//----------------------------------------------------------------------------- // Copyright (C) 2009 Michael Gernoth // Copyright (C) 2010 iZsh // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // UI utilities //----------------------------------------------------------------------------- #include "ui.h" double CursorScaleFactor = 1; int PlotGridX=0, PlotGridY=0, PlotGridXdefault= 64, PlotGridYdefault= 64, CursorCPos= 0, CursorDPos= 0; int offline; int flushAfterWrite = 0; //buzzy int GridOffset = 0; bool GridLocked = false; bool showDemod = true; pthread_mutex_t print_lock; static char *logfilename = "proxmark3.log"; void PrintAndLog(char *fmt, ...) { char *saved_line; int saved_point; va_list argptr, argptr2; static FILE *logfile = NULL; static int logging = 1; // lock this section to avoid interlacing prints from different threads pthread_mutex_lock(&print_lock); if (logging && !logfile) { logfile = fopen(logfilename, "a"); if (!logfile) { fprintf(stderr, "Can't open logfile, logging disabled!\n"); logging=0; } } #ifdef RL_STATE_READCMD // We are using GNU readline. int need_hack = (rl_readline_state & RL_STATE_READCMD) > 0; if (need_hack) { saved_point = rl_point; saved_line = rl_copy_text(0, rl_end); rl_save_prompt(); rl_replace_line("", 0); rl_redisplay(); } #else // We are using libedit (OSX), which doesn't support this flag. int need_hack = 0; #endif va_start(argptr, fmt); va_copy(argptr2, argptr); vprintf(fmt, argptr); printf(" "); // cleaning prompt va_end(argptr); printf("\n"); if (need_hack) { rl_restore_prompt(); rl_replace_line(saved_line, 0); rl_point = saved_point; rl_redisplay(); free(saved_line); } if (logging && logfile) { vfprintf(logfile, fmt, argptr2); fprintf(logfile,"\n"); fflush(logfile); } va_end(argptr2); if (flushAfterWrite == 1) { fflush(NULL); } //release lock pthread_mutex_unlock(&print_lock); } void SetLogFilename(char *fn) { logfilename = fn; } void iceIIR_Butterworth(int *data, const size_t len){ int i,j; int * output = (int* ) malloc(sizeof(int) * len); if ( !output ) return; // clear mem memset(output, 0x00, len); size_t adjustedLen = len; float fc = 0.1125f; // center frequency // create very simple low-pass filter to remove images (2nd-order Butterworth) float complex iir_buf[3] = {0,0,0}; float b[3] = {0.003621681514929, 0.007243363029857, 0.003621681514929}; float a[3] = {1.000000000000000, -1.822694925196308, 0.837181651256023}; float sample = 0; // input sample read from array float complex x_prime = 1.0f; // save sample for estimating frequency float complex x; for (i = 0; i < adjustedLen; ++i) { sample = data[i]; // remove DC offset and mix to complex baseband x = (sample - 127.5f) * cexpf( _Complex_I * 2 * M_PI * fc * i ); // apply low-pass filter, removing spectral image (IIR using direct-form II) iir_buf[2] = iir_buf[1]; iir_buf[1] = iir_buf[0]; iir_buf[0] = x - a[1]*iir_buf[1] - a[2]*iir_buf[2]; x = b[0]*iir_buf[0] + b[1]*iir_buf[1] + b[2]*iir_buf[2]; // compute instantaneous frequency by looking at phase difference // between adjacent samples float freq = cargf(x * conjf(x_prime)); x_prime = x; // retain this sample for next iteration output[i] =(freq > 0) ? 127 : -127; } // show data //memcpy(data, output, adjustedLen); for (j=0; j> shift) + input; // Scale output for unity gain output = filter_reg >> shift; data[i] = output; } } float complex cexpf (float complex Z) { float complex Res; double rho = exp (__real__ Z); __real__ Res = rho * cosf(__imag__ Z); __imag__ Res = rho * sinf(__imag__ Z); return Res; }