//----------------------------------------------------------------------------- // Copyright (C) 2010 iZsh // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Low frequency EM4x commands //----------------------------------------------------------------------------- #include "cmdlfem4x.h" uint64_t g_em410xid = 0; static int CmdHelp(const char *Cmd); int usage_lf_em410x_sim(void) { PrintAndLog("Simulating EM410x tag"); PrintAndLog(""); PrintAndLog("Usage: lf em 410xsim [h] "); PrintAndLog("Options:"); PrintAndLog(" h - this help"); PrintAndLog(" uid - uid (10 HEX symbols)"); PrintAndLog(" clock - clock (32|64) (optional)"); PrintAndLog("samples:"); PrintAndLog(" lf em 410xsim 0F0368568B"); PrintAndLog(" lf em 410xsim 0F0368568B 32"); return 0; } int CmdEMdemodASK(const char *Cmd) { char cmdp = param_getchar(Cmd, 0); uint8_t findone = (cmdp == '1') ? 1 : 0; UsbCommand c = {CMD_EM410X_DEMOD, {findone, 0, 0}}; SendCommand(&c); return 0; } /* Read the ID of an EM410x tag. * Format: * 1111 1111 1 <-- standard non-repeatable header * XXXX [row parity bit] <-- 10 rows of 5 bits for our 40 bit tag ID * .... * CCCC <-- each bit here is parity for the 10 bits above in corresponding column * 0 <-- stop bit, end of tag */ int CmdEM410xRead(const char *Cmd) { uint32_t hi = 0; uint64_t lo = 0; if(!AskEm410xDemod("", &hi, &lo, false)) return 0; printEM410x(hi, lo); g_em410xid = lo; return 1; } // emulate an EM410X tag int CmdEM410xSim(const char *Cmd) { int i, n, j, binary[4], parity[4]; uint8_t uid[5] = {0x00}; char cmdp = param_getchar(Cmd, 0); if (cmdp == 'h' || cmdp == 'H') return usage_lf_em410x_sim(); /* clock is 64 in EM410x tags */ uint8_t clock = 64; if (param_gethex(Cmd, 0, uid, 10)) { PrintAndLog("UID must include 10 HEX symbols"); return 0; } param_getdec(Cmd, 1, &clock); PrintAndLog("Starting simulating UID %02X%02X%02X%02X%02X clock: %d", uid[0],uid[1],uid[2],uid[3],uid[4],clock); PrintAndLog("Press pm3-button to about simulation"); /* clear our graph */ ClearGraph(0); /* write 9 start bits */ for (i = 0; i < 9; i++) AppendGraph(0, clock, 1); /* for each hex char */ parity[0] = parity[1] = parity[2] = parity[3] = 0; for (i = 0; i < 10; i++) { /* read each hex char */ sscanf(&Cmd[i], "%1x", &n); for (j = 3; j >= 0; j--, n/= 2) binary[j] = n % 2; /* append each bit */ AppendGraph(0, clock, binary[0]); AppendGraph(0, clock, binary[1]); AppendGraph(0, clock, binary[2]); AppendGraph(0, clock, binary[3]); /* append parity bit */ AppendGraph(0, clock, binary[0] ^ binary[1] ^ binary[2] ^ binary[3]); /* keep track of column parity */ parity[0] ^= binary[0]; parity[1] ^= binary[1]; parity[2] ^= binary[2]; parity[3] ^= binary[3]; } /* parity columns */ AppendGraph(0, clock, parity[0]); AppendGraph(0, clock, parity[1]); AppendGraph(0, clock, parity[2]); AppendGraph(0, clock, parity[3]); /* stop bit */ AppendGraph(1, clock, 0); CmdLFSim("0"); //240 start_gap. return 0; } /* Function is equivalent of lf read + data samples + em410xread * looped until an EM410x tag is detected * * Why is CmdSamples("16000")? * TBD: Auto-grow sample size based on detected sample rate. IE: If the * rate gets lower, then grow the number of samples * Changed by martin, 4000 x 4 = 16000, * see http://www.proxmark.org/forum/viewtopic.php?pid=7235#p7235 */ int CmdEM410xWatch(const char *Cmd) { do { if (ukbhit()) { printf("\naborted via keyboard!\n"); break; } CmdLFRead("s"); getSamples("6144",true); } while (!CmdEM410xRead("")); return 0; } //currently only supports manchester modulations // todo: helptext int CmdEM410xWatchnSpoof(const char *Cmd) { // loops if the captured ID was in XL-format. CmdEM410xWatch(Cmd); PrintAndLog("# Replaying captured ID: %" PRIu64 , g_em410xid); CmdLFaskSim(""); return 0; } int CmdEM410xWrite(const char *Cmd) { uint64_t id = 0xFFFFFFFFFFFFFFFF; // invalid id value int card = 0xFF; // invalid card value uint32_t clock = 0; // invalid clock value sscanf(Cmd, "%" PRIx64 " %d %d", &id, &card, &clock); // Check ID if (id == 0xFFFFFFFFFFFFFFFF) { PrintAndLog("Error! ID is required.\n"); return 0; } if (id >= 0x10000000000) { PrintAndLog("Error! Given EM410x ID is longer than 40 bits.\n"); return 0; } // Check Card if (card == 0xFF) { PrintAndLog("Error! Card type required.\n"); return 0; } if (card < 0) { PrintAndLog("Error! Bad card type selected.\n"); return 0; } // Check Clock // Default: 64 if (clock == 0) clock = 64; // Allowed clock rates: 16, 32, 40 and 64 if ((clock != 16) && (clock != 32) && (clock != 64) && (clock != 40)) { PrintAndLog("Error! Clock rate %d not valid. Supported clock rates are 16, 32, 40 and 64.\n", clock); return 0; } if (card == 1) { PrintAndLog("Writing %s tag with UID 0x%010" PRIx64 " (clock rate: %d)", "T55x7", id, clock); // NOTE: We really should pass the clock in as a separate argument, but to // provide for backwards-compatibility for older firmware, and to avoid // having to add another argument to CMD_EM410X_WRITE_TAG, we just store // the clock rate in bits 8-15 of the card value card = (card & 0xFF) | ((clock << 8) & 0xFF00); } else if (card == 0) { PrintAndLog("Writing %s tag with UID 0x%010" PRIx64, "T5555", id, clock); card = (card & 0xFF) | ((clock << 8) & 0xFF00); } else { PrintAndLog("Error! Bad card type selected.\n"); return 0; } UsbCommand c = {CMD_EM410X_WRITE_TAG, {card, (uint32_t)(id >> 32), (uint32_t)id}}; SendCommand(&c); return 0; } bool EM_EndParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType) { if (rows*cols>size) return FALSE; uint8_t colP=0; //assume last col is a parity and do not test for (uint8_t colNum = 0; colNum < cols-1; colNum++) { for (uint8_t rowNum = 0; rowNum < rows; rowNum++) { colP ^= BitStream[(rowNum*cols)+colNum]; } if (colP != pType) return FALSE; } return TRUE; } bool EM_ByteParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType) { if (rows*cols>size) return FALSE; uint8_t rowP=0; //assume last row is a parity row and do not test for (uint8_t rowNum = 0; rowNum < rows-1; rowNum++) { for (uint8_t colNum = 0; colNum < cols; colNum++) { rowP ^= BitStream[(rowNum*cols)+colNum]; } if (rowP != pType) return FALSE; } return TRUE; } // EM word parity test. // 9*5 = 45 bits in total // 012345678|r1 // 012345678|r2 // 012345678|r3 // 012345678|r4 // ------------ //c012345678| 0 // |- must be zero bool EMwordparitytest(uint8_t *bits){ // last row/col parity must be 0 if (bits[44] != 0 ) return FALSE; // col parity check uint8_t c1 = bytebits_to_byte(bits, 8) ^ bytebits_to_byte(bits+9, 8) ^ bytebits_to_byte(bits+18, 8) ^ bytebits_to_byte(bits+27, 8); uint8_t c2 = bytebits_to_byte(bits+36, 8); if ( c1 != c2 ) return FALSE; // row parity check uint8_t rowP = 0; for ( uint8_t i = 0; i < 36; ++i ) { rowP ^= bits[i]; if ( i>0 && (i % 9) == 0) { if ( rowP != EVEN ) return FALSE; rowP = 0; } } // all checks ok. return TRUE; } //////////////// 4050 / 4450 commands int usage_lf_em4x50_dump(void) { PrintAndLog("Dump EM4x50/EM4x69. Tag must be on antenna. "); PrintAndLog(""); PrintAndLog("Usage: lf em 4x50dump [h] "); PrintAndLog("Options:"); PrintAndLog(" h - this help"); PrintAndLog(" pwd - password (hex) (optional)"); PrintAndLog("samples:"); PrintAndLog(" lf em 4x50dump"); PrintAndLog(" lf em 4x50dump 11223344"); return 0; } int usage_lf_em4x50_read(void) { PrintAndLog("Read EM 4x50/EM4x69. Tag must be on antenna. "); PrintAndLog(""); PrintAndLog("Usage: lf em 4x50read [h]
"); PrintAndLog("Options:"); PrintAndLog(" h - this help"); PrintAndLog(" address - memory address to read. (0-15)"); PrintAndLog(" pwd - password (hex) (optional)"); PrintAndLog("samples:"); PrintAndLog(" lf em 4x50read 1"); PrintAndLog(" lf em 4x50read 1 11223344"); return 0; } int usage_lf_em4x50_write(void) { PrintAndLog("Write EM 4x50/4x69. Tag must be on antenna. "); PrintAndLog(""); PrintAndLog("Usage: lf em 4x50write [h]
"); PrintAndLog("Options:"); PrintAndLog(" h - this help"); PrintAndLog(" address - memory address to write to. (0-15)"); PrintAndLog(" data - data to write (hex)"); PrintAndLog(" pwd - password (hex) (optional)"); PrintAndLog("samples:"); PrintAndLog(" lf em 4x50write 1 deadc0de"); PrintAndLog(" lf em 4x50write 1 deadc0de 11223344"); return 0; } uint32_t OutputEM4x50_Block(uint8_t *BitStream, size_t size, bool verbose, bool pTest) { if (size<45) return 0; uint32_t code = bytebits_to_byte(BitStream,8); code = code<<8 | bytebits_to_byte(BitStream+9,8); code = code<<8 | bytebits_to_byte(BitStream+18,8); code = code<<8 | bytebits_to_byte(BitStream+27,8); if (verbose || g_debugMode){ for (uint8_t i = 0; i<5; i++){ if (i == 4) PrintAndLog(""); //parity byte spacer PrintAndLog("%d%d%d%d%d%d%d%d %d -> 0x%02x", BitStream[i*9], BitStream[i*9+1], BitStream[i*9+2], BitStream[i*9+3], BitStream[i*9+4], BitStream[i*9+5], BitStream[i*9+6], BitStream[i*9+7], BitStream[i*9+8], bytebits_to_byte(BitStream+i*9,8) ); } if (pTest) PrintAndLog("Parity Passed"); else PrintAndLog("Parity Failed"); } return code; } /* Read the transmitted data of an EM4x50 tag from the graphbuffer * Format: * * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity * CCCCCCCC <- column parity bits * 0 <- stop bit * LW <- Listen Window * * This pattern repeats for every block of data being transmitted. * Transmission starts with two Listen Windows (LW - a modulated * pattern of 320 cycles each (32/32/128/64/64)). * * Note that this data may or may not be the UID. It is whatever data * is stored in the blocks defined in the control word First and Last * Word Read values. UID is stored in block 32. */ //completed by Marshmellow int EM4x50Read(const char *Cmd, bool verbose) { uint8_t fndClk[] = {8,16,32,40,50,64,128}; int clk = 0; int invert = 0; int tol = 0; int i, j, startblock, skip, block, start, end, low, high, minClk; bool complete = false; int tmpbuff[MAX_GRAPH_TRACE_LEN / 64]; uint32_t Code[6]; char tmp[6]; char tmp2[20]; int phaseoff; high = low = 0; memset(tmpbuff, 0, MAX_GRAPH_TRACE_LEN / 64); // get user entry if any sscanf(Cmd, "%i %i", &clk, &invert); // save GraphBuffer - to restore it later save_restoreGB(1); // first get high and low values for (i = 0; i < GraphTraceLen; i++) { if (GraphBuffer[i] > high) high = GraphBuffer[i]; else if (GraphBuffer[i] < low) low = GraphBuffer[i]; } i = 0; j = 0; minClk = 255; // get to first full low to prime loop and skip incomplete first pulse while ((GraphBuffer[i] < high) && (i < GraphTraceLen)) ++i; while ((GraphBuffer[i] > low) && (i < GraphTraceLen)) ++i; skip = i; // populate tmpbuff buffer with pulse lengths while (i < GraphTraceLen) { // measure from low to low while ((GraphBuffer[i] > low) && (i < GraphTraceLen)) ++i; start= i; while ((GraphBuffer[i] < high) && (i < GraphTraceLen)) ++i; while ((GraphBuffer[i] > low) && (i < GraphTraceLen)) ++i; if (j>=(MAX_GRAPH_TRACE_LEN/64)) { break; } tmpbuff[j++]= i - start; if (i-start < minClk && i < GraphTraceLen) { minClk = i - start; } } // set clock if (!clk) { for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) { tol = fndClk[clkCnt]/8; if (minClk >= fndClk[clkCnt]-tol && minClk <= fndClk[clkCnt]+1) { clk=fndClk[clkCnt]; break; } } if (!clk) { if (verbose || g_debugMode) PrintAndLog("ERROR: EM4x50 - didn't find a clock"); return 0; } } else tol = clk/8; // look for data start - should be 2 pairs of LW (pulses of clk*3,clk*2) start = -1; for (i= 0; i < j - 4 ; ++i) { skip += tmpbuff[i]; if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) //3 clocks if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol) //2 clocks if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks if (tmpbuff[i+3] >= clk-tol) //1.5 to 2 clocks - depends on bit following { start= i + 4; break; } } startblock = i + 4; // skip over the remainder of LW skip += tmpbuff[i+1] + tmpbuff[i+2] + clk; if (tmpbuff[i+3]>clk) phaseoff = tmpbuff[i+3]-clk; else phaseoff = 0; // now do it again to find the end end = skip; for (i += 3; i < j - 4 ; ++i) { end += tmpbuff[i]; if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) //3 clocks if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol) //2 clocks if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks if (tmpbuff[i+3] >= clk-tol) //1.5 to 2 clocks - depends on bit following { complete= true; break; } } end = i; // report back if (verbose || g_debugMode) { if (start >= 0) { PrintAndLog("\nNote: one block = 50 bits (32 data, 12 parity, 6 marker)"); } else { PrintAndLog("No data found!, clock tried:%d",clk); PrintAndLog("Try again with more samples."); PrintAndLog(" or after a 'data askedge' command to clean up the read"); return 0; } } else if (start < 0) return 0; start = skip; snprintf(tmp2, sizeof(tmp2),"%d %d 1000 %d", clk, invert, clk*47); // get rid of leading crap snprintf(tmp, sizeof(tmp), "%i", skip); CmdLtrim(tmp); bool pTest; bool AllPTest = true; // now work through remaining buffer printing out data blocks block = 0; i = startblock; while (block < 6) { if (verbose || g_debugMode) PrintAndLog("\nBlock %i:", block); skip = phaseoff; // look for LW before start of next block for ( ; i < j - 4 ; ++i) { skip += tmpbuff[i]; if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) if (tmpbuff[i+1] >= clk-tol) break; } if (i >= j-4) break; //next LW not found skip += clk; if (tmpbuff[i+1]>clk) phaseoff = tmpbuff[i+1]-clk; else phaseoff = 0; i += 2; if (ASKDemod(tmp2, false, false, 1) < 1) { save_restoreGB(0); return 0; } //set DemodBufferLen to just one block DemodBufferLen = skip/clk; //test parities pTest = EM_ByteParityTest(DemodBuffer,DemodBufferLen,5,9,0); pTest &= EM_EndParityTest(DemodBuffer,DemodBufferLen,5,9,0); AllPTest &= pTest; //get output Code[block] = OutputEM4x50_Block(DemodBuffer,DemodBufferLen,verbose, pTest); if (g_debugMode) PrintAndLog("\nskipping %d samples, bits:%d", skip, skip/clk); //skip to start of next block snprintf(tmp,sizeof(tmp),"%i",skip); CmdLtrim(tmp); block++; if (i >= end) break; //in case chip doesn't output 6 blocks } //print full code: if (verbose || g_debugMode || AllPTest){ if (!complete) { PrintAndLog("*** Warning!"); PrintAndLog("Partial data - no end found!"); PrintAndLog("Try again with more samples."); } PrintAndLog("Found data at sample: %i - using clock: %i", start, clk); end = block; for (block=0; block < end; block++){ PrintAndLog("Block %d: %08x",block,Code[block]); } if (AllPTest) { PrintAndLog("Parities Passed"); } else { PrintAndLog("Parities Failed"); PrintAndLog("Try cleaning the read samples with 'data askedge'"); } } //restore GraphBuffer save_restoreGB(0); return (int)AllPTest; } int CmdEM4x50Read(const char *Cmd) { uint8_t ctmp = param_getchar(Cmd, 0); if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x50_read(); return EM4x50Read(Cmd, true); } int CmdEM4x50Write(const char *Cmd){ uint8_t ctmp = param_getchar(Cmd, 0); if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x50_write(); PrintAndLog("no implemented yet"); return 0; } int CmdEM4x50Dump(const char *Cmd){ uint8_t ctmp = param_getchar(Cmd, 0); if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x50_dump(); PrintAndLog("no implemented yet"); return 0; } #define EM_PREAMBLE_LEN 6 // download samples from device and copy to Graphbuffer bool downloadSamplesEM(){ // 8 bit preamble + 32 bit word response (max clock (128) * 40bits = 5120 samples) uint8_t got[6000]; GetFromBigBuf(got, sizeof(got), 0); if ( !WaitForResponseTimeout(CMD_ACK, NULL, 2500) ) { PrintAndLog("command execution time out"); return FALSE; } setGraphBuf(got, sizeof(got)); return TRUE; } // em_demod bool doPreambleSearch(size_t *startIdx){ // sanity check if ( DemodBufferLen < EM_PREAMBLE_LEN) { if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305 demodbuffer too small"); return FALSE; } // set size to 20 to only test first 14 positions for the preamble size_t size = (20 > DemodBufferLen) ? DemodBufferLen : 20; *startIdx = 0; // skip first two 0 bits as they might have been missed in the demod uint8_t preamble[EM_PREAMBLE_LEN] = {0,0,1,0,1,0}; if ( !preambleSearchEx(DemodBuffer, preamble, EM_PREAMBLE_LEN, &size, startIdx, TRUE)) { if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305 preamble not found :: %d", *startIdx); return FALSE; } return TRUE; } bool detectFSK(){ // detect fsk clock if (!GetFskClock("", FALSE, FALSE)) { if (g_debugMode) PrintAndLog("DEBUG: Error - EM: FSK clock failed"); return FALSE; } // demod int ans = FSKrawDemod("0 0", FALSE); if (!ans) { if (g_debugMode) PrintAndLog("DEBUG: Error - EM: FSK Demod failed"); return FALSE; } return TRUE; } // PSK clocks should be easy to detect ( but difficult to demod a non-repeating pattern... ) bool detectPSK(){ int ans = GetPskClock("", FALSE, FALSE); if (ans <= 0) { if (g_debugMode) PrintAndLog("DEBUG: Error - EM: PSK clock failed"); return FALSE; } //demod //try psk1 -- 0 0 6 (six errors?!?) ans = PSKDemod("0 0 6", FALSE); if (!ans) { if (g_debugMode) PrintAndLog("DEBUG: Error - EM: PSK1 Demod failed"); //try psk1 inverted ans = PSKDemod("0 1 6", FALSE); if (!ans) { if (g_debugMode) PrintAndLog("DEBUG: Error - EM: PSK1 inverted Demod failed"); return FALSE; } } // either PSK1 or PSK1 inverted is ok from here. // lets check PSK2 later. return TRUE; } // try manchester - NOTE: ST only applies to T55x7 tags. bool detectASK_MAN(){ bool stcheck = FALSE; int ans = ASKDemod_ext("0 0 0", FALSE, FALSE, 1, &stcheck); if (!ans) { if (g_debugMode) PrintAndLog("DEBUG: Error - EM: ASK/Manchester Demod failed"); return FALSE; } return TRUE; } bool detectASK_BI(){ int ans = ASKbiphaseDemod("0 0 1", FALSE); if (!ans) { if (g_debugMode) PrintAndLog("DEBUG: Error - EM: ASK/biphase normal demod failed"); ans = ASKbiphaseDemod("0 1 1", FALSE); if (!ans) { if (g_debugMode) PrintAndLog("DEBUG: Error - EM: ASK/biphase inverted demod failed"); return FALSE; } } return TRUE; } // param: idx - start index in demoded data. bool setDemodBufferEM(uint32_t *word, size_t idx){ //test for even parity bits. uint8_t parity[45] = {0}; memcpy( parity, DemodBuffer, 45); if (!EMwordparitytest(parity) ){ PrintAndLog("DEBUG: Error - EM Parity tests failed"); return FALSE; } // test for even parity bits and remove them. (leave out the end row of parities so 36 bits) if (!removeParity(DemodBuffer, idx + EM_PREAMBLE_LEN, 9, 0, 36)) { if (g_debugMode) PrintAndLog("DEBUG: Error - EM, failed removing parity"); return FALSE; } setDemodBuf(DemodBuffer, 32, 0); *word = bytebits_to_byteLSBF(DemodBuffer, 32); return TRUE; } // FSK, PSK, ASK/MANCHESTER, ASK/BIPHASE, ASK/DIPHASE // should cover 90% of known used configs // the rest will need to be manually demoded for now... bool demodEM4x05resp(uint32_t *word) { size_t idx = 0; *word = 0; if (detectASK_MAN() && doPreambleSearch( &idx )) return setDemodBufferEM(word, idx); if (detectASK_BI() && doPreambleSearch( &idx )) return setDemodBufferEM(word, idx); if (detectFSK() && doPreambleSearch( &idx )) return setDemodBufferEM(word, idx); if (detectPSK()) { if (doPreambleSearch( &idx )) return setDemodBufferEM(word, idx); psk1TOpsk2(DemodBuffer, DemodBufferLen); if (doPreambleSearch( &idx )) return setDemodBufferEM(word, idx); } return FALSE; } //////////////// 4205 / 4305 commands int usage_lf_em4x05_dump(void) { PrintAndLog("Dump EM4x05/EM4x69. Tag must be on antenna. "); PrintAndLog(""); PrintAndLog("Usage: lf em 4x05dump [h] "); PrintAndLog("Options:"); PrintAndLog(" h - this help"); PrintAndLog(" pwd - password (hex) (optional)"); PrintAndLog("samples:"); PrintAndLog(" lf em 4x05dump"); PrintAndLog(" lf em 4x05dump 11223344"); return 0; } int usage_lf_em4x05_read(void) { PrintAndLog("Read EM4x05/EM4x69. Tag must be on antenna. "); PrintAndLog(""); PrintAndLog("Usage: lf em 4x05read [h]
"); PrintAndLog("Options:"); PrintAndLog(" h - this help"); PrintAndLog(" address - memory address to read. (0-15)"); PrintAndLog(" pwd - password (hex) (optional)"); PrintAndLog("samples:"); PrintAndLog(" lf em 4x05read 1"); PrintAndLog(" lf em 4x05read 1 11223344"); return 0; } int usage_lf_em4x05_write(void) { PrintAndLog("Write EM4x05/4x69. Tag must be on antenna. "); PrintAndLog(""); PrintAndLog("Usage: lf em 4x05write [h]
"); PrintAndLog("Options:"); PrintAndLog(" h - this help"); PrintAndLog(" address - memory address to write to. (0-15)"); PrintAndLog(" data - data to write (hex)"); PrintAndLog(" pwd - password (hex) (optional)"); PrintAndLog("samples:"); PrintAndLog(" lf em 4x05write 1 deadc0de"); PrintAndLog(" lf em 4x05write 1 deadc0de 11223344"); return 0; } int usage_lf_em4x05_info(void) { PrintAndLog("Tag information EM4205/4305/4469//4569 tags. Tag must be on antenna."); PrintAndLog(""); PrintAndLog("Usage: lf em 4x05info [h] "); PrintAndLog("Options:"); PrintAndLog(" h - this help"); PrintAndLog(" pwd - password (hex) (optional)"); PrintAndLog("samples:"); PrintAndLog(" lf em 4x05info"); PrintAndLog(" lf em 4x05info deadc0de"); return 0; } int EM4x05ReadWord_ext(uint8_t addr, uint32_t pwd, bool usePwd, uint32_t *word) { UsbCommand c = {CMD_EM4X_READ_WORD, {addr, pwd, usePwd}}; clearCommandBuffer(); SendCommand(&c); UsbCommand resp; if (!WaitForResponseTimeout(CMD_ACK, &resp, 2500)){ PrintAndLog("Command timed out"); return -1; } if ( !downloadSamplesEM() ) { return -1; } int testLen = (GraphTraceLen < 1000) ? GraphTraceLen : 1000; if (graphJustNoise(GraphBuffer, testLen)) { PrintAndLog("no tag found"); return -1; } return demodEM4x05resp(word); } int CmdEM4x05Dump(const char *Cmd) { uint8_t addr = 0; uint32_t pwd = 0; bool usePwd = false; uint8_t ctmp = param_getchar(Cmd, 0); if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x05_dump(); // for now use default input of 1 as invalid (unlikely 1 will be a valid password...) pwd = param_get32ex(Cmd, 0, 1, 16); if ( pwd != 1 ) usePwd = true; int success = 1; uint32_t word = 0; PrintAndLog("Addr | data | ascii"); PrintAndLog("-----+--------+------"); for (; addr < 16; addr++) { if (addr == 2) { if (usePwd) { PrintAndLog(" %02u | %08X", addr, pwd, word ); } else { PrintAndLog(" 02 | cannot read"); } } else { success &= EM4x05ReadWord_ext(addr, pwd, usePwd, &word); } } return success; } int CmdEM4x05Read(const char *Cmd) { uint8_t addr; uint32_t pwd; bool usePwd = false; uint8_t ctmp = param_getchar(Cmd, 0); if ( strlen(Cmd) == 0 || ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x05_read(); addr = param_get8ex(Cmd, 0, 50, 10); pwd = param_get32ex(Cmd, 1, 1, 16); if (addr > 15) { PrintAndLog("Address must be between 0 and 15"); return 1; } if ( pwd == 1 ) { PrintAndLog("Reading address %02u", addr); } else { usePwd = true; PrintAndLog("Reading address %02u | password %08X", addr, pwd); } uint32_t word = 0; int isOk = EM4x05ReadWord_ext(addr, pwd, usePwd, &word); if (isOk) PrintAndLog("Address %02d | %08X - %s", addr, word, (addr > 13) ? "Lock" : ""); else PrintAndLog("Read Address %02d | failed",addr); return isOk; } int CmdEM4x05Write(const char *Cmd) { uint8_t ctmp = param_getchar(Cmd, 0); if ( strlen(Cmd) == 0 || ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x05_write(); bool usePwd = false; uint8_t addr = 50; // default to invalid address uint32_t data = 0; // default to blank data uint32_t pwd = 1; // default to blank password addr = param_get8ex(Cmd, 0, 50, 10); data = param_get32ex(Cmd, 1, 0, 16); pwd = param_get32ex(Cmd, 2, 1, 16); if ( addr > 15 ) { PrintAndLog("Address must be between 0 and 15"); return 1; } if ( pwd == 1 ) PrintAndLog("Writing address %d data %08X", addr, data); else { usePwd = true; PrintAndLog("Writing address %d data %08X using password %08X", addr, data, pwd); } uint16_t flag = (addr << 8 ) | usePwd; UsbCommand c = {CMD_EM4X_WRITE_WORD, {flag, data, pwd}}; clearCommandBuffer(); SendCommand(&c); UsbCommand resp; if (!WaitForResponseTimeout(CMD_ACK, &resp, 2000)){ PrintAndLog("Error occurred, device did not respond during write operation."); return -1; } if (!downloadSamplesEM()) return -1; //need 0 bits demoded (after preamble) to verify write cmd uint32_t dummy = 0; int isOk = demodEM4x05resp(&dummy); if (isOk) PrintAndLog("Write Verified"); else PrintAndLog("Write could not be verified"); return isOk; } void printEM4x05config(uint32_t wordData) { uint16_t datarate = (((wordData & 0x3F)+1)*2); uint8_t encoder = ((wordData >> 6) & 0xF); char enc[14]; memset(enc,0,sizeof(enc)); uint8_t PSKcf = (wordData >> 10) & 0x3; char cf[10]; memset(cf,0,sizeof(cf)); uint8_t delay = (wordData >> 12) & 0x3; char cdelay[33]; memset(cdelay,0,sizeof(cdelay)); uint8_t LWR = (wordData >> 14) & 0xF; //last word read switch (encoder) { case 0: snprintf(enc,sizeof(enc),"NRZ"); break; case 1: snprintf(enc,sizeof(enc),"Manchester"); break; case 2: snprintf(enc,sizeof(enc),"Biphase"); break; case 3: snprintf(enc,sizeof(enc),"Miller"); break; case 4: snprintf(enc,sizeof(enc),"PSK1"); break; case 5: snprintf(enc,sizeof(enc),"PSK2"); break; case 6: snprintf(enc,sizeof(enc),"PSK3"); break; case 7: snprintf(enc,sizeof(enc),"Unknown"); break; case 8: snprintf(enc,sizeof(enc),"FSK1"); break; case 9: snprintf(enc,sizeof(enc),"FSK2"); break; default: snprintf(enc,sizeof(enc),"Unknown"); break; } switch (PSKcf) { case 0: snprintf(cf,sizeof(cf),"RF/2"); break; case 1: snprintf(cf,sizeof(cf),"RF/8"); break; case 2: snprintf(cf,sizeof(cf),"RF/4"); break; case 3: snprintf(cf,sizeof(cf),"unknown"); break; } switch (delay) { case 0: snprintf(cdelay, sizeof(cdelay),"no delay"); break; case 1: snprintf(cdelay, sizeof(cdelay),"BP/8 or 1/8th bit period delay"); break; case 2: snprintf(cdelay, sizeof(cdelay),"BP/4 or 1/4th bit period delay"); break; case 3: snprintf(cdelay, sizeof(cdelay),"no delay"); break; } PrintAndLog("ConfigWord: %08X (Word 4)\n", wordData); PrintAndLog("Config Breakdown:", wordData); PrintAndLog(" Data Rate: %02u | RF/%u", wordData & 0x3F, datarate); PrintAndLog(" Encoder: %u | %s", encoder, enc); PrintAndLog(" PSK CF: %u | %s", PSKcf, cf); PrintAndLog(" Delay: %u | %s", delay, cdelay); PrintAndLog(" LastWordR: %02u | Address of last word for default read", LWR); PrintAndLog(" ReadLogin: %u | Read Login is %s", (wordData & 0x40000)>>18, (wordData & 0x40000) ? "Required" : "Not Required"); PrintAndLog(" ReadHKL: %u | Read Housekeeping Words Login is %s", (wordData & 0x80000)>>19, (wordData & 0x80000) ? "Required" : "Not Required"); PrintAndLog("WriteLogin: %u | Write Login is %s", (wordData & 0x100000)>>20, (wordData & 0x100000) ? "Required" : "Not Required"); PrintAndLog(" WriteHKL: %u | Write Housekeeping Words Login is %s", (wordData & 0x200000)>>21, (wordData & 0x200000) ? "Required" : "Not Required"); PrintAndLog(" R.A.W.: %u | Read After Write is %s", (wordData & 0x400000)>>22, (wordData & 0x400000) ? "On" : "Off"); PrintAndLog(" Disable: %u | Disable Command is %s", (wordData & 0x800000)>>23, (wordData & 0x800000) ? "Accepted" : "Not Accepted"); PrintAndLog(" R.T.F.: %u | Reader Talk First is %s", (wordData & 0x1000000)>>24, (wordData & 0x1000000) ? "Enabled" : "Disabled"); PrintAndLog(" Pigeon: %u | Pigeon Mode is %s\n", (wordData & 0x4000000)>>26, (wordData & 0x4000000) ? "Enabled" : "Disabled"); } void printEM4x05info(uint32_t block0, uint32_t serial) { uint8_t chipType = (block0 >> 1) & 0xF; uint8_t cap = (block0 >> 5) & 3; uint16_t custCode = (block0 >> 9) & 0x3FF; switch (chipType) { case 9: PrintAndLog("\n Chip Type: %u | EM4305", chipType); break; case 8: PrintAndLog("\n Chip Type: %u | EM4205", chipType); break; case 4: PrintAndLog(" Chip Type: %u | Unknown", chipType); break; case 2: PrintAndLog(" Chip Type: %u | EM4469", chipType); break; //add more here when known default: PrintAndLog(" Chip Type: %u Unknown", chipType); break; } switch (cap) { case 3: PrintAndLog(" Cap Type: %u | 330pF",cap); break; case 2: PrintAndLog(" Cap Type: %u | %spF",cap, (chipType==2)? "75":"210"); break; case 1: PrintAndLog(" Cap Type: %u | 250pF",cap); break; case 0: PrintAndLog(" Cap Type: %u | no resonant capacitor",cap); break; default: PrintAndLog(" Cap Type: %u | unknown",cap); break; } PrintAndLog(" Cust Code: %03u | %s", custCode, (custCode == 0x200) ? "Default": "Unknown"); if (serial != 0) PrintAndLog("\n Serial #: %08X\n", serial); } void printEM4x05ProtectionBits(uint32_t word) { for (uint8_t i = 0; i < 15; i++) { PrintAndLog(" Word: %02u | %s", i, (((1 << i) & word ) || i < 2) ? "Is Write Locked" : "Is Not Write Locked"); if (i==14) PrintAndLog(" Word: %02u | %s", i+1, (((1 << i) & word ) || i < 2) ? "Is Write Locked" : "Is Not Write Locked"); } } //quick test for EM4x05/EM4x69 tag bool EM4x05IsBlock0(uint32_t *word) { return EM4x05ReadWord_ext(0, 0, FALSE, word); } int CmdEM4x05Info(const char *Cmd) { #define EM_SERIAL_BLOCK 1 #define EM_CONFIG_BLOCK 4 #define EM_PROT1_BLOCK 14 #define EM_PROT2_BLOCK 15 uint32_t pwd; uint32_t word = 0, block0 = 0, serial = 0; bool usePwd = false; uint8_t ctmp = param_getchar(Cmd, 0); if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x05_info(); // for now use default input of 1 as invalid (unlikely 1 will be a valid password...) pwd = param_get32ex(Cmd, 0, 1, 16); if ( pwd != 1 ) usePwd = true; // read word 0 (chip info) // block 0 can be read even without a password. if ( !EM4x05IsBlock0(&block0) ) return -1; // read word 1 (serial #) doesn't need pwd // continue if failed, .. non blocking fail. EM4x05ReadWord_ext(EM_SERIAL_BLOCK, 0, false, &serial); printEM4x05info(block0, serial); // read word 4 (config block) // needs password if one is set if ( EM4x05ReadWord_ext(EM_CONFIG_BLOCK, pwd, usePwd, &word) != 1 ) return 0; printEM4x05config(word); // read word 14 and 15 to see which is being used for the protection bits if ( EM4x05ReadWord_ext(EM_PROT1_BLOCK, pwd, usePwd, &word) != 1 ) { return 0; } // if status bit says this is not the used protection word if (!(word & 0x8000)) { if ( EM4x05ReadWord_ext(EM_PROT2_BLOCK, pwd, usePwd, &word) != 1 ) return 0; } //something went wrong if (!(word & 0x8000)) return 0; printEM4x05ProtectionBits(word); return 1; } static command_t CommandTable[] = { {"help", CmdHelp, 1, "This help"}, {"410xdemod", CmdEMdemodASK, 0, "[findone] -- Extract ID from EM410x tag (option 0 for continuous loop, 1 for only 1 tag)"}, {"410xread", CmdEM410xRead, 1, "[clock rate] -- Extract ID from EM410x tag in GraphBuffer"}, {"410xsim", CmdEM410xSim, 0, "simulate EM410x tag"}, {"410xwatch", CmdEM410xWatch, 0, "['h'] -- Watches for EM410x 125/134 kHz tags (option 'h' for 134)"}, {"410xspoof", CmdEM410xWatchnSpoof, 0, "['h'] --- Watches for EM410x 125/134 kHz tags, and replays them. (option 'h' for 134)" }, {"410xwrite", CmdEM410xWrite, 0, " <'0' T5555> <'1' T55x7> [clock rate] -- Write EM410x UID to T5555(Q5) or T55x7 tag, optionally setting clock rate"}, {"4x05dump", CmdEM4x05Dump, 0, "dump EM4205/4305 tag"}, {"4x05info", CmdEM4x05Info, 0, "tag information EM4x05/EM4x69"}, {"4x05read", CmdEM4x05Read, 0, "read word data from EM4205/4305"}, {"4x05write", CmdEM4x05Write, 0, "write word data to EM4205/4305"}, {"4x50read", CmdEM4x50Read, 0, "read word data from EM4x50"}, {"4x50write", CmdEM4x50Write, 0, "write word data to EM4x50"}, {"4x50dump", CmdEM4x50Dump, 0, "dump EM4x50 tag"}, {NULL, NULL, 0, NULL} }; int CmdLFEM4X(const char *Cmd) { clearCommandBuffer(); CmdsParse(CommandTable, Cmd); return 0; } int CmdHelp(const char *Cmd) { CmdsHelp(CommandTable); return 0; }