//----------------------------------------------------------------------------- // Copyright (C) 2010 iZsh // // iceman 2019 // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Data and Graph commands //----------------------------------------------------------------------------- #include "cmddata.h" #include #include #include // for CmdNorm INT_MIN && INT_MAX #include // pow #include // tolower #include "commonutil.h" // ARRAYLEN #include "cmdparser.h" // for command_t #include "ui.h" // for show graph controls #include "proxgui.h" #include "graph.h" // for graph data #include "comms.h" #include "lfdemod.h" // for demod code #include "loclass/cipherutils.h" // for decimating samples in getsamples #include "cmdlfem4x.h" // askem410xdecode #include "fileutils.h" // searchFile #include "mifare/ndef.h" #include "cliparser.h" #include "cmdlft55xx.h" // print... uint8_t DemodBuffer[MAX_DEMOD_BUF_LEN]; size_t DemodBufferLen = 0; int32_t g_DemodStartIdx = 0; int g_DemodClock = 0; static int CmdHelp(const char *Cmd); static int usage_data_printdemodbuf(void) { PrintAndLogEx(NORMAL, "Usage: data print x o l "); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h this help"); PrintAndLogEx(NORMAL, " i invert Demodbuffer before printing"); PrintAndLogEx(NORMAL, " x output in hex (omit for binary output)"); PrintAndLogEx(NORMAL, " o enter offset in # of bits"); PrintAndLogEx(NORMAL, " l enter length to print in # of bits or hex characters respectively"); PrintAndLogEx(NORMAL, " s strip leading zeroes, i.e. set offset to first bit equal to one"); return PM3_SUCCESS; } static int usage_data_manrawdecode(void) { PrintAndLogEx(NORMAL, "Usage: data manrawdecode [invert] [maxErr]"); PrintAndLogEx(NORMAL, " Takes 10 and 01 and converts to 0 and 1 respectively"); PrintAndLogEx(NORMAL, " --must have binary sequence in demodbuffer (run data askrawdemod first)"); PrintAndLogEx(NORMAL, " [invert] invert output"); PrintAndLogEx(NORMAL, " [maxErr] set number of errors allowed (default = 20)"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, " Example: data manrawdecode = decode manchester bitstream from the demodbuffer"); return PM3_SUCCESS; } static int usage_data_biphaserawdecode(void) { PrintAndLogEx(NORMAL, "Usage: data biphaserawdecode [offset] [invert] [maxErr]"); PrintAndLogEx(NORMAL, " Converts 10 or 01 to 1 and 11 or 00 to 0"); PrintAndLogEx(NORMAL, " --must have binary sequence in demodbuffer (run data askrawdemod first)"); PrintAndLogEx(NORMAL, " --invert for Conditional Dephase Encoding (CDP) AKA Differential Manchester"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, " [offset <0|1>], set to 0 not to adjust start position or to 1 to adjust decode start position"); PrintAndLogEx(NORMAL, " [invert <0|1>], set to 1 to invert output"); PrintAndLogEx(NORMAL, " [maxErr int], set max errors tolerated - default=20"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, " Example: data biphaserawdecode = decode biphase bitstream from the demodbuffer"); PrintAndLogEx(NORMAL, " Example: data biphaserawdecode 1 1 = decode biphase bitstream from the demodbuffer, set offset, and invert output"); return PM3_SUCCESS; } static int usage_data_rawdemod(void) { PrintAndLogEx(NORMAL, "Usage: data rawdemod [modulation] |"); PrintAndLogEx(NORMAL, " [modulation] as 2 char,"); PrintAndLogEx(NORMAL, " "_YELLOW_("ab")" - ask/biphase"); PrintAndLogEx(NORMAL, " "_YELLOW_("am")" - ask/manchester"); PrintAndLogEx(NORMAL, " "_YELLOW_("ar")" - ask/raw"); PrintAndLogEx(NORMAL, " "_YELLOW_("fs")" - fsk"); PrintAndLogEx(NORMAL, " "_YELLOW_("nr")" - nrz/direct"); PrintAndLogEx(NORMAL, " "_YELLOW_("p1")" - psk1"); PrintAndLogEx(NORMAL, " "_YELLOW_("p2")" - psk2"); PrintAndLogEx(NORMAL, " as 'h', prints the help for the specific modulation"); PrintAndLogEx(NORMAL, " see specific modulation help for optional parameters"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Example:"); PrintAndLogEx(NORMAL, " data rawdemod fs h = print help specific to fsk demod"); PrintAndLogEx(NORMAL, " data rawdemod fs = demod GraphBuffer using: fsk - autodetect"); PrintAndLogEx(NORMAL, " data rawdemod ab = demod GraphBuffer using: ask/biphase - autodetect"); PrintAndLogEx(NORMAL, " data rawdemod am = demod GraphBuffer using: ask/manchester - autodetect"); PrintAndLogEx(NORMAL, " data rawdemod ar = demod GraphBuffer using: ask/raw - autodetect"); PrintAndLogEx(NORMAL, " data rawdemod nr = demod GraphBuffer using: nrz/direct - autodetect"); PrintAndLogEx(NORMAL, " data rawdemod p1 = demod GraphBuffer using: psk1 - autodetect"); PrintAndLogEx(NORMAL, " data rawdemod p2 = demod GraphBuffer using: psk2 - autodetect"); return PM3_SUCCESS; } static int usage_data_rawdemod_am(void) { PrintAndLogEx(NORMAL, "Usage: data rawdemod am [clock] [maxError] [maxLen] [amplify]"); PrintAndLogEx(NORMAL, " ['s'] optional, check for Sequence Terminator"); PrintAndLogEx(NORMAL, " [set clock as integer] optional, if not set, autodetect"); PrintAndLogEx(NORMAL, " , 1 to invert output"); PrintAndLogEx(NORMAL, " [set maximum allowed errors], default = 100"); PrintAndLogEx(NORMAL, " [set maximum Samples to read], default = 32768 (512 bits at rf/64)"); PrintAndLogEx(NORMAL, " , 'a' to attempt demod with ask amplification, default = no amp"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Example:"); PrintAndLogEx(NORMAL, " data rawdemod am = demod an ask/manchester tag from GraphBuffer"); PrintAndLogEx(NORMAL, " data rawdemod am 32 = demod an ask/manchester tag from GraphBuffer using a clock of RF/32"); PrintAndLogEx(NORMAL, " data rawdemod am 32 1 = demod an ask/manchester tag from GraphBuffer using a clock of RF/32 and inverting data"); PrintAndLogEx(NORMAL, " data rawdemod am 1 = demod an ask/manchester tag from GraphBuffer while inverting data"); PrintAndLogEx(NORMAL, " data rawdemod am 64 1 0 = demod an ask/manchester tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors"); return PM3_SUCCESS; } static int usage_data_rawdemod_ab(void) { PrintAndLogEx(NORMAL, "Usage: data rawdemod ab [offset] [clock] [maxError] [maxLen] "); PrintAndLogEx(NORMAL, " [offset], offset to begin biphase, default=0"); PrintAndLogEx(NORMAL, " [set clock as integer] optional, if not set, autodetect"); PrintAndLogEx(NORMAL, " , 1 to invert output"); PrintAndLogEx(NORMAL, " [set maximum allowed errors], default = 100"); PrintAndLogEx(NORMAL, " [set maximum Samples to read], default = 32768 (512 bits at rf/64)"); PrintAndLogEx(NORMAL, " , 'a' to attempt demod with ask amplification, default = no amp"); PrintAndLogEx(NORMAL, " NOTE: can be entered as second or third argument"); PrintAndLogEx(NORMAL, " NOTE: can be entered as first, second or last argument"); PrintAndLogEx(NORMAL, " NOTE: any other arg must have previous args set to work"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, " NOTE: --invert for Conditional Dephase Encoding (CDP) AKA Differential Manchester"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Example:"); PrintAndLogEx(NORMAL, " data rawdemod ab = demod an ask/biph tag from GraphBuffer"); PrintAndLogEx(NORMAL, " data rawdemod ab 0 a = demod an ask/biph tag from GraphBuffer, amplified"); PrintAndLogEx(NORMAL, " data rawdemod ab 1 32 = demod an ask/biph tag from GraphBuffer using an offset of 1 and a clock of RF/32"); PrintAndLogEx(NORMAL, " data rawdemod ab 0 32 1 = demod an ask/biph tag from GraphBuffer using a clock of RF/32 and inverting data"); PrintAndLogEx(NORMAL, " data rawdemod ab 0 1 = demod an ask/biph tag from GraphBuffer while inverting data"); PrintAndLogEx(NORMAL, " data rawdemod ab 0 64 1 0 = demod an ask/biph tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors"); PrintAndLogEx(NORMAL, " data rawdemod ab 0 64 1 0 0 a = demod an ask/biph tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors, and amp"); return PM3_SUCCESS; } static int usage_data_rawdemod_ar(void) { PrintAndLogEx(NORMAL, "Usage: data rawdemod ar [clock] [maxError] [maxLen] [amplify]"); PrintAndLogEx(NORMAL, " [set clock as integer] optional, if not set, autodetect"); PrintAndLogEx(NORMAL, " , 1 to invert output"); PrintAndLogEx(NORMAL, " [set maximum allowed errors], default = 100"); PrintAndLogEx(NORMAL, " [set maximum Samples to read], default = 32768 (1024 bits at rf/64)"); PrintAndLogEx(NORMAL, " , 'a' to attempt demod with ask amplification, default = no amp"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Example:"); PrintAndLogEx(NORMAL, " data rawdemod ar = demod an ask tag from GraphBuffer"); PrintAndLogEx(NORMAL, " data rawdemod ar a = demod an ask tag from GraphBuffer, amplified"); PrintAndLogEx(NORMAL, " data rawdemod ar 32 = demod an ask tag from GraphBuffer using a clock of RF/32"); PrintAndLogEx(NORMAL, " data rawdemod ar 32 1 = demod an ask tag from GraphBuffer using a clock of RF/32 and inverting data"); PrintAndLogEx(NORMAL, " data rawdemod ar 1 = demod an ask tag from GraphBuffer while inverting data"); PrintAndLogEx(NORMAL, " data rawdemod ar 64 1 0 = demod an ask tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors"); PrintAndLogEx(NORMAL, " data rawdemod ar 64 1 0 0 a = demod an ask tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors, and amp"); return PM3_SUCCESS; } static int usage_data_rawdemod_fs(void) { PrintAndLogEx(NORMAL, "Usage: data rawdemod fs [clock] [fchigh] [fclow]"); PrintAndLogEx(NORMAL, " [set clock as integer] optional, omit for autodetect."); PrintAndLogEx(NORMAL, " , 1 for invert output, can be used even if the clock is omitted"); PrintAndLogEx(NORMAL, " [fchigh], larger field clock length, omit for autodetect"); PrintAndLogEx(NORMAL, " [fclow], small field clock length, omit for autodetect"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Example:"); PrintAndLogEx(NORMAL, " data rawdemod fs = demod an fsk tag from GraphBuffer using autodetect"); PrintAndLogEx(NORMAL, " data rawdemod fs 32 = demod an fsk tag from GraphBuffer using a clock of RF/32, autodetect fc"); PrintAndLogEx(NORMAL, " data rawdemod fs 1 = demod an fsk tag from GraphBuffer using autodetect, invert output"); PrintAndLogEx(NORMAL, " data rawdemod fs 32 1 = demod an fsk tag from GraphBuffer using a clock of RF/32, invert output, autodetect fc"); PrintAndLogEx(NORMAL, " data rawdemod fs 64 0 8 5 = demod an fsk1 RF/64 tag from GraphBuffer"); PrintAndLogEx(NORMAL, " data rawdemod fs 50 0 10 8 = demod an fsk2 RF/50 tag from GraphBuffer"); PrintAndLogEx(NORMAL, " data rawdemod fs 50 1 10 8 = demod an fsk2a RF/50 tag from GraphBuffer"); return PM3_SUCCESS; } static int usage_data_rawdemod_nr(void) { PrintAndLogEx(NORMAL, "Usage: data rawdemod nr [clock] <0|1> [maxError]"); PrintAndLogEx(NORMAL, " [set clock as integer] optional, if not set, autodetect."); PrintAndLogEx(NORMAL, " , 1 for invert output"); PrintAndLogEx(NORMAL, " [set maximum allowed errors], default = 100."); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Example:"); PrintAndLogEx(NORMAL, " data rawdemod nr = demod a nrz/direct tag from GraphBuffer"); PrintAndLogEx(NORMAL, " data rawdemod nr 32 = demod a nrz/direct tag from GraphBuffer using a clock of RF/32"); PrintAndLogEx(NORMAL, " data rawdemod nr 32 1 = demod a nrz/direct tag from GraphBuffer using a clock of RF/32 and inverting data"); PrintAndLogEx(NORMAL, " data rawdemod nr 1 = demod a nrz/direct tag from GraphBuffer while inverting data"); PrintAndLogEx(NORMAL, " data rawdemod nr 64 1 0 = demod a nrz/direct tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors"); return PM3_SUCCESS; } static int usage_data_rawdemod_p1(void) { PrintAndLogEx(NORMAL, "Usage: data rawdemod p1 [clock] <0|1> [maxError]"); PrintAndLogEx(NORMAL, " [set clock as integer] optional, if not set, autodetect."); PrintAndLogEx(NORMAL, " , 1 for invert output"); PrintAndLogEx(NORMAL, " [set maximum allowed errors], default = 100."); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Example:"); PrintAndLogEx(NORMAL, " data rawdemod p1 = demod a psk1 tag from GraphBuffer"); PrintAndLogEx(NORMAL, " data rawdemod p1 32 = demod a psk1 tag from GraphBuffer using a clock of RF/32"); PrintAndLogEx(NORMAL, " data rawdemod p1 32 1 = demod a psk1 tag from GraphBuffer using a clock of RF/32 and inverting data"); PrintAndLogEx(NORMAL, " data rawdemod p1 1 = demod a psk1 tag from GraphBuffer while inverting data"); PrintAndLogEx(NORMAL, " data rawdemod p1 64 1 0 = demod a psk1 tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors"); return PM3_SUCCESS; } static int usage_data_rawdemod_p2(void) { PrintAndLogEx(NORMAL, "Usage: data rawdemod p2 [clock] <0|1> [maxError]"); PrintAndLogEx(NORMAL, " [set clock as integer] optional, if not set, autodetect."); PrintAndLogEx(NORMAL, " , 1 for invert output"); PrintAndLogEx(NORMAL, " [set maximum allowed errors], default = 100."); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Example:"); PrintAndLogEx(NORMAL, " data rawdemod p2 = demod a psk2 tag from GraphBuffer, autodetect clock"); PrintAndLogEx(NORMAL, " data rawdemod p2 32 = demod a psk2 tag from GraphBuffer using a clock of RF/32"); PrintAndLogEx(NORMAL, " data rawdemod p2 32 1 = demod a psk2 tag from GraphBuffer using a clock of RF/32 and inverting output"); PrintAndLogEx(NORMAL, " data rawdemod p2 1 = demod a psk2 tag from GraphBuffer, autodetect clock and invert output"); PrintAndLogEx(NORMAL, " data rawdemod p2 64 1 0 = demod a psk2 tag from GraphBuffer using a clock of RF/64, inverting output and allowing 0 demod errors"); return PM3_SUCCESS; } static int usage_data_autocorr(void) { PrintAndLogEx(NORMAL, "Autocorrelate is used to detect repeating sequences. We use it as detection of length in bits a message inside the signal is"); PrintAndLogEx(NORMAL, "Usage: data autocorr w [g]"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h This help"); PrintAndLogEx(NORMAL, " w window length for correlation - default = 4000"); PrintAndLogEx(NORMAL, " g save back to GraphBuffer (overwrite)"); return PM3_SUCCESS; } static int usage_data_detectclock(void) { PrintAndLogEx(NORMAL, "Usage: data detectclock [modulation] "); PrintAndLogEx(NORMAL, " [modulation as char], specify the modulation type you want to detect the clock of"); PrintAndLogEx(NORMAL, " , specify the clock (optional - to get best start position only)"); PrintAndLogEx(NORMAL, " 'a' = ask, 'f' = fsk, 'n' = nrz/direct, 'p' = psk"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, " Example: data detectclock a = detect the clock of an ask modulated wave in the GraphBuffer"); PrintAndLogEx(NORMAL, " data detectclock f = detect the clock of an fsk modulated wave in the GraphBuffer"); PrintAndLogEx(NORMAL, " data detectclock p = detect the clock of an psk modulated wave in the GraphBuffer"); PrintAndLogEx(NORMAL, " data detectclock n = detect the clock of an nrz/direct modulated wave in the GraphBuffer"); return PM3_SUCCESS; } static int usage_data_hex2bin(void) { PrintAndLogEx(NORMAL, "Usage: data hex2bin "); PrintAndLogEx(NORMAL, " This function will ignore all non-hexadecimal characters (but stop reading on whitespace)"); return PM3_SUCCESS; } static int usage_data_bin2hex(void) { PrintAndLogEx(NORMAL, "Usage: data bin2hex "); PrintAndLogEx(NORMAL, " This function will ignore all characters not 1 or 0 (but stop reading on whitespace)"); return PM3_SUCCESS; } static int usage_data_buffclear(void) { PrintAndLogEx(NORMAL, "This function clears the bigbuff on deviceside"); PrintAndLogEx(NORMAL, "Usage: data clear [h]"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h This help"); return PM3_SUCCESS; } static int usage_data_fsktonrz(void) { PrintAndLogEx(NORMAL, "Usage: data fsktonrz c l f "); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h This help"); PrintAndLogEx(NORMAL, " c enter the a clock (omit to autodetect)"); PrintAndLogEx(NORMAL, " l enter a field clock (omit to autodetect)"); PrintAndLogEx(NORMAL, " f enter a field clock (omit to autodetect)"); return PM3_SUCCESS; } //set the demod buffer with given array of binary (one bit per byte) //by marshmellow void setDemodBuff(uint8_t *buff, size_t size, size_t start_idx) { if (buff == NULL) return; if (size > MAX_DEMOD_BUF_LEN - start_idx) size = MAX_DEMOD_BUF_LEN - start_idx; for (size_t i = 0; i < size; i++) DemodBuffer[i] = buff[start_idx++]; DemodBufferLen = size; } bool getDemodBuff(uint8_t *buff, size_t *size) { if (buff == NULL) return false; if (size == NULL) return false; if (*size == 0) return false; *size = (*size > DemodBufferLen) ? DemodBufferLen : *size; memcpy(buff, DemodBuffer, *size); return true; } // include // Root mean square /* static double rms(double *v, size_t n) { double sum = 0.0; for (size_t i = 0; i < n; i++) sum += v[i] * v[i]; return sqrt(sum / n); } static int cmp_int(const void *a, const void *b) { if (*(const int *)a < * (const int *)b) return -1; else return *(const int *)a > *(const int *)b; } static int cmp_uint8(const void *a, const void *b) { if (*(const uint8_t *)a < * (const uint8_t *)b) return -1; else return *(const uint8_t *)a > *(const uint8_t *)b; } // Median of a array of values static double median_int(int *src, size_t size) { qsort(src, size, sizeof(int), cmp_int); return 0.5 * (src[size / 2] + src[(size - 1) / 2]); } static double median_uint8(uint8_t *src, size_t size) { qsort(src, size, sizeof(uint8_t), cmp_uint8); return 0.5 * (src[size / 2] + src[(size - 1) / 2]); } */ // function to compute mean for a series static double compute_mean(const int *data, size_t n) { double mean = 0.0; for (size_t i = 0; i < n; i++) mean += data[i]; mean /= n; return mean; } // function to compute variance for a series static double compute_variance(const int *data, size_t n) { double variance = 0.0; double mean = compute_mean(data, n); for (size_t i = 0; i < n; i++) variance += pow((data[i] - mean), 2.0); variance /= n; return variance; } // Function to compute autocorrelation for a series // Author: Kenneth J. Christensen // - Corrected divide by n to divide (n - lag) from Tobias Mueller /* static double compute_autoc(const int *data, size_t n, int lag) { double autocv = 0.0; // Autocovariance value double ac_value; // Computed autocorrelation value to be returned double variance; // Computed variance double mean; mean = compute_mean(data, n); variance = compute_variance(data, n); for (size_t i=0; i < (n - lag); i++) autocv += (data[i] - mean) * (data[i+lag] - mean); autocv = (1.0 / (n - lag)) * autocv; // Autocorrelation is autocovariance divided by variance ac_value = autocv / variance; return ac_value; } */ // option '1' to save DemodBuffer any other to restore void save_restoreDB(uint8_t saveOpt) { static uint8_t SavedDB[MAX_DEMOD_BUF_LEN]; static size_t SavedDBlen; static bool DB_Saved = false; static size_t savedDemodStartIdx = 0; static int savedDemodClock = 0; if (saveOpt == GRAPH_SAVE) { //save memcpy(SavedDB, DemodBuffer, sizeof(DemodBuffer)); SavedDBlen = DemodBufferLen; DB_Saved = true; savedDemodStartIdx = g_DemodStartIdx; savedDemodClock = g_DemodClock; } else if (DB_Saved) { //restore memcpy(DemodBuffer, SavedDB, sizeof(DemodBuffer)); DemodBufferLen = SavedDBlen; g_DemodClock = savedDemodClock; g_DemodStartIdx = savedDemodStartIdx; } } static int CmdSetDebugMode(const char *Cmd) { int demod = 0; sscanf(Cmd, "%i", &demod); g_debugMode = (uint8_t)demod; return PM3_SUCCESS; } //by marshmellow // max output to 512 bits if we have more // doesn't take inconsideration where the demod offset or bitlen found. void printDemodBuff(void) { int len = DemodBufferLen; if (len < 1) { PrintAndLogEx(INFO, "(printDemodBuff) no bits found in demod buffer"); return; } if (len > 512) len = 512; PrintAndLogEx(NORMAL, "%s", sprint_bin_break(DemodBuffer, len, 32)); } int CmdPrintDemodBuff(const char *Cmd) { bool hexMode = false; bool errors = false; bool lstrip = false; bool invert = false; uint32_t offset = 0; uint32_t length = 512; char cmdp = 0; while (param_getchar(Cmd, cmdp) != 0x00 && !errors) { switch (tolower(param_getchar(Cmd, cmdp))) { case 'h': return usage_data_printdemodbuf(); case 'x': hexMode = true; cmdp++; break; case 'o': offset = param_get32ex(Cmd, cmdp + 1, 0, 10); if (!offset) errors = true; cmdp += 2; break; case 'l': length = param_get32ex(Cmd, cmdp + 1, 512, 10); if (!length) errors = true; cmdp += 2; break; case 's': lstrip = true; cmdp++; break; case 'i': invert = true; cmdp++; break; default: PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } } //Validations if (errors) return usage_data_printdemodbuf(); if (DemodBufferLen == 0) { PrintAndLogEx(WARNING, "Demodbuffer is empty"); return PM3_ESOFT; } if (lstrip) { char *buf = (char *)(DemodBuffer + offset); length = (length > (DemodBufferLen - offset)) ? DemodBufferLen - offset : length; uint32_t i; for (i = 0; i < length; i++) { if (buf[i] == 1) break; } offset += i; } length = (length > (DemodBufferLen - offset)) ? DemodBufferLen - offset : length; if (invert) { char *buf = (char *)(DemodBuffer + offset); for (uint32_t i = 0; i < length; i++) { if (buf[i] == 1) buf[i] = 0; else { if (buf[i] == 0) buf[i] = 1; } } } if (hexMode) { char *buf = (char *)(DemodBuffer + offset); char hex[512] = {0x00}; int numBits = binarraytohex(hex, sizeof(hex), buf, length); if (numBits == 0) { return PM3_ESOFT; } PrintAndLogEx(SUCCESS, "DemodBuffer: %s", hex); } else { PrintAndLogEx(SUCCESS, "DemodBuffer:\n%s", sprint_bin_break(DemodBuffer + offset, length, 32)); } return PM3_SUCCESS; } //by marshmellow //this function strictly converts >1 to 1 and <1 to 0 for each sample in the graphbuffer int CmdGetBitStream(const char *Cmd) { CmdHpf(Cmd); for (uint32_t i = 0; i < GraphTraceLen; i++) GraphBuffer[i] = (GraphBuffer[i] >= 1) ? 1 : 0; RepaintGraphWindow(); return PM3_SUCCESS; } static int CmdConvertBitStream(const char *Cmd) { if (isGraphBitstream()) { convertGraphFromBitstream(); } else { // get high, low convertGraphFromBitstreamEx(-126, -127); } return PM3_SUCCESS; } //by marshmellow //Cmd Args: Clock, invert, maxErr, maxLen as integers and amplify as char == 'a' // (amp may not be needed anymore) //verbose will print results and demoding messages //emSearch will auto search for EM410x format in bitstream //askType switches decode: ask/raw = 0, ask/manchester = 1 int ASKDemod_ext(int clk, int invert, int maxErr, size_t maxLen, bool amplify, bool verbose, bool emSearch, uint8_t askType, bool *stCheck) { PrintAndLogEx(DEBUG, "DEBUG: (ASKDemod_ext) clk %i invert %i maxErr %i maxLen %zu amplify %i verbose %i emSearch %i askType %i ", clk, invert, maxErr, maxLen, amplify, verbose, emSearch, askType); uint8_t askamp = 0; if (!maxLen) maxLen = pm3_capabilities.bigbuf_size; uint8_t *bits = calloc(MAX_GRAPH_TRACE_LEN, sizeof(uint8_t)); if (bits == NULL) { return PM3_EMALLOC; } size_t BitLen = getFromGraphBuf(bits); PrintAndLogEx(DEBUG, "DEBUG: (ASKDemod_ext) #samples from graphbuff: %zu", BitLen); if (BitLen < 255) { free(bits); return PM3_ESOFT; } if (maxLen < BitLen && maxLen != 0) BitLen = maxLen; int foundclk = 0; //amplify signal before ST check if (amplify) { askAmp(bits, BitLen); } size_t ststart = 0, stend = 0; // if (*stCheck) bool st = DetectST(bits, &BitLen, &foundclk, &ststart, &stend); if (clk == 0) { if (foundclk == 32 || foundclk == 64) { clk = foundclk; } } if (st) { *stCheck = st; CursorCPos = ststart; CursorDPos = stend; if (verbose) PrintAndLogEx(DEBUG, "Found Sequence Terminator - First one is shown by orange / blue graph markers"); } int startIdx = 0; int errCnt = askdemod_ext(bits, &BitLen, &clk, &invert, maxErr, askamp, askType, &startIdx); if (errCnt < 0 || BitLen < 16) { //if fatal error (or -1) PrintAndLogEx(DEBUG, "DEBUG: (ASKDemod_ext) No data found errors:%d, invert:%c, bitlen:%zu, clock:%d", errCnt, (invert) ? 'Y' : 'N', BitLen, clk); free(bits); return PM3_ESOFT; } if (errCnt > maxErr) { PrintAndLogEx(DEBUG, "DEBUG: (ASKDemod_ext) Too many errors found, errors:%d, bits:%zu, clock:%d", errCnt, BitLen, clk); free(bits); return PM3_ESOFT; } if (verbose) PrintAndLogEx(DEBUG, "DEBUG: (ASKDemod_ext) Using clock:%d, invert:%d, bits found:%zu, start index %d", clk, invert, BitLen, startIdx); //output setDemodBuff(bits, BitLen, 0); setClockGrid(clk, startIdx); if (verbose) { if (errCnt > 0) PrintAndLogEx(DEBUG, "# Errors during Demoding (shown as 7 in bit stream): %d", errCnt); if (askType) PrintAndLogEx(DEBUG, "ASK/Manchester - Clock: %d - Decoded bitstream:", clk); else PrintAndLogEx(DEBUG, "ASK/Raw - Clock: %d - Decoded bitstream:", clk); printDemodBuff(); } uint64_t lo = 0; uint32_t hi = 0; if (emSearch) AskEm410xDecode(true, &hi, &lo); free(bits); return PM3_SUCCESS; } int ASKDemod(int clk, int invert, int maxErr, size_t maxLen, bool amplify, bool verbose, bool emSearch, uint8_t askType) { bool st = false; return ASKDemod_ext(clk, invert, maxErr, maxLen, amplify, verbose, emSearch, askType, &st); } //by marshmellow //takes 5 arguments - clock, invert, maxErr, maxLen as integers and amplify as char == 'a' //attempts to demodulate ask while decoding manchester //prints binary found and saves in graphbuffer for further commands static int Cmdaskmandemod(const char *Cmd) { size_t slen = strlen(Cmd); char cmdp = tolower(param_getchar(Cmd, 0)); if (slen > 45 || cmdp == 'h') return usage_data_rawdemod_am(); bool st = false, amplify = false; int clk = 0, invert = 0, maxErr = 100; size_t maxLen = 0; if (slen) { if (Cmd[0] == 's') { st = true; Cmd++; } else if (slen > 1 && Cmd[1] == 's') { st = true; Cmd += 2; } char amp = tolower(param_getchar(Cmd, 0)); sscanf(Cmd, "%i %i %i %zu %c", &clk, &invert, &maxErr, &maxLen, &); amplify = (amp == 'a'); } if (clk == 1) { invert = 1; clk = 0; } if (invert != 0 && invert != 1) { PrintAndLogEx(WARNING, "Invalid value for invert: %i", invert); return PM3_EINVARG; } return ASKDemod_ext(clk, invert, maxErr, maxLen, amplify, true, true, 1, &st); } //by marshmellow //manchester decode //strictly take 10 and 01 and convert to 0 and 1 static int Cmdmandecoderaw(const char *Cmd) { size_t size = 0; int high = 0, low = 0; size_t i = 0; uint16_t errCnt = 0; int invert = 0, maxErr = 20; char cmdp = tolower(param_getchar(Cmd, 0)); if (strlen(Cmd) > 5 || cmdp == 'h') return usage_data_manrawdecode(); if (DemodBufferLen == 0) return PM3_ESOFT; uint8_t bits[MAX_DEMOD_BUF_LEN] = {0}; for (; i < DemodBufferLen; ++i) { if (DemodBuffer[i] > high) high = DemodBuffer[i]; else if (DemodBuffer[i] < low) low = DemodBuffer[i]; bits[i] = DemodBuffer[i]; } if (high > 7 || low < 0) { PrintAndLogEx(ERR, "Error: please raw demod the wave first then manchester raw decode"); return PM3_ESOFT; } sscanf(Cmd, "%i %i", &invert, &maxErr); size = i; uint8_t alignPos = 0; errCnt = manrawdecode(bits, &size, invert, &alignPos); if (errCnt >= maxErr) { PrintAndLogEx(ERR, "Too many errors: %u", errCnt); return PM3_ESOFT; } PrintAndLogEx(NORMAL, "Manchester Decoded - # errors:%d - data:", errCnt); PrintAndLogEx(NORMAL, "%s", sprint_bin_break(bits, size, 32)); if (errCnt == 0) { uint64_t id = 0; uint32_t hi = 0; size_t idx = 0; if (Em410xDecode(bits, &size, &idx, &hi, &id) == 1) { //need to adjust to set bitstream back to manchester encoded data //setDemodBuff(bits, size, idx); printEM410x(hi, id); } } return PM3_SUCCESS; } /* * @author marshmellow * biphase decode * decodes 01 or 10 -> ZERO * 11 or 00 -> ONE * param offset adjust start position * param invert invert output * param masxErr maximum tolerated errors */ static int CmdBiphaseDecodeRaw(const char *Cmd) { size_t size = 0; int offset = 0, invert = 0, maxErr = 20, errCnt = 0; char cmdp = tolower(param_getchar(Cmd, 0)); if (strlen(Cmd) > 5 || cmdp == 'h') return usage_data_biphaserawdecode(); sscanf(Cmd, "%i %i %i", &offset, &invert, &maxErr); if (DemodBufferLen == 0) { PrintAndLogEx(WARNING, "DemodBuffer Empty - run " _YELLOW_("'data rawdemod ar'")" first"); return PM3_ESOFT; } uint8_t bits[MAX_DEMOD_BUF_LEN] = {0}; size = sizeof(bits); if (!getDemodBuff(bits, &size)) return PM3_ESOFT; errCnt = BiphaseRawDecode(bits, &size, &offset, invert); if (errCnt < 0) { PrintAndLogEx(ERR, "Error during decode:%d", errCnt); return PM3_ESOFT; } if (errCnt > maxErr) { PrintAndLogEx(ERR, "Too many errors attempting to decode: %d", errCnt); return PM3_ESOFT; } if (errCnt > 0) PrintAndLogEx(WARNING, "# Errors found during Demod (shown as " _YELLOW_("7")" in bit stream): %d", errCnt); PrintAndLogEx(NORMAL, "Biphase Decoded using offset: %d - # invert:%d - data:", offset, invert); PrintAndLogEx(NORMAL, "%s", sprint_bin_break(bits, size, 32)); //remove first bit from raw demod if (offset) setDemodBuff(DemodBuffer, DemodBufferLen - offset, offset); setClockGrid(g_DemodClock, g_DemodStartIdx + g_DemodClock * offset / 2); return PM3_SUCCESS; } //by marshmellow // - ASK Demod then Biphase decode GraphBuffer samples int ASKbiphaseDemod(int offset, int clk, int invert, int maxErr, bool verbose) { //ask raw demod GraphBuffer first uint8_t BitStream[MAX_DEMOD_BUF_LEN]; size_t size = getFromGraphBuf(BitStream); if (size == 0) { PrintAndLogEx(DEBUG, "DEBUG: no data in graphbuf"); return PM3_ESOFT; } int startIdx = 0; //invert here inverts the ask raw demoded bits which has no effect on the demod, but we need the pointer int errCnt = askdemod_ext(BitStream, &size, &clk, &invert, maxErr, 0, 0, &startIdx); if (errCnt < 0 || errCnt > maxErr) { PrintAndLogEx(DEBUG, "DEBUG: no data or error found %d, clock: %d", errCnt, clk); return PM3_ESOFT; } //attempt to Biphase decode BitStream errCnt = BiphaseRawDecode(BitStream, &size, &offset, invert); if (errCnt < 0) { if (g_debugMode || verbose) PrintAndLogEx(DEBUG, "DEBUG: Error BiphaseRawDecode: %d", errCnt); return PM3_ESOFT; } if (errCnt > maxErr) { if (g_debugMode || verbose) PrintAndLogEx(DEBUG, "DEBUG: Error BiphaseRawDecode too many errors: %d", errCnt); return PM3_ESOFT; } //success set DemodBuffer and return setDemodBuff(BitStream, size, 0); setClockGrid(clk, startIdx + clk * offset / 2); if (g_debugMode || verbose) { PrintAndLogEx(DEBUG, "Biphase Decoded using offset %d | clock %d | #errors %d | start index %d\ndata\n", offset, clk, errCnt, (startIdx + clk * offset / 2)); printDemodBuff(); } return PM3_SUCCESS; } //by marshmellow - see ASKbiphaseDemod static int Cmdaskbiphdemod(const char *Cmd) { char cmdp = tolower(param_getchar(Cmd, 0)); if (strlen(Cmd) > 25 || cmdp == 'h') return usage_data_rawdemod_ab(); int offset = 0, clk = 0, invert = 0, maxErr = 50; sscanf(Cmd, "%i %i %i %i", &offset, &clk, &invert, &maxErr); return ASKbiphaseDemod(offset, clk, invert, maxErr, true); } //by marshmellow - see ASKDemod static int Cmdaskrawdemod(const char *Cmd) { char cmdp = tolower(param_getchar(Cmd, 0)); if (strlen(Cmd) > 25 || cmdp == 'h') return usage_data_rawdemod_ar(); bool st = false; int clk = 0; int invert = 0; int maxErr = 100; size_t maxLen = 0; bool amplify = false; char amp = tolower(param_getchar(Cmd, 0)); sscanf(Cmd, "%i %i %i %zu %c", &clk, &invert, &maxErr, &maxLen, &); amplify = amp == 'a'; if (clk == 1) { invert = 1; clk = 0; } if (invert != 0 && invert != 1) { PrintAndLogEx(WARNING, "Invalid value for invert: %i", invert); return PM3_EINVARG; } return ASKDemod_ext(clk, invert, maxErr, maxLen, amplify, true, false, 0, &st); } int AutoCorrelate(const int *in, int *out, size_t len, size_t window, bool SaveGrph, bool verbose) { // sanity check if (window > len) window = len; if (verbose) PrintAndLogEx(INFO, "performing " _YELLOW_("%zu") " correlations", GraphTraceLen - window); //test double autocv = 0.0; // Autocovariance value size_t correlation = 0; int lastmax = 0; // in, len, 4000 double mean = compute_mean(in, len); // Computed variance double variance = compute_variance(in, len); int *correl_buf = calloc(MAX_GRAPH_TRACE_LEN, sizeof(int)); for (size_t i = 0; i < len - window; ++i) { for (size_t j = 0; j < (len - i); j++) { autocv += (in[j] - mean) * (in[j + i] - mean); } autocv = (1.0 / (len - i)) * autocv; correl_buf[i] = autocv; // Computed autocorrelation value to be returned // Autocorrelation is autocovariance divided by variance double ac_value = autocv / variance; // keep track of which distance is repeating. if (ac_value > 1) { correlation = i - lastmax; lastmax = i; } } // int hi = 0, idx = 0; int distance = 0, hi_1 = 0, idx_1 = 0; for (size_t i = 0; i <= len; ++i) { if (correl_buf[i] > hi) { hi = correl_buf[i]; idx = i; } } for (size_t i = idx + 1; i <= window; ++i) { if (correl_buf[i] > hi_1) { hi_1 = correl_buf[i]; idx_1 = i; } } int foo = ABS(hi - hi_1); int bar = (int)((int)((hi + hi_1) / 2) * 0.04); if (verbose && foo < bar) { distance = idx_1 - idx; PrintAndLogEx(SUCCESS, "possible visible correlation "_YELLOW_("%4d") " samples", distance); } else if (verbose && (correlation > 1)) { PrintAndLogEx(SUCCESS, "possible correlation " _YELLOW_("%4zu") " samples", correlation); } else { PrintAndLogEx(FAILED, "no repeating pattern found, try increasing window size"); } int retval = correlation; if (SaveGrph) { //GraphTraceLen = GraphTraceLen - window; memcpy(out, correl_buf, len * sizeof(int)); if (distance > 0) { setClockGrid(distance, idx); retval = distance; } else setClockGrid(correlation, idx); CursorCPos = idx_1; CursorDPos = idx_1 + retval; DemodBufferLen = 0; RepaintGraphWindow(); } free(correl_buf); return retval; } static int CmdAutoCorr(const char *Cmd) { uint32_t window = 4000; uint8_t cmdp = 0; bool updateGrph = false; bool errors = false; while (param_getchar(Cmd, cmdp) != 0x00 && !errors) { switch (tolower(param_getchar(Cmd, cmdp))) { case 'h': return usage_data_autocorr(); case 'g': updateGrph = true; cmdp++; break; case 'w': window = param_get32ex(Cmd, cmdp + 1, 4000, 10); if (window >= GraphTraceLen) { PrintAndLogEx(WARNING, "window must be smaller than trace (%zu samples)", GraphTraceLen); errors = true; } cmdp += 2; break; default: PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } } //Validations if (errors || cmdp == 0) return usage_data_autocorr(); AutoCorrelate(GraphBuffer, GraphBuffer, GraphTraceLen, window, updateGrph, true); return PM3_SUCCESS; } static int CmdBitsamples(const char *Cmd) { (void)Cmd; // Cmd is not used so far int cnt = 0; uint8_t got[12288]; if (!GetFromDevice(BIG_BUF, got, sizeof(got), 0, NULL, 0, NULL, 2500, false)) { PrintAndLogEx(WARNING, "command execution time out"); return PM3_ETIMEOUT; } for (size_t j = 0; j < ARRAYLEN(got); j++) { for (uint8_t k = 0; k < 8; k++) { if (got[j] & (1 << (7 - k))) GraphBuffer[cnt++] = 1; else GraphBuffer[cnt++] = 0; } } GraphTraceLen = cnt; RepaintGraphWindow(); return PM3_SUCCESS; } static int CmdBuffClear(const char *Cmd) { char cmdp = tolower(param_getchar(Cmd, 0)); if (cmdp == 'h') return usage_data_buffclear(); clearCommandBuffer(); SendCommandNG(CMD_BUFF_CLEAR, NULL, 0); ClearGraph(true); return PM3_SUCCESS; } static int CmdDecimate(const char *Cmd) { CLIParserContext *ctx; CLIParserInit(&ctx, "data decimate", "Performs decimation, by reducing samples N times in the grapbuf. Good for PSK\n", "data decimate\n" "data decimate 4" ); void *argtable[] = { arg_param_begin, arg_int0(NULL, NULL, "", "factor to reduce sample set (default 2)"), arg_param_end }; CLIExecWithReturn(ctx, Cmd, argtable, true); int n = arg_get_int_def(ctx, 1, 2); CLIParserFree(ctx); for (size_t i = 0; i < (GraphTraceLen / n); ++i) GraphBuffer[i] = GraphBuffer[i * n]; GraphTraceLen /= n; PrintAndLogEx(SUCCESS, "decimated by " _GREEN_("%u"), n); RepaintGraphWindow(); return PM3_SUCCESS; } /** * Undecimate - I'd call it 'interpolate', but we'll save that * name until someone does an actual interpolation command, not just * blindly repeating samples * @param Cmd * @return */ static int CmdUndecimate(const char *Cmd) { CLIParserContext *ctx; CLIParserInit(&ctx, "data undecimate", "Performs un-decimation, by repeating each sample N times in the graphbuf", "data undecimate\n" "data undecimate 4\n" ); void *argtable[] = { arg_param_begin, arg_int0(NULL, NULL, "", "factor to repeat each sample (default 2)"), arg_param_end }; CLIExecWithReturn(ctx, Cmd, argtable, true); int factor = arg_get_int_def(ctx, 1, 2); CLIParserFree(ctx); //We have memory, don't we? int swap[MAX_GRAPH_TRACE_LEN] = {0}; uint32_t g_index = 0, s_index = 0; while (g_index < GraphTraceLen && s_index + factor < MAX_GRAPH_TRACE_LEN) { int count = 0; for (count = 0; count < factor && s_index + count < MAX_GRAPH_TRACE_LEN; count++) { swap[s_index + count] = ( (double)(factor - count) / (factor - 1)) * GraphBuffer[g_index] + ((double)count / factor) * GraphBuffer[g_index + 1] ; } s_index += count; g_index++; } memcpy(GraphBuffer, swap, s_index * sizeof(int)); GraphTraceLen = s_index; RepaintGraphWindow(); return PM3_SUCCESS; } //by marshmellow //shift graph zero up or down based on input + or - static int CmdGraphShiftZero(const char *Cmd) { int shift = 0; //set options from parameters entered with the command sscanf(Cmd, "%i", &shift); for (size_t i = 0; i < GraphTraceLen; i++) { int shiftedVal = GraphBuffer[i] + shift; if (shiftedVal > 127) shiftedVal = 127; else if (shiftedVal < -127) shiftedVal = -127; GraphBuffer[i] = shiftedVal; } CmdNorm(""); return PM3_SUCCESS; } int AskEdgeDetect(const int *in, int *out, int len, int threshold) { int last = 0; for (int i = 1; i < len; i++) { if (in[i] - in[i - 1] >= threshold) //large jump up last = 127; else if (in[i] - in[i - 1] <= -1 * threshold) //large jump down last = -127; out[i - 1] = last; } return PM3_SUCCESS; } //by marshmellow //use large jumps in read samples to identify edges of waves and then amplify that wave to max //similar to dirtheshold, threshold commands //takes a threshold length which is the measured length between two samples then determines an edge static int CmdAskEdgeDetect(const char *Cmd) { int thresLen = 25; int ans = 0; sscanf(Cmd, "%i", &thresLen); ans = AskEdgeDetect(GraphBuffer, GraphBuffer, GraphTraceLen, thresLen); RepaintGraphWindow(); return ans; } /* Print our clock rate */ // uses data from graphbuffer // adjusted to take char parameter for type of modulation to find the clock - by marshmellow. static int CmdDetectClockRate(const char *Cmd) { char cmdp = tolower(param_getchar(Cmd, 0)); if (strlen(Cmd) > 6 || strlen(Cmd) == 0 || cmdp == 'h') return usage_data_detectclock(); int clock1 = 0; switch (cmdp) { case 'a' : clock1 = GetAskClock(Cmd + 1, true); break; case 'f' : clock1 = GetFskClock("", true); break; case 'n' : clock1 = GetNrzClock("", true); break; case 'p' : clock1 = GetPskClock("", true); break; default : PrintAndLogEx(NORMAL, "Please specify a valid modulation to detect the clock of - see option h for help"); break; } RepaintGraphWindow(); return clock1; } static char *GetFSKType(uint8_t fchigh, uint8_t fclow, uint8_t invert) { static char fType[8]; memset(fType, 0x00, 8); char *fskType = fType; if (fchigh == 10 && fclow == 8) { if (invert) memcpy(fskType, "FSK2a", 5); else memcpy(fskType, "FSK2", 4); } else if (fchigh == 8 && fclow == 5) { if (invert) memcpy(fskType, "FSK1", 4); else memcpy(fskType, "FSK1a", 5); } else { memcpy(fskType, "FSK??", 5); } return fskType; } //by marshmellow //fsk raw demod and print binary //takes 4 arguments - Clock, invert, fchigh, fclow //defaults: clock = 50, invert=1, fchigh=10, fclow=8 (RF/10 RF/8 (fsk2a)) int FSKrawDemod(uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow, bool verbose) { //raw fsk demod no manchester decoding no start bit finding just get binary from wave if (getSignalProperties()->isnoise) return PM3_ESOFT; uint8_t *bits = calloc(MAX_GRAPH_TRACE_LEN, sizeof(uint8_t)); if (bits == NULL) { return PM3_EMALLOC; } size_t BitLen = getFromGraphBuf(bits); if (BitLen == 0) { free(bits); return PM3_ESOFT; } //get field clock lengths if (!fchigh || !fclow) { uint16_t fcs = countFC(bits, BitLen, true); if (!fcs) { fchigh = 10; fclow = 8; } else { fchigh = (fcs >> 8) & 0x00FF; fclow = fcs & 0x00FF; } } //get bit clock length if (!rfLen) { int firstClockEdge = 0; //todo - align grid on graph with this... rfLen = detectFSKClk(bits, BitLen, fchigh, fclow, &firstClockEdge); if (!rfLen) rfLen = 50; } int startIdx = 0; int size = fskdemod(bits, BitLen, rfLen, invert, fchigh, fclow, &startIdx); if (size > 0) { setDemodBuff(bits, size, 0); setClockGrid(rfLen, startIdx); // Now output the bitstream to the scrollback by line of 16 bits if (verbose || g_debugMode) { PrintAndLogEx(DEBUG, "DEBUG: (FSKrawDemod) Using Clock:%u, invert:%u, fchigh:%u, fclow:%u", rfLen, invert, fchigh, fclow); PrintAndLogEx(NORMAL, "%s decoded bitstream:", GetFSKType(fchigh, fclow, invert)); printDemodBuff(); } goto out; } else { PrintAndLogEx(DEBUG, "no FSK data found"); } out: free(bits); return PM3_SUCCESS; } //by marshmellow //fsk raw demod and print binary //takes 4 arguments - Clock, invert, fchigh, fclow //defaults: clock = 50, invert=1, fchigh=10, fclow=8 (RF/10 RF/8 (fsk2a)) static int CmdFSKrawdemod(const char *Cmd) { char cmdp = tolower(param_getchar(Cmd, 0)); if (strlen(Cmd) > 20 || cmdp == 'h') return usage_data_rawdemod_fs(); uint8_t rfLen, invert, fchigh, fclow; //set defaults //set options from parameters entered with the command rfLen = param_get8(Cmd, 0); invert = param_get8(Cmd, 1); fchigh = param_get8(Cmd, 2); fclow = param_get8(Cmd, 3); if (strlen(Cmd) > 0 && strlen(Cmd) <= 2) { if (rfLen == 1) { invert = 1; //if invert option only is used rfLen = 0; } } return FSKrawDemod(rfLen, invert, fchigh, fclow, true); } //by marshmellow //attempt to psk1 demod graph buffer int PSKDemod(int clk, int invert, int maxErr, bool verbose) { if (getSignalProperties()->isnoise) return PM3_ESOFT; uint8_t *bits = calloc(MAX_GRAPH_TRACE_LEN, sizeof(uint8_t)); if (bits == NULL) { return PM3_EMALLOC; } size_t bitlen = getFromGraphBuf(bits); if (bitlen == 0) { free(bits); return PM3_ESOFT; } int startIdx = 0; int errCnt = pskRawDemod_ext(bits, &bitlen, &clk, &invert, &startIdx); if (errCnt > maxErr) { if (g_debugMode || verbose) PrintAndLogEx(DEBUG, "DEBUG: (PSKdemod) Too many errors found, clk: %d, invert: %d, numbits: %zu, errCnt: %d", clk, invert, bitlen, errCnt); free(bits); return PM3_ESOFT; } if (errCnt < 0 || bitlen < 16) { //throw away static - allow 1 and -1 (in case of threshold command first) if (g_debugMode || verbose) PrintAndLogEx(DEBUG, "DEBUG: (PSKdemod) no data found, clk: %d, invert: %d, numbits: %zu, errCnt: %d", clk, invert, bitlen, errCnt); free(bits); return PM3_ESOFT; } if (verbose || g_debugMode) { PrintAndLogEx(DEBUG, "DEBUG: (PSKdemod) Using Clock:%d, invert:%d, Bits Found:%zu", clk, invert, bitlen); if (errCnt > 0) { PrintAndLogEx(DEBUG, "DEBUG: (PSKdemod) errors during Demoding (shown as 7 in bit stream): %d", errCnt); } } //prime demod buffer for output setDemodBuff(bits, bitlen, 0); setClockGrid(clk, startIdx); free(bits); return PM3_SUCCESS; } // by marshmellow // takes 3 arguments - clock, invert, maxErr as integers // attempts to demodulate nrz only // prints binary found and saves in demodbuffer for further commands int NRZrawDemod(int clk, int invert, int maxErr, bool verbose) { int errCnt = 0, clkStartIdx = 0; if (getSignalProperties()->isnoise) return PM3_ESOFT; uint8_t *bits = calloc(MAX_GRAPH_TRACE_LEN, sizeof(uint8_t)); if (bits == NULL) { return PM3_EMALLOC; } size_t BitLen = getFromGraphBuf(bits); if (BitLen == 0) { free(bits); return PM3_ESOFT; } errCnt = nrzRawDemod(bits, &BitLen, &clk, &invert, &clkStartIdx); if (errCnt > maxErr) { PrintAndLogEx(DEBUG, "DEBUG: (NRZrawDemod) Too many errors found, clk: %d, invert: %d, numbits: %zu, errCnt: %d", clk, invert, BitLen, errCnt); free(bits); return PM3_ESOFT; } if (errCnt < 0 || BitLen < 16) { //throw away static - allow 1 and -1 (in case of threshold command first) PrintAndLogEx(DEBUG, "DEBUG: (NRZrawDemod) no data found, clk: %d, invert: %d, numbits: %zu, errCnt: %d", clk, invert, BitLen, errCnt); free(bits); return PM3_ESOFT; } if (verbose || g_debugMode) PrintAndLogEx(DEBUG, "DEBUG: (NRZrawDemod) Tried NRZ Demod using Clock: %d - invert: %d - Bits Found: %zu", clk, invert, BitLen); //prime demod buffer for output setDemodBuff(bits, BitLen, 0); setClockGrid(clk, clkStartIdx); if (errCnt > 0 && (verbose || g_debugMode)) PrintAndLogEx(DEBUG, "DEBUG: (NRZrawDemod) Errors during Demoding (shown as 7 in bit stream): %d", errCnt); if (verbose || g_debugMode) { PrintAndLogEx(NORMAL, "NRZ demoded bitstream:"); // Now output the bitstream to the scrollback by line of 16 bits printDemodBuff(); } free(bits); return PM3_SUCCESS; } static int CmdNRZrawDemod(const char *Cmd) { char cmdp = tolower(param_getchar(Cmd, 0)); if (strlen(Cmd) > 16 || cmdp == 'h') return usage_data_rawdemod_nr(); int invert = 0, clk = 0, maxErr = 100; sscanf(Cmd, "%i %i %i", &clk, &invert, &maxErr); if (clk == 1) { invert = 1; clk = 0; } if (invert != 0 && invert != 1) { PrintAndLogEx(WARNING, "(NRZrawDemod) Invalid argument: %s", Cmd); return PM3_EINVARG; } return NRZrawDemod(clk, invert, maxErr, true); } // by marshmellow // takes 3 arguments - clock, invert, maxErr as integers // attempts to demodulate psk only // prints binary found and saves in demodbuffer for further commands int CmdPSK1rawDemod(const char *Cmd) { char cmdp = tolower(param_getchar(Cmd, 0)); if (strlen(Cmd) > 16 || cmdp == 'h') return usage_data_rawdemod_p1(); int clk = 0, invert = 0, maxErr = 100; sscanf(Cmd, "%i %i %i", &clk, &invert, &maxErr); if (clk == 1) { invert = 1; clk = 0; } if (invert != 0 && invert != 1) { PrintAndLogEx(WARNING, "Invalid value for invert: %i", invert); return PM3_EINVARG; } int ans = PSKDemod(clk, invert, maxErr, true); //output if (ans != PM3_SUCCESS) { if (g_debugMode) PrintAndLogEx(ERR, "Error demoding: %d", ans); return PM3_ESOFT; } PrintAndLogEx(NORMAL, "PSK1 demoded bitstream:"); // Now output the bitstream to the scrollback by line of 16 bits printDemodBuff(); return PM3_SUCCESS; } // by marshmellow // takes same args as cmdpsk1rawdemod static int CmdPSK2rawDemod(const char *Cmd) { char cmdp = tolower(param_getchar(Cmd, 0)); if (strlen(Cmd) > 16 || cmdp == 'h') return usage_data_rawdemod_p2(); int clk = 0, invert = 0, maxErr = 100; sscanf(Cmd, "%i %i %i", &clk, &invert, &maxErr); if (clk == 1) { invert = 1; clk = 0; } if (invert != 0 && invert != 1) { PrintAndLogEx(WARNING, "Invalid value for invert: %i", invert); return PM3_EINVARG; } int ans = PSKDemod(clk, invert, maxErr, true); if (ans != PM3_SUCCESS) { if (g_debugMode) PrintAndLogEx(ERR, "Error demoding: %d", ans); return PM3_ESOFT; } psk1TOpsk2(DemodBuffer, DemodBufferLen); PrintAndLogEx(NORMAL, "PSK2 demoded bitstream:"); // Now output the bitstream to the scrollback by line of 16 bits printDemodBuff(); return PM3_SUCCESS; } // by marshmellow - combines all raw demod functions into one menu command static int CmdRawDemod(const char *Cmd) { int ans = 0; if (strlen(Cmd) > 35 || strlen(Cmd) < 2) return usage_data_rawdemod(); str_lower((char *)Cmd); if (str_startswith(Cmd, "fs") || Cmd[0] == 'f') ans = CmdFSKrawdemod(Cmd + 2); else if (str_startswith(Cmd, "ab")) ans = Cmdaskbiphdemod(Cmd + 2); else if (str_startswith(Cmd, "am")) ans = Cmdaskmandemod(Cmd + 2); else if (str_startswith(Cmd, "ar")) ans = Cmdaskrawdemod(Cmd + 2); else if (str_startswith(Cmd, "nr") || Cmd[0] == 'n') ans = CmdNRZrawDemod(Cmd + 2); else if (str_startswith(Cmd, "p1") || Cmd[0] == 'p') ans = CmdPSK1rawDemod(Cmd + 2); else if (str_startswith(Cmd, "p2")) ans = CmdPSK2rawDemod(Cmd + 2); else PrintAndLogEx(WARNING, "Unknown modulation entered - see help ('h') for parameter structure"); return ans; } void setClockGrid(uint32_t clk, int offset) { g_DemodStartIdx = offset; g_DemodClock = clk; if (clk == 0 && offset == 0) PrintAndLogEx(DEBUG, "DEBUG: (setClockGrid) clear settings"); else PrintAndLogEx(DEBUG, "DEBUG: (setClockGrid) demodoffset %d, clk %d", offset, clk); if (offset > clk) offset %= clk; if (offset < 0) offset += clk; if (offset > GraphTraceLen || offset < 0) return; if (clk < 8 || clk > GraphTraceLen) { GridLocked = false; GridOffset = 0; PlotGridX = 0; PlotGridXdefault = 0; RepaintGraphWindow(); } else { GridLocked = true; GridOffset = offset; PlotGridX = clk; PlotGridXdefault = clk; RepaintGraphWindow(); } } int CmdGrid(const char *Cmd) { sscanf(Cmd, "%lf %lf", &PlotGridX, &PlotGridY); PlotGridXdefault = PlotGridX; PlotGridYdefault = PlotGridY; RepaintGraphWindow(); return PM3_SUCCESS; } static int CmdSetGraphMarkers(const char *Cmd) { sscanf(Cmd, "%i %i", &CursorCPos, &CursorDPos); RepaintGraphWindow(); return PM3_SUCCESS; } static int CmdHexsamples(const char *Cmd) { uint32_t requested = 0; uint32_t offset = 0; char string_buf[25]; char *string_ptr = string_buf; uint8_t got[pm3_capabilities.bigbuf_size]; sscanf(Cmd, "%u %u", &requested, &offset); /* if no args send something */ if (requested == 0) requested = 8; if (requested > pm3_capabilities.bigbuf_size) requested = pm3_capabilities.bigbuf_size; if (offset + requested > sizeof(got)) { PrintAndLogEx(NORMAL, "Tried to read past end of buffer, + > %d", pm3_capabilities.bigbuf_size); return PM3_EINVARG; } if (!GetFromDevice(BIG_BUF, got, requested, offset, NULL, 0, NULL, 2500, false)) { PrintAndLogEx(WARNING, "command execution time out"); return PM3_ESOFT; } uint8_t i = 0; for (uint32_t j = 0; j < requested; j++) { i++; string_ptr += sprintf(string_ptr, "%02x ", got[j]); if (i == 8) { *(string_ptr - 1) = '\0'; // remove the trailing space PrintAndLogEx(NORMAL, "%s", string_buf); string_buf[0] = '\0'; string_ptr = string_buf; i = 0; } if (j == requested - 1 && string_buf[0] != '\0') { // print any remaining bytes *(string_ptr - 1) = '\0'; PrintAndLogEx(NORMAL, "%s", string_buf); string_buf[0] = '\0'; } } return PM3_SUCCESS; } static int CmdHide(const char *Cmd) { (void)Cmd; // Cmd is not used so far HideGraphWindow(); return PM3_SUCCESS; } //zero mean GraphBuffer int CmdHpf(const char *Cmd) { (void)Cmd; // Cmd is not used so far uint8_t bits[GraphTraceLen]; size_t size = getFromGraphBuf(bits); removeSignalOffset(bits, size); // push it back to graph setGraphBuf(bits, size); // set signal properties low/high/mean/amplitude and is_noise detection computeSignalProperties(bits, size); RepaintGraphWindow(); return PM3_SUCCESS; } static bool _headBit(BitstreamOut *stream) { int bytepos = stream->position >> 3; // divide by 8 int bitpos = (stream->position++) & 7; // mask out 00000111 return (*(stream->buffer + bytepos) >> (7 - bitpos)) & 1; } static uint8_t getByte(uint8_t bits_per_sample, BitstreamOut *b) { uint8_t val = 0; for (int i = 0 ; i < bits_per_sample; i++) val |= (_headBit(b) << (7 - i)); return val; } int getSamples(uint32_t n, bool verbose) { return getSamplesEx(0, n, verbose); } int getSamplesEx(uint32_t start, uint32_t end, bool verbose) { if (end < start) { PrintAndLogEx(WARNING, "error, end (%u) is smaller than start (%u)", end, start); return PM3_EINVARG; } //If we get all but the last byte in bigbuf, // we don't have to worry about remaining trash // in the last byte in case the bits-per-sample // does not line up on byte boundaries uint8_t got[pm3_capabilities.bigbuf_size - 1]; memset(got, 0x00, sizeof(got)); uint32_t n = end - start; if (n <= 0 || n > pm3_capabilities.bigbuf_size - 1) n = pm3_capabilities.bigbuf_size - 1; if (verbose) PrintAndLogEx(INFO, "Reading " _YELLOW_("%u") " bytes from device memory", n); PacketResponseNG response; if (!GetFromDevice(BIG_BUF, got, n, start, NULL, 0, &response, 10000, true)) { PrintAndLogEx(WARNING, "timeout while waiting for reply."); return PM3_ETIMEOUT; } if (verbose) PrintAndLogEx(SUCCESS, "Data fetched"); uint8_t bits_per_sample = 8; //Old devices without this feature would send 0 at arg[0] if (response.oldarg[0] > 0) { sample_config *sc = (sample_config *) response.data.asBytes; if (verbose) PrintAndLogEx(INFO, "Samples @ " _YELLOW_("%d") " bits/smpl, decimation 1:%d ", sc->bits_per_sample, sc->decimation); bits_per_sample = sc->bits_per_sample; } if (bits_per_sample < 8) { if (verbose) PrintAndLogEx(INFO, "Unpacking..."); BitstreamOut bout = { got, bits_per_sample * n, 0}; uint32_t j = 0; for (j = 0; j * bits_per_sample < n * 8 && j < n; j++) { uint8_t sample = getByte(bits_per_sample, &bout); GraphBuffer[j] = ((int) sample) - 127; } GraphTraceLen = j; if (verbose) PrintAndLogEx(INFO, "Unpacked %d samples", j); } else { for (uint32_t j = 0; j < n; j++) { GraphBuffer[j] = ((int)got[j]) - 127; } GraphTraceLen = n; } uint8_t bits[GraphTraceLen]; size_t size = getFromGraphBuf(bits); // set signal properties low/high/mean/amplitude and is_noise detection computeSignalProperties(bits, size); setClockGrid(0, 0); DemodBufferLen = 0; RepaintGraphWindow(); return PM3_SUCCESS; } static int CmdSamples(const char *Cmd) { int n = strtol(Cmd, NULL, 0); return getSamples(n, false); } int CmdTuneSamples(const char *Cmd) { (void)Cmd; // Cmd is not used so far #define NON_VOLTAGE 1000 #define LF_UNUSABLE_V 2000 #define LF_MARGINAL_V 10000 #define HF_UNUSABLE_V 3000 #define HF_MARGINAL_V 5000 #define ANTENNA_ERROR 1.00 // current algo has 3% error margin. // hide demod plot line DemodBufferLen = 0; setClockGrid(0, 0); RepaintGraphWindow(); int timeout = 0; int timeout_max = 20; PrintAndLogEx(INFO, "REMINDER: " _YELLOW_("'hw tune' doesn't actively tune your antennas") ", it's only informative"); PrintAndLogEx(INFO, "Measuring antenna characteristics, please wait..."); clearCommandBuffer(); SendCommandNG(CMD_MEASURE_ANTENNA_TUNING, NULL, 0); PacketResponseNG resp; PrintAndLogEx(INPLACE, "% 3i", timeout_max - timeout); while (!WaitForResponseTimeout(CMD_MEASURE_ANTENNA_TUNING, &resp, 500)) { fflush(stdout); if (timeout >= timeout_max) { PrintAndLogEx(WARNING, "\nNo response from Proxmark3. Aborting..."); return PM3_ETIMEOUT; } timeout++; PrintAndLogEx(INPLACE, "% 3i", timeout_max - timeout); } if (resp.status != PM3_SUCCESS) { PrintAndLogEx(WARNING, "Antenna tuning failed"); return PM3_ESOFT; } PrintAndLogEx(NORMAL, ""); PrintAndLogEx(INFO, "---------- " _CYAN_("LF Antenna") " ----------"); // in mVolt struct p { uint32_t v_lf134; uint32_t v_lf125; uint32_t v_lfconf; uint32_t v_hf; uint32_t peak_v; uint32_t peak_f; int divisor; uint8_t results[256]; } PACKED; struct p *package = (struct p *)resp.data.asBytes; if (package->v_lf125 > NON_VOLTAGE) PrintAndLogEx(SUCCESS, "LF antenna: %5.2f V - %.2f kHz", (package->v_lf125 * ANTENNA_ERROR) / 1000.0, LF_DIV2FREQ(LF_DIVISOR_125)); if (package->v_lf134 > NON_VOLTAGE) PrintAndLogEx(SUCCESS, "LF antenna: %5.2f V - %.2f kHz", (package->v_lf134 * ANTENNA_ERROR) / 1000.0, LF_DIV2FREQ(LF_DIVISOR_134)); if (package->v_lfconf > NON_VOLTAGE && package->divisor > 0 && package->divisor != LF_DIVISOR_125 && package->divisor != LF_DIVISOR_134) PrintAndLogEx(SUCCESS, "LF antenna: %5.2f V - %.2f kHz", (package->v_lfconf * ANTENNA_ERROR) / 1000.0, LF_DIV2FREQ(package->divisor)); if (package->peak_v > NON_VOLTAGE && package->peak_f > 0) PrintAndLogEx(SUCCESS, "LF optimal: %5.2f V - %6.2f kHz", (package->peak_v * ANTENNA_ERROR) / 1000.0, LF_DIV2FREQ(package->peak_f)); const double vdd_rdv4 = 9000; const double vdd_other = 5400; // Empirical measures in mV double vdd = IfPm3Rdv4Fw() ? vdd_rdv4 : vdd_other; if (package->peak_v > NON_VOLTAGE && package->peak_f > 0) { // Q measure with Q=f/delta_f double v_3db_scaled = (double)(package->peak_v * 0.707) / 512; // /512 == >>9 uint32_t s2 = 0, s4 = 0; for (int i = 1; i < 256; i++) { if ((s2 == 0) && (package->results[i] > v_3db_scaled)) { s2 = i; } if ((s2 != 0) && (package->results[i] < v_3db_scaled)) { s4 = i; break; } } double lfq1 = 0; if (s4 != 0) { // we got all our points of interest double a = package->results[s2 - 1]; double b = package->results[s2]; double f1 = LF_DIV2FREQ(s2 - 1 + (v_3db_scaled - a) / (b - a)); double c = package->results[s4 - 1]; double d = package->results[s4]; double f2 = LF_DIV2FREQ(s4 - 1 + (c - v_3db_scaled) / (c - d)); lfq1 = LF_DIV2FREQ(package->peak_f) / (f1 - f2); PrintAndLogEx(SUCCESS, "Approx. Q factor (*): %.1lf by frequency bandwidth measurement", lfq1); } // Q measure with Vlr=Q*(2*Vdd/pi) double lfq2 = (double)package->peak_v * 3.14 / 2 / vdd; PrintAndLogEx(SUCCESS, "Approx. Q factor (*): %.1lf by peak voltage measurement", lfq2); // cross-check results if (lfq1 > 3) { double approx_vdd = (double)package->peak_v * 3.14 / 2 / lfq1; if ((approx_vdd > (vdd_rdv4 + vdd_other) / 2) && (! IfPm3Rdv4Fw())) PrintAndLogEx(WARNING, "Contradicting measures seem to indicate you're running a " _YELLOW_("PM3_OTHER firmware on a RDV4") ", please check your setup"); if ((approx_vdd < (vdd_rdv4 + vdd_other) / 2) && (IfPm3Rdv4Fw())) PrintAndLogEx(WARNING, "Contradicting measures seem to indicate you're running a " _YELLOW_("PM3_RDV4 firmware on a non-RDV4") ", please check your setup"); } } char judgement[20]; memset(judgement, 0, sizeof(judgement)); // LF evaluation if (package->peak_v < LF_UNUSABLE_V) sprintf(judgement, _RED_("UNUSABLE")); else if (package->peak_v < LF_MARGINAL_V) sprintf(judgement, _YELLOW_("MARGINAL")); else sprintf(judgement, _GREEN_("OK")); PrintAndLogEx((package->peak_v < LF_UNUSABLE_V) ? WARNING : SUCCESS, "LF antenna is %s", judgement); PrintAndLogEx(INFO, "---------- " _CYAN_("HF Antenna") " ----------"); // HF evaluation if (package->v_hf > NON_VOLTAGE) PrintAndLogEx(SUCCESS, "HF antenna: %5.2f V - 13.56 MHz", (package->v_hf * ANTENNA_ERROR) / 1000.0); memset(judgement, 0, sizeof(judgement)); if (package->v_hf >= HF_UNUSABLE_V) { // Q measure with Vlr=Q*(2*Vdd/pi) double hfq = (double)package->v_hf * 3.14 / 2 / vdd; PrintAndLogEx(SUCCESS, "Approx. Q factor (*): %.1lf by peak voltage measurement", hfq); } if (package->v_hf < HF_UNUSABLE_V) sprintf(judgement, _RED_("UNUSABLE")); else if (package->v_hf < HF_MARGINAL_V) sprintf(judgement, _YELLOW_("MARGINAL")); else sprintf(judgement, _GREEN_("OK")); PrintAndLogEx((package->v_hf < HF_UNUSABLE_V) ? WARNING : SUCCESS, "HF antenna is %s", judgement); PrintAndLogEx(NORMAL, "\n(*) Q factor must be measured without tag on the antenna"); // graph LF measurements // even here, these values has 3% error. uint16_t test1 = 0; for (int i = 0; i < 256; i++) { GraphBuffer[i] = package->results[i] - 128; test1 += package->results[i]; } if (test1 > 0) { PrintAndLogEx(SUCCESS, "\nDisplaying LF tuning graph. Divisor %d (blue) is %.2f kHz, %d (red) is %.2f kHz.\n\n", LF_DIVISOR_134, LF_DIV2FREQ(LF_DIVISOR_134), LF_DIVISOR_125, LF_DIV2FREQ(LF_DIVISOR_125)); GraphTraceLen = 256; CursorCPos = LF_DIVISOR_125; CursorDPos = LF_DIVISOR_134; ShowGraphWindow(); RepaintGraphWindow(); } else { PrintAndLogEx(FAILED, "\nNot showing LF tuning graph since all values is zero.\n\n"); } return PM3_SUCCESS; } static int CmdLoad(const char *Cmd) { CLIParserContext *ctx; CLIParserInit(&ctx, "data load", "This command loads the contents of a pm3 file into graph window\n", "data load -f myfilename" ); void *argtable[] = { arg_param_begin, arg_strx0("f", "file", "", "file to load"), arg_param_end }; CLIExecWithReturn(ctx, Cmd, argtable, false); int fnlen = 0; char filename[FILE_PATH_SIZE] = {0}; CLIParamStrToBuf(arg_get_str(ctx, 1), (uint8_t *)filename, FILE_PATH_SIZE, &fnlen); CLIParserFree(ctx); char *path = NULL; if (searchFile(&path, TRACES_SUBDIR, filename, ".pm3", true) != PM3_SUCCESS) { if (searchFile(&path, TRACES_SUBDIR, filename, "", false) != PM3_SUCCESS) { return PM3_EFILE; } } FILE *f = fopen(path, "r"); if (!f) { PrintAndLogEx(WARNING, "couldn't open '%s'", path); free(path); return PM3_EFILE; } free(path); GraphTraceLen = 0; char line[80]; while (fgets(line, sizeof(line), f)) { GraphBuffer[GraphTraceLen] = atoi(line); GraphTraceLen++; if (GraphTraceLen >= MAX_GRAPH_TRACE_LEN) break; } fclose(f); PrintAndLogEx(SUCCESS, "loaded " _YELLOW_("%zu") " samples", GraphTraceLen); uint8_t bits[GraphTraceLen]; size_t size = getFromGraphBuf(bits); removeSignalOffset(bits, size); setGraphBuf(bits, size); computeSignalProperties(bits, size); setClockGrid(0, 0); DemodBufferLen = 0; RepaintGraphWindow(); return PM3_SUCCESS; } // trim graph from the end int CmdLtrim(const char *Cmd) { uint32_t ds = strtoul(Cmd, NULL, 10); // sanitycheck if (GraphTraceLen <= ds) return PM3_ESOFT; for (uint32_t i = ds; i < GraphTraceLen; ++i) GraphBuffer[i - ds] = GraphBuffer[i]; GraphTraceLen -= ds; g_DemodStartIdx -= ds; RepaintGraphWindow(); return PM3_SUCCESS; } // trim graph from the beginning static int CmdRtrim(const char *Cmd) { uint32_t ds = strtoul(Cmd, NULL, 10); // sanitycheck if (GraphTraceLen <= ds) return PM3_ESOFT; GraphTraceLen = ds; RepaintGraphWindow(); return PM3_SUCCESS; } // trim graph (middle) piece static int CmdMtrim(const char *Cmd) { uint32_t start = 0, stop = 0; sscanf(Cmd, "%u %u", &start, &stop); if (start > GraphTraceLen || stop > GraphTraceLen || start >= stop) return PM3_ESOFT; // leave start position sample start++; GraphTraceLen = stop - start; for (uint32_t i = 0; i < GraphTraceLen; i++) GraphBuffer[i] = GraphBuffer[start + i]; return PM3_SUCCESS; } int CmdNorm(const char *Cmd) { (void)Cmd; // Cmd is not used so far int max = INT_MIN, min = INT_MAX; // Find local min, max for (uint32_t i = 10; i < GraphTraceLen; ++i) { if (GraphBuffer[i] > max) max = GraphBuffer[i]; if (GraphBuffer[i] < min) min = GraphBuffer[i]; } if (max != min) { for (uint32_t i = 0; i < GraphTraceLen; ++i) { GraphBuffer[i] = ((long)(GraphBuffer[i] - ((max + min) / 2)) * 256) / (max - min); //marshmelow: adjusted *1000 to *256 to make +/- 128 so demod commands still work } } uint8_t bits[GraphTraceLen]; size_t size = getFromGraphBuf(bits); // set signal properties low/high/mean/amplitude and is_noise detection computeSignalProperties(bits, size); RepaintGraphWindow(); return PM3_SUCCESS; } int CmdPlot(const char *Cmd) { (void)Cmd; // Cmd is not used so far ShowGraphWindow(); return PM3_SUCCESS; } int CmdSave(const char *Cmd) { CLIParserContext *ctx; CLIParserInit(&ctx, "data save", "Save trace from graph window , i.e. the GraphBuffer\n" "This is a text file with number -127 to 127. With the option `w` you can save it as wave file\n" "Filename should be without file extension", "data save -f myfilename -> save graph buffer to file\n" "data save --wave -f myfilename -> save graph buffer to wave file" ); void *argtable[] = { arg_param_begin, arg_lit0("w", "wave", "save as wave format (.wav)"), arg_str1("f", "file", "", "save file name"), arg_param_end }; CLIExecWithReturn(ctx, Cmd, argtable, false); bool as_wave = arg_get_lit(ctx, 1); int fnlen = 0; char filename[FILE_PATH_SIZE] = {0}; // CLIGetStrWithReturn(ctx, 2, (uint8_t *)filename, &fnlen); CLIParamStrToBuf(arg_get_str(ctx, 2), (uint8_t *)filename, FILE_PATH_SIZE, &fnlen); CLIParserFree(ctx); if (as_wave) return saveFileWAVE(filename, GraphBuffer, GraphTraceLen); else return saveFilePM3(filename, GraphBuffer, GraphTraceLen); } static int CmdTimeScale(const char *Cmd) { CLIParserContext *ctx; CLIParserInit(&ctx, "data timescale", "Set cursor display timescale.\n" "Setting the timescale makes the differential `dt` reading between the yellow and purple markers meaningful.\n" "once the timescale is set, the differential reading between brackets can become a time duration.", "data timescale --sr 125 -u ms -> for LF sampled at 125 kHz. Reading will be in milliseconds\n" "data timescale --sr 1.695 -u us -> for HF sampled at 16 * fc/128. Reading will be in microseconds\n" "data timescale --sr 16 -u ETU -> for HF with 16 samples per ETU (fc/128). Reading will be in ETUs" ); void *argtable[] = { arg_param_begin, arg_dbl1(NULL, "sr", "", "sets timescale factor according to sampling rate"), arg_str0("u", "unit", "", "time unit to display (max 10 chars)"), arg_param_end }; CLIExecWithReturn(ctx, Cmd, argtable, false); CursorScaleFactor = arg_get_dbl_def(ctx, 1, 1); if (CursorScaleFactor <= 0) { PrintAndLogEx(FAILED, "bad, can't have negative or zero timescale factor"); CursorScaleFactor = 1; } int len = 0; CursorScaleFactorUnit[0] = '\x00'; CLIParamStrToBuf(arg_get_str(ctx, 2), (uint8_t *)CursorScaleFactorUnit, sizeof(CursorScaleFactorUnit), &len); CLIParserFree(ctx); RepaintGraphWindow(); return PM3_SUCCESS; } int directionalThreshold(const int *in, int *out, size_t len, int8_t up, int8_t down) { int lastValue = in[0]; // Will be changed at the end, but init 0 as we adjust to last samples // value if no threshold kicks in. out[0] = 0; for (size_t i = 1; i < len; ++i) { // Apply first threshold to samples heading up if (in[i] >= up && in[i] > lastValue) { lastValue = out[i]; // Buffer last value as we overwrite it. out[i] = 1; } // Apply second threshold to samples heading down else if (in[i] <= down && in[i] < lastValue) { lastValue = out[i]; // Buffer last value as we overwrite it. out[i] = -1; } else { lastValue = out[i]; // Buffer last value as we overwrite it. out[i] = out[i - 1]; } } // Align with first edited sample. out[0] = out[1]; return PM3_SUCCESS; } static int CmdDirectionalThreshold(const char *Cmd) { int8_t up = param_get8(Cmd, 0); int8_t down = param_get8(Cmd, 1); PrintAndLogEx(INFO, "Applying Up Threshold: %d, Down Threshold: %d\n", up, down); directionalThreshold(GraphBuffer, GraphBuffer, GraphTraceLen, up, down); // set signal properties low/high/mean/amplitude and isnoice detection uint8_t bits[GraphTraceLen]; size_t size = getFromGraphBuf(bits); // set signal properties low/high/mean/amplitude and is_noice detection computeSignalProperties(bits, size); RepaintGraphWindow(); return PM3_SUCCESS; } static int CmdZerocrossings(const char *Cmd) { (void)Cmd; // Cmd is not used so far // Zero-crossings aren't meaningful unless the signal is zero-mean. CmdHpf(""); int sign = 1, zc = 0, lastZc = 0; for (uint32_t i = 0; i < GraphTraceLen; ++i) { if (GraphBuffer[i] * sign >= 0) { // No change in sign, reproduce the previous sample count. zc++; GraphBuffer[i] = lastZc; } else { // Change in sign, reset the sample count. sign = -sign; GraphBuffer[i] = lastZc; if (sign > 0) { lastZc = zc; zc = 0; } } } uint8_t bits[GraphTraceLen]; size_t size = getFromGraphBuf(bits); // set signal properties low/high/mean/amplitude and is_noise detection computeSignalProperties(bits, size); RepaintGraphWindow(); return PM3_SUCCESS; } /** * @brief Utility for conversion via cmdline. * @param Cmd * @return */ static int Cmdbin2hex(const char *Cmd) { int bg = 0, en = 0; if (param_getptr(Cmd, &bg, &en, 0)) return usage_data_bin2hex(); //Number of digits supplied as argument size_t length = en - bg + 1; size_t bytelen = (length + 7) / 8; uint8_t *arr = (uint8_t *) calloc(bytelen, sizeof(uint8_t)); memset(arr, 0, bytelen); BitstreamOut bout = { arr, 0, 0 }; for (; bg <= en; bg++) { char c = Cmd[bg]; if (c == '1') pushBit(&bout, 1); else if (c == '0') pushBit(&bout, 0); else PrintAndLogEx(NORMAL, "Ignoring '%c'", c); } if (bout.numbits % 8 != 0) PrintAndLogEx(NORMAL, "[padded with %d zeroes]", 8 - (bout.numbits % 8)); PrintAndLogEx(NORMAL, "%s", sprint_hex(arr, bytelen)); free(arr); return PM3_SUCCESS; } static int Cmdhex2bin(const char *Cmd) { int bg = 0, en = 0; if (param_getptr(Cmd, &bg, &en, 0)) return usage_data_hex2bin(); while (bg <= en) { char x = Cmd[bg++]; // capitalize if (x >= 'a' && x <= 'f') x -= 32; // convert to numeric value if (x >= '0' && x <= '9') x -= '0'; else if (x >= 'A' && x <= 'F') x -= 'A' - 10; else continue; for (int i = 0 ; i < 4 ; ++i) PrintAndLogEx(NORMAL, "%d" NOLF, (x >> (3 - i)) & 1); } PrintAndLogEx(NORMAL, ""); return PM3_SUCCESS; } /* // example of FSK2 RF/50 Tones static const int LowTone[] = { 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1 }; static const int HighTone[] = { 1, 1, 1, 1, 1, -1, -1, -1, -1, // note one extra 1 to padd due to 50/8 remainder (1/2 the remainder) 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, // note one extra -1 to padd due to 50/8 remainder }; */ static void GetHiLoTone(int *LowTone, int *HighTone, int clk, int LowToneFC, int HighToneFC) { int i, j = 0; int Left_Modifier = ((clk % LowToneFC) % 2) + ((clk % LowToneFC) / 2); int Right_Modifier = (clk % LowToneFC) / 2; //int HighToneMod = clk mod HighToneFC; int LeftHalfFCCnt = (LowToneFC % 2) + (LowToneFC / 2); //truncate int FCs_per_clk = clk / LowToneFC; // need to correctly split up the clock to field clocks. // First attempt uses modifiers on each end to make up for when FCs don't evenly divide into Clk // start with LowTone // set extra 1 modifiers to make up for when FC doesn't divide evenly into Clk for (i = 0; i < Left_Modifier; i++) { LowTone[i] = 1; } // loop # of field clocks inside the main clock for (i = 0; i < (FCs_per_clk); i++) { // loop # of samples per field clock for (j = 0; j < LowToneFC; j++) { LowTone[(i * LowToneFC) + Left_Modifier + j] = (j < LeftHalfFCCnt) ? 1 : -1; } } int k; // add last -1 modifiers for (k = 0; k < Right_Modifier; k++) { LowTone[((i - 1) * LowToneFC) + Left_Modifier + j + k] = -1; } // now do hightone Left_Modifier = ((clk % HighToneFC) % 2) + ((clk % HighToneFC) / 2); Right_Modifier = (clk % HighToneFC) / 2; LeftHalfFCCnt = (HighToneFC % 2) + (HighToneFC / 2); //truncate FCs_per_clk = clk / HighToneFC; for (i = 0; i < Left_Modifier; i++) { HighTone[i] = 1; } // loop # of field clocks inside the main clock for (i = 0; i < (FCs_per_clk); i++) { // loop # of samples per field clock for (j = 0; j < HighToneFC; j++) { HighTone[(i * HighToneFC) + Left_Modifier + j] = (j < LeftHalfFCCnt) ? 1 : -1; } } // add last -1 modifiers for (k = 0; k < Right_Modifier; k++) { PrintAndLogEx(NORMAL, "(i-1)*HighToneFC+lm+j+k %i", ((i - 1) * HighToneFC) + Left_Modifier + j + k); HighTone[((i - 1) * HighToneFC) + Left_Modifier + j + k] = -1; } if (g_debugMode == 2) { for (i = 0; i < clk; i++) { PrintAndLogEx(NORMAL, "Low: %i, High: %i", LowTone[i], HighTone[i]); } } } //old CmdFSKdemod adapted by marshmellow //converts FSK to clear NRZ style wave. (or demodulates) static int FSKToNRZ(int *data, size_t *dataLen, uint8_t clk, uint8_t LowToneFC, uint8_t HighToneFC) { uint8_t ans = 0; if (clk == 0 || LowToneFC == 0 || HighToneFC == 0) { int firstClockEdge = 0; ans = fskClocks((uint8_t *) &LowToneFC, (uint8_t *) &HighToneFC, (uint8_t *) &clk, &firstClockEdge); if (g_debugMode > 1) { PrintAndLogEx(NORMAL, "DEBUG FSKtoNRZ: detected clocks: fc_low %i, fc_high %i, clk %i, firstClockEdge %i, ans %u", LowToneFC, HighToneFC, clk, firstClockEdge, ans); } } // currently only know fsk modulations with field clocks < 10 samples and > 4 samples. filter out to remove false positives (and possibly destroying ask/psk modulated waves...) if (ans == 0 || clk == 0 || LowToneFC == 0 || HighToneFC == 0 || LowToneFC > 10 || HighToneFC < 4) { if (g_debugMode > 1) { PrintAndLogEx(NORMAL, "DEBUG FSKtoNRZ: no fsk clocks found"); } return PM3_ESOFT; } int LowTone[clk]; int HighTone[clk]; GetHiLoTone(LowTone, HighTone, clk, LowToneFC, HighToneFC); // loop through ([all samples] - clk) for (size_t i = 0; i < *dataLen - clk; ++i) { int lowSum = 0, highSum = 0; // sum all samples together starting from this sample for [clk] samples for each tone (multiply tone value with sample data) for (size_t j = 0; j < clk; ++j) { lowSum += LowTone[j] * data[i + j]; highSum += HighTone[j] * data[i + j]; } // get abs( [average sample value per clk] * 100 ) (or a rolling average of sorts) lowSum = abs(100 * lowSum / clk); highSum = abs(100 * highSum / clk); // save these back to buffer for later use data[i] = (highSum << 16) | lowSum; } // now we have the abs( [average sample value per clk] * 100 ) for each tone // loop through again [all samples] - clk - 16 // note why 16??? is 16 the largest FC? changed to LowToneFC as that should be the > fc for (size_t i = 0; i < *dataLen - clk - LowToneFC; ++i) { int lowTot = 0, highTot = 0; // sum a field clock width of abs( [average sample values per clk] * 100) for each tone for (size_t j = 0; j < LowToneFC; ++j) { //10 for fsk2 lowTot += (data[i + j] & 0xffff); } for (size_t j = 0; j < HighToneFC; j++) { //8 for fsk2 highTot += (data[i + j] >> 16); } // subtract the sum of lowTone averages by the sum of highTone averages as it // and write back the new graph value data[i] = lowTot - highTot; } // update dataLen to what we put back to the data sample buffer *dataLen -= (clk + LowToneFC); return PM3_SUCCESS; } static int CmdFSKToNRZ(const char *Cmd) { // take clk, fc_low, fc_high // blank = auto; bool errors = false; char cmdp = 0; int clk = 0, fc_low = 10, fc_high = 8; while (param_getchar(Cmd, cmdp) != 0x00) { switch (tolower(param_getchar(Cmd, cmdp))) { case 'h': return usage_data_fsktonrz(); case 'c': clk = param_get32ex(Cmd, cmdp + 1, 0, 10); cmdp += 2; break; case 'f': fc_high = param_get32ex(Cmd, cmdp + 1, 0, 10); cmdp += 2; break; case 'l': fc_low = param_get32ex(Cmd, cmdp + 1, 0, 10); cmdp += 2; break; default: PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } if (errors) break; } //Validations if (errors) return usage_data_fsktonrz(); setClockGrid(0, 0); DemodBufferLen = 0; int ans = FSKToNRZ(GraphBuffer, &GraphTraceLen, clk, fc_low, fc_high); CmdNorm(""); RepaintGraphWindow(); return ans; } static int CmdDataIIR(const char *Cmd) { uint8_t k = param_get8(Cmd, 0); //iceIIR_Butterworth(GraphBuffer, GraphTraceLen); iceSimple_Filter(GraphBuffer, GraphTraceLen, k); uint8_t bits[GraphTraceLen]; size_t size = getFromGraphBuf(bits); // set signal properties low/high/mean/amplitude and is_noise detection computeSignalProperties(bits, size); RepaintGraphWindow(); return PM3_SUCCESS; } static int CmdDataNDEF(const char *Cmd) { #ifndef MAX_NDEF_LEN #define MAX_NDEF_LEN 2048 #endif CLIParserContext *ctx; CLIParserInit(&ctx, "data ndef", "Decode and print NFC Data Exchange Format (NDEF)", "data ndef -d 9101085402656e48656c6c6f5101085402656e576f726c64\n" "data ndef -d 0103d020240203e02c040300fe\n" ); void *argtable[] = { arg_param_begin, arg_strx0("d", "data", "", "NDEF data to decode"), arg_lit0("v", "verbose", "verbose mode"), arg_param_end }; CLIExecWithReturn(ctx, Cmd, argtable, false); int datalen = 0; uint8_t data[MAX_NDEF_LEN] = {0}; CLIGetHexWithReturn(ctx, 1, data, &datalen); bool verbose = arg_get_lit(ctx, 2); CLIParserFree(ctx); if (datalen == 0) return PM3_EINVARG; int res = NDEFDecodeAndPrint(data, datalen, verbose); if (res != PM3_SUCCESS) { PrintAndLogEx(INFO, "Trying to parse NDEF records w/o NDEF header"); res = NDEFRecordsDecodeAndPrint(data, datalen); } return res; } typedef struct { t55xx_modulation modulation; int bitrate; int carrier; uint8_t fc1; uint8_t fc2; } lf_modulation_t; static int print_modulation(lf_modulation_t b) { PrintAndLogEx(INFO, " Modulation.... " _GREEN_("%s"), GetSelectedModulationStr(b.modulation)); PrintAndLogEx(INFO, " Bit clock..... " _GREEN_("RF/%d"), b.bitrate); switch (b.modulation) { case DEMOD_PSK1: case DEMOD_PSK2: case DEMOD_PSK3: PrintAndLogEx(SUCCESS, " Carrier rate.. %d", b.carrier); break; case DEMOD_FSK: case DEMOD_FSK1: case DEMOD_FSK1a: case DEMOD_FSK2: case DEMOD_FSK2a: PrintAndLogEx(SUCCESS, " Field Clocks.. FC/%u, FC/%u", b.fc1, b.fc2); break; case DEMOD_NRZ: case DEMOD_ASK: case DEMOD_BI: case DEMOD_BIa: default: break; } PrintAndLogEx(NORMAL, ""); return PM3_SUCCESS; } static int try_detect_modulation(void) { lf_modulation_t tests[6]; int clk = 0, firstClockEdge = 0; uint8_t hits = 0, ans = 0; uint8_t fc1 = 0, fc2 = 0; bool st = false; ans = fskClocks(&fc1, &fc2, (uint8_t *)&clk, &firstClockEdge); if (ans && ((fc1 == 10 && fc2 == 8) || (fc1 == 8 && fc2 == 5))) { if ((FSKrawDemod(0, 0, 0, 0, false) == PM3_SUCCESS)) { tests[hits].modulation = DEMOD_FSK; if (fc1 == 8 && fc2 == 5) { tests[hits].modulation = DEMOD_FSK1a; } else if (fc1 == 10 && fc2 == 8) { tests[hits].modulation = DEMOD_FSK2; } tests[hits].bitrate = clk; tests[hits].fc1 = fc1; tests[hits].fc2 = fc2; ++hits; } } else { clk = GetAskClock("", false); if (clk > 0) { // 0 = auto clock // 0 = no invert // 1 = maxError 1 // 0 = max len // false = no amplify // false = no verbose // false = no emSearch // 1 = Ask/Man // st = true if ((ASKDemod_ext(0, 0, 1, 0, false, false, false, 1, &st) == PM3_SUCCESS)) { tests[hits].modulation = DEMOD_ASK; tests[hits].bitrate = clk; ++hits; } // "0 0 1 " == clock auto, invert true, maxError 1. // false = no verbose // false = no emSearch // 1 = Ask/Man // st = true // ASK / biphase if ((ASKbiphaseDemod(0, 0, 0, 2, false) == PM3_SUCCESS)) { tests[hits].modulation = DEMOD_BI; tests[hits].bitrate = clk; ++hits; } // ASK / Diphase if ((ASKbiphaseDemod(0, 0, 1, 2, false) == PM3_SUCCESS)) { tests[hits].modulation = DEMOD_BIa; tests[hits].bitrate = clk; ++hits; } } clk = GetNrzClock("", false); if ((NRZrawDemod(0, 0, 1, false) == PM3_SUCCESS)) { tests[hits].modulation = DEMOD_NRZ; tests[hits].bitrate = clk; ++hits; } clk = GetPskClock("", false); if (clk > 0) { // allow undo save_restoreGB(GRAPH_SAVE); // skip first 160 samples to allow antenna to settle in (psk gets inverted occasionally otherwise) CmdLtrim("160"); if ((PSKDemod(0, 0, 6, false) == PM3_SUCCESS)) { tests[hits].modulation = DEMOD_PSK1; tests[hits].bitrate = clk; ++hits; // get psk carrier tests[hits].carrier = GetPskCarrier(false); } //undo trim samples save_restoreGB(GRAPH_RESTORE); } } if (hits) { PrintAndLogEx(SUCCESS, "Found [%d] possible matches for modulation.", hits); for (int i = 0; i < hits; ++i) { PrintAndLogEx(INFO, "--[%d]---------------", i + 1); print_modulation(tests[i]); } return PM3_SUCCESS; } else { PrintAndLogEx(INFO, "Signal doesn't match"); return PM3_ESOFT; } } static int CmdDataModulationSearch(const char *Cmd) { CLIParserContext *ctx; CLIParserInit(&ctx, "data modulation", "search LF signal after clock and modulation\n", "data modulation" ); void *argtable[] = { arg_param_begin, arg_param_end }; CLIExecWithReturn(ctx, Cmd, argtable, true); CLIParserFree(ctx); return try_detect_modulation(); } static command_t CommandTable[] = { {"help", CmdHelp, AlwaysAvailable, "This help"}, {"-----------", CmdHelp, AlwaysAvailable, "------------------------- " _CYAN_("Modulation") "-------------------------"}, {"biphaserawdecode", CmdBiphaseDecodeRaw, AlwaysAvailable, "Biphase decode bin stream in DemodBuffer"}, {"detectclock", CmdDetectClockRate, AlwaysAvailable, "Detect ASK, FSK, NRZ, PSK clock rate of wave in GraphBuffer"}, {"fsktonrz", CmdFSKToNRZ, AlwaysAvailable, "Convert fsk2 to nrz wave for alternate fsk demodulating (for weak fsk)"}, {"manrawdecode", Cmdmandecoderaw, AlwaysAvailable, "Manchester decode binary stream in DemodBuffer"}, {"modulation", CmdDataModulationSearch, AlwaysAvailable, "Identify LF signal for clock and modulation"}, {"rawdemod", CmdRawDemod, AlwaysAvailable, "Demodulate the data in the GraphBuffer and output binary"}, {"-----------", CmdHelp, AlwaysAvailable, "------------------------- " _CYAN_("Graph") "-------------------------"}, {"askedgedetect", CmdAskEdgeDetect, AlwaysAvailable, "[threshold] Adjust Graph for manual ASK demod using the length of sample differences to detect the edge of a wave (use 20-45, def:25)"}, {"autocorr", CmdAutoCorr, AlwaysAvailable, "Autocorrelation over window"}, {"dirthreshold", CmdDirectionalThreshold, AlwaysAvailable, " -- Max rising higher up-thres/ Min falling lower down-thres, keep rest as prev."}, {"decimate", CmdDecimate, AlwaysAvailable, "Decimate samples"}, {"undecimate", CmdUndecimate, AlwaysAvailable, "Un-decimate samples"}, {"hide", CmdHide, AlwaysAvailable, "Hide graph window"}, {"hpf", CmdHpf, AlwaysAvailable, "Remove DC offset from trace"}, {"iir", CmdDataIIR, AlwaysAvailable, "apply IIR buttersworth filter on plotdata"}, {"grid", CmdGrid, AlwaysAvailable, " -- overlay grid on graph window, use zero value to turn off either"}, {"ltrim", CmdLtrim, AlwaysAvailable, " -- Trim samples from left of trace"}, {"mtrim", CmdMtrim, AlwaysAvailable, " -- Trim out samples from the specified start to the specified stop"}, {"norm", CmdNorm, AlwaysAvailable, "Normalize max/min to +/-128"}, {"plot", CmdPlot, AlwaysAvailable, "Show graph window (hit 'h' in window for keystroke help)"}, {"rtrim", CmdRtrim, AlwaysAvailable, " -- Trim samples from right of trace"}, {"setgraphmarkers", CmdSetGraphMarkers, AlwaysAvailable, "[orange_marker] [blue_marker] (in graph window)"}, {"shiftgraphzero", CmdGraphShiftZero, AlwaysAvailable, " -- Shift 0 for Graphed wave + or - shift value"}, {"timescale", CmdTimeScale, AlwaysAvailable, "Set a timescale to get a differential reading between the yellow and purple markers as time duration\n"}, {"zerocrossings", CmdZerocrossings, AlwaysAvailable, "Count time between zero-crossings"}, {"convertbitstream", CmdConvertBitStream, AlwaysAvailable, "Convert GraphBuffer's 0/1 values to 127 / -127"}, {"getbitstream", CmdGetBitStream, AlwaysAvailable, "Convert GraphBuffer's >=1 values to 1 and <1 to 0"}, {"-----------", CmdHelp, AlwaysAvailable, "------------------------- " _CYAN_("General") "-------------------------"}, {"bin2hex", Cmdbin2hex, AlwaysAvailable, "Converts binary to hexadecimal"}, {"bitsamples", CmdBitsamples, IfPm3Present, "Get raw samples as bitstring"}, {"clear", CmdBuffClear, AlwaysAvailable, "Clears bigbuf on deviceside and graph window"}, {"hexsamples", CmdHexsamples, IfPm3Present, " [] -- Dump big buffer as hex bytes"}, {"hex2bin", Cmdhex2bin, AlwaysAvailable, "Converts hexadecimal to binary"}, {"load", CmdLoad, AlwaysAvailable, "Load contents of file into graph window"}, {"ndef", CmdDataNDEF, AlwaysAvailable, "Decode NDEF records"}, {"print", CmdPrintDemodBuff, AlwaysAvailable, "print the data in the DemodBuffer"}, {"samples", CmdSamples, IfPm3Present, "[512 - 40000] -- Get raw samples for graph window (GraphBuffer)"}, {"save", CmdSave, AlwaysAvailable, "Save signal trace data (from graph window)"}, {"setdebugmode", CmdSetDebugMode, AlwaysAvailable, "<0|1|2> -- Set Debugging Level on client side"}, {"tune", CmdTuneSamples, IfPm3Present, "Measure tuning of device antenna. Results shown in graph window"}, {NULL, NULL, NULL, NULL} }; static int CmdHelp(const char *Cmd) { (void)Cmd; // Cmd is not used so far CmdsHelp(CommandTable); return PM3_SUCCESS; } int CmdData(const char *Cmd) { clearCommandBuffer(); return CmdsParse(CommandTable, Cmd); }