h" #include "cmdparser.h" #include "cmdhw.h" #include "cmdmain.h" #include "cmddata.h" static int CmdHelp(const char *Cmd); static int usage_hw_detectreader(void) { PrintAndLogEx(NORMAL, "Start to detect presences of reader field"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Usage: hw detectreader [h] "); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h This help"); PrintAndLogEx(NORMAL, " L = 125/134 kHz, H = 13.56 mHz"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hw detectreader L"); return PM3_SUCCESS; } static int usage_hw_setmux(void) { PrintAndLogEx(NORMAL, "Set the ADC mux to a specific value"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Usage: hw setmux [h] "); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h This help"); PrintAndLogEx(NORMAL, " Low peak, Low raw, Hi peak, Hi raw"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hw setmux lopkd"); return PM3_SUCCESS; } static int usage_hw_connect(void) { PrintAndLogEx(NORMAL, "Connects to a Proxmark3 device via specified serial port"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Usage: hw connect [h] []"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h This help"); PrintAndLogEx(NORMAL, " Serial port to connect to, else retry the last used one"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hw connect "SERIAL_PORT_EXAMPLE_H); return PM3_SUCCESS; } static void lookupChipID(uint32_t iChipID, uint32_t mem_used) { char asBuff[120]; memset(asBuff, 0, sizeof(asBuff)); uint32_t mem_avail = 0; PrintAndLogEx(NORMAL, "\n [ Hardware ] "); switch (iChipID) { case 0x270B0A40: sprintf(asBuff, "AT91SAM7S512 Rev A"); break; case 0x270B0A4F: sprintf(asBuff, "AT91SAM7S512 Rev B"); break; case 0x270D0940: sprintf(asBuff, "AT91SAM7S256 Rev A"); break; case 0x270B0941: sprintf(asBuff, "AT91SAM7S256 Rev B"); break; case 0x270B0942: sprintf(asBuff, "AT91SAM7S256 Rev C"); break; case 0x270B0943: sprintf(asBuff, "AT91SAM7S256 Rev D"); break; case 0x270C0740: sprintf(asBuff, "AT91SAM7S128 Rev A"); break; case 0x270A0741: sprintf(asBuff, "AT91SAM7S128 Rev B"); break; case 0x270A0742: sprintf(asBuff, "AT91SAM7S128 Rev C"); break; case 0x270A0743: sprintf(asBuff, "AT91SAM7S128 Rev D"); break; case 0x27090540: sprintf(asBuff, "AT91SAM7S64 Rev A"); break; case 0x27090543: sprintf(asBuff, "AT91SAM7S64 Rev B"); break; case 0x27090544: sprintf(asBuff, "AT91SAM7S64 Rev C"); break; case 0x27080342: sprintf(asBuff, "AT91SAM7S321 Rev A"); break; case 0x27080340: sprintf(asBuff, "AT91SAM7S32 Rev A"); break; case 0x27080341: sprintf(asBuff, "AT91SAM7S32 Rev B"); break; case 0x27050241: sprintf(asBuff, "AT9SAM7S161 Rev A"); break; case 0x27050240: sprintf(asBuff, "AT91SAM7S16 Rev A"); break; } PrintAndLogEx(NORMAL, " --= uC: %s", asBuff); switch ((iChipID & 0xE0) >> 5) { case 1: sprintf(asBuff, "ARM946ES"); break; case 2: sprintf(asBuff, "ARM7TDMI"); break; case 4: sprintf(asBuff, "ARM920T"); break; case 5: sprintf(asBuff, "ARM926EJS"); break; } PrintAndLogEx(NORMAL, " --= Embedded Processor: %s", asBuff); switch ((iChipID & 0xF00) >> 8) { case 0: mem_avail = 0; break; case 1: mem_avail = 8; break; case 2: mem_avail = 16; break; case 3: mem_avail = 32; break; case 5: mem_avail = 64; break; case 7: mem_avail = 128; break; case 9: mem_avail = 256; break; case 10: mem_avail = 512; break; case 12: mem_avail = 1024; break; case 14: mem_avail = 2048; break; } uint32_t mem_left = 0; if (mem_avail > 0) mem_left = (mem_avail * 1024) - mem_used; PrintAndLogEx(NORMAL, " --= Nonvolatile Program Memory Size: %uK bytes, Used: %u bytes (%2.0f%%) Free: %u bytes (%2.0f%%)", mem_avail, mem_used, mem_avail == 0 ? 0.0f : (float)mem_used / (mem_avail * 1024) * 100, mem_left, mem_avail == 0 ? 0.0f : (float)mem_left / (mem_avail * 1024) * 100 ); switch ((iChipID & 0xF000) >> 12) { case 0: sprintf(asBuff, "None"); break; case 1: sprintf(asBuff, "8K bytes"); break; case 2: sprintf(asBuff, "16K bytes"); break; case 3: sprintf(asBuff, "32K bytes"); break; case 5: sprintf(asBuff, "64K bytes"); break; case 7: sprintf(asBuff, "128K bytes"); break; case 9: sprintf(asBuff, "256K bytes"); break; case 10: sprintf(asBuff, "512K bytes"); break; case 12: sprintf(asBuff, "1024K bytes"); break; case 14: sprintf(asBuff, "2048K bytes"); break; } PrintAndLogEx(NORMAL, " --= Second Nonvolatile Program Memory Size: %s", asBuff); switch ((iChipID & 0xF0000) >> 16) { case 1: sprintf(asBuff, "1K bytes"); break; case 2: sprintf(asBuff, "2K bytes"); break; case 3: sprintf(asBuff, "6K bytes"); break; case 4: sprintf(asBuff, "112K bytes"); break; case 5: sprintf(asBuff, "4K bytes"); break; case 6: sprintf(asBuff, "80K bytes"); break; case 7: sprintf(asBuff, "160K bytes"); break; case 8: sprintf(asBuff, "8K bytes"); break; case 9: sprintf(asBuff, "16K bytes"); break; case 10: sprintf(asBuff, "32K bytes"); break; case 11: sprintf(asBuff, "64K bytes"); break; case 12: sprintf(asBuff, "128K bytes"); break; case 13: sprintf(asBuff, "256K bytes"); break; case 14: sprintf(asBuff, "96K bytes"); break; case 15: sprintf(asBuff, "512K bytes"); break; } PrintAndLogEx(NORMAL, " --= Internal SRAM Size: %s", asBuff); switch ((iChipID & 0xFF00000) >> 20) { case 0x19: sprintf(asBuff, "AT91SAM9xx Series"); break; case 0x29: sprintf(asBuff, "AT91SAM9XExx Series"); break; case 0x34: sprintf(asBuff, "AT91x34 Series"); break; case 0x37: sprintf(asBuff, "CAP7 Series"); break; case 0x39: sprintf(asBuff, "CAP9 Series"); break; case 0x3B: sprintf(asBuff, "CAP11 Series"); break; case 0x40: sprintf(asBuff, "AT91x40 Series"); break; case 0x42: sprintf(asBuff, "AT91x42 Series"); break; case 0x55: sprintf(asBuff, "AT91x55 Series"); break; case 0x60: sprintf(asBuff, "AT91SAM7Axx Series"); break; case 0x61: sprintf(asBuff, "AT91SAM7AQxx Series"); break; case 0x63: sprintf(asBuff, "AT91x63 Series"); break; case 0x70: sprintf(asBuff, "AT91SAM7Sxx Series"); break; case 0x71: sprintf(asBuff, "AT91SAM7XCxx Series"); break; case 0x72: sprintf(asBuff, "AT91SAM7SExx Series"); break; case 0x73: sprintf(asBuff, "AT91SAM7Lxx Series"); break; case 0x75: sprintf(asBuff, "AT91SAM7Xxx Series"); break; case 0x92: sprintf(asBuff, "AT91x92 Series"); break; case 0xF0: sprintf(asBuff, "AT75Cxx Series"); break; } PrintAndLogEx(NORMAL, " --= Architecture Identifier: %s", asBuff); switch ((iChipID & 0x70000000) >> 28) { case 0: sprintf(asBuff, "ROM"); break; case 1: sprintf(asBuff, "ROMless or on-chip Flash"); break; case 2: sprintf(asBuff, "Embedded Flash Memory"); break; case 3: sprintf(asBuff, "ROM and Embedded Flash Memory\nNVPSIZ is ROM size\nNVPSIZ2 is Flash size"); break; case 4: sprintf(asBuff, "SRAM emulating ROM"); break; } PrintAndLogEx(NORMAL, " --= Nonvolatile Program Memory Type: %s", asBuff); } static int CmdDetectReader(const char *Cmd) { uint16_t arg = 0; char c = toupper(Cmd[0]); switch (c) { case 'L': arg = 1; break; case 'H': arg = 2; break; default: { usage_hw_detectreader(); return PM3_EINVARG; } } clearCommandBuffer(); SendCommandMIX(CMD_LISTEN_READER_FIELD, arg, 0, 0, NULL, 0); return PM3_SUCCESS; } // ## FPGA Control static int CmdFPGAOff(const char *Cmd) { (void)Cmd; // Cmd is not used so far clearCommandBuffer(); SendCommandNG(CMD_FPGA_MAJOR_MODE_OFF, NULL, 0); return PM3_SUCCESS; } static int CmdLCD(const char *Cmd) { int i, j; sscanf(Cmd, "%x %d", &i, &j); while (j--) { clearCommandBuffer(); SendCommandMIX(CMD_LCD, i & 0x1ff, 0, 0, NULL, 0); } return PM3_SUCCESS; } static int CmdLCDReset(const char *Cmd) { clearCommandBuffer(); SendCommandMIX(CMD_LCD_RESET, strtol(Cmd, NULL, 0), 0, 0, NULL, 0); return PM3_SUCCESS; } static int CmdReadmem(const char *Cmd) { clearCommandBuffer(); SendCommandMIX(CMD_READ_MEM, strtol(Cmd, NULL, 0), 0, 0, NULL, 0); return PM3_SUCCESS; } static int CmdReset(const char *Cmd) { (void)Cmd; // Cmd is not used so far clearCommandBuffer(); SendCommandNG(CMD_HARDWARE_RESET, NULL, 0); PrintAndLogEx(INFO, "Proxmark3 has been reset."); return PM3_SUCCESS; } /* * Sets the divisor for LF frequency clock: lets the user choose any LF frequency below * 600kHz. */ static int CmdSetDivisor(const char *Cmd) { uint16_t arg = strtol(Cmd, NULL, 0); if (arg < 19 || arg > 255) { PrintAndLogEx(ERR, "divisor must be between 19 and 255"); return PM3_EINVARG; } // 12 000 000 (12Mhz) clearCommandBuffer(); SendCommandMIX(CMD_SET_LF_DIVISOR, arg, 0, 0, NULL, 0); PrintAndLogEx(SUCCESS, "Divisor set, expected %.1f KHz", ((double)12000 / (arg + 1))); return PM3_SUCCESS; } static int CmdSetMux(const char *Cmd) { if (strlen(Cmd) < 5) { usage_hw_setmux(); return PM3_EINVARG; } str_lower((char *)Cmd); uint8_t arg = 0; if (strcmp(Cmd, "lopkd") == 0) arg = 0; else if (strcmp(Cmd, "loraw") == 0) arg = 1; else if (strcmp(Cmd, "hipkd") == 0) arg = 2; else if (strcmp(Cmd, "hiraw") == 0) arg = 3; else { usage_hw_setmux(); return PM3_EINVARG; } clearCommandBuffer(); SendCommandMIX(CMD_SET_ADC_MUX, arg, 0, 0, NULL, 0); return PM3_SUCCESS; } static int CmdTune(const char *Cmd) { return CmdTuneSamples(Cmd); } static int CmdVersion(const char *Cmd) { (void)Cmd; // Cmd is not used so far pm3_version(true); return PM3_SUCCESS; } static int CmdStatus(const char *Cmd) { (void)Cmd; // Cmd is not used so far clearCommandBuffer(); PacketResponseNG resp; SendCommandNG(CMD_STATUS, NULL, 0); if (!WaitForResponseTimeout(CMD_ACK, &resp, 2000)) PrintAndLogEx(WARNING, "Status command failed. Communication speed test timed out"); return PM3_SUCCESS; } static int CmdPing(const char *Cmd) { uint32_t len = strtol(Cmd, NULL, 0); if (len > PM3_CMD_DATA_SIZE) len = PM3_CMD_DATA_SIZE; if (len) { PrintAndLogEx(INFO, "Ping sent with payload len=%d", len); } else { PrintAndLogEx(INFO, "Ping sent"); } clearCommandBuffer(); PacketResponseNG resp; uint8_t data[PM3_CMD_DATA_SIZE] = {0}; for (uint16_t i = 0; i < len; i++) data[i] = i & 0xFF; SendCommandNG(CMD_PING, data, len); if (WaitForResponseTimeout(CMD_PING, &resp, 1000)) { bool error = false; if (len) { error = memcmp(data, resp.data.asBytes, len) != 0; PrintAndLogEx((error) ? ERR : SUCCESS, "Ping response " _GREEN_("received") "and content is %s", error ? _RED_("NOT ok") : _GREEN_("ok")); } else { PrintAndLogEx((error) ? ERR : SUCCESS, "Ping response " _GREEN_("received")); } } else PrintAndLogEx(WARNING, "Ping response " _RED_("timeout")); return PM3_SUCCESS; } static int CmdConnect(const char *Cmd) { if (tolower(Cmd[0] == 'h')) return usage_hw_connect(); char *port = NULL; // default back to previous used serial port if (strlen(Cmd) == 0) { int len = strlen((char *)conn.serial_port_name); if (len == 0) { return usage_hw_connect(); } port = (char *)conn.serial_port_name; } else { port = (char *)Cmd; } if (port == NULL) return usage_hw_connect(); if (session.pm3_present) { CloseProxmark(); } OpenProxmark(port, false, 20, false, USART_BAUD_RATE); if (session.pm3_present && (TestProxmark() != PM3_SUCCESS)) { PrintAndLogEx(ERR, _RED_("ERROR:") "cannot communicate with the Proxmark\n"); CloseProxmark(); } return PM3_SUCCESS; } static command_t CommandTable[] = { {"help", CmdHelp, AlwaysAvailable, "This help"}, {"connect", CmdConnect, AlwaysAvailable, "connect Proxmark3 to serial port"}, {"detectreader", CmdDetectReader, IfPm3Present, "['l'|'h'] -- Detect external reader field (option 'l' or 'h' to limit to LF or HF)"}, {"fpgaoff", CmdFPGAOff, IfPm3Present, "Set FPGA off"}, {"lcd", CmdLCD, IfPm3Lcd, " -- Send command/data to LCD"}, {"lcdreset", CmdLCDReset, IfPm3Lcd, "Hardware reset LCD"}, {"ping", CmdPing, IfPm3Present, "Test if the Proxmark3 is responsive"}, {"readmem", CmdReadmem, IfPm3Present, "[address] -- Read memory at decimal address from flash"}, {"reset", CmdReset, IfPm3Present, "Reset the Proxmark3"}, {"setlfdivisor", CmdSetDivisor, IfPm3Present, "<19 - 255> -- Drive LF antenna at 12Mhz/(divisor+1)"}, {"setmux", CmdSetMux, IfPm3Present, "Set the ADC mux to a specific value"}, {"status", CmdStatus, IfPm3Present, "Show runtime status information about the connected Proxmark3"}, {"tune", CmdTune, IfPm3Present, "Measure antenna tuning"}, {"version", CmdVersion, IfPm3Present, "Show version information about the connected Proxmark3"}, {NULL, NULL, NULL, NULL} }; static int CmdHelp(const char *Cmd) { (void)Cmd; // Cmd is not used so far CmdsHelp(CommandTable); return PM3_SUCCESS; } int CmdHW(const char *Cmd) { clearCommandBuffer(); return CmdsParse(CommandTable, Cmd); } void pm3_version(bool verbose) { if (!verbose) return; PacketResponseNG resp; clearCommandBuffer(); SendCommandNG(CMD_VERSION, NULL, 0); if (WaitForResponseTimeout(CMD_ACK, &resp, 1000)) { PrintAndLogEx(NORMAL, "\n" _BLUE_(" [ Proxmark3 RFID instrument ]") "\n"); PrintAndLogEx(NORMAL, "\n [ CLIENT ]"); PrintAndLogEx(NORMAL, " client: RRG/Iceman"); // TODO version info? PrintAndLogEx(NORMAL, "\n [ PROXMARK RDV4 ]"); PrintAndLogEx(NORMAL, " external flash: %s", IfPm3Flash() ? _GREEN_("present") : _YELLOW_("absent")); PrintAndLogEx(NORMAL, " smartcard reader: %s", IfPm3Smartcard() ? _GREEN_("present") : _YELLOW_("absent")); PrintAndLogEx(NORMAL, "\n [ PROXMARK RDV4 Extras ]"); PrintAndLogEx(NORMAL, " FPC USART for BT add-on support: %s", IfPm3FpcUsartHost() ? _GREEN_("present") : _YELLOW_("absent")); if (IfPm3FpcUsartDevFromUsb()) PrintAndLogEx(NORMAL, " FPC USART for developer support: %s", _GREEN_("present")); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, (char *)resp.data.asBytes); lookupChipID(resp.oldarg[0], resp.oldarg[1]); } PrintAndLogEx(NORMAL, "\n"); }