/* * CTR_DRBG implementation based on AES-256 (NIST SP 800-90) * * Copyright (C) 2006-2015, ARM Limited, All Rights Reserved * SPDX-License-Identifier: GPL-2.0 * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * * This file is part of mbed TLS (https://tls.mbed.org) */ /* * The NIST SP 800-90 DRBGs are described in the following publication. * * http://csrc.nist.gov/publications/nistpubs/800-90/SP800-90revised_March2007.pdf */ #if !defined(MBEDTLS_CONFIG_FILE) #include "mbedtls/config.h" #else #include MBEDTLS_CONFIG_FILE #endif #if defined(MBEDTLS_CTR_DRBG_C) #include "mbedtls/ctr_drbg.h" #include "mbedtls/platform_util.h" #include #if defined(MBEDTLS_FS_IO) #include #endif #if defined(MBEDTLS_SELF_TEST) #if defined(MBEDTLS_PLATFORM_C) #include "mbedtls/platform.h" #else #include #define mbedtls_printf printf #endif /* MBEDTLS_PLATFORM_C */ #endif /* MBEDTLS_SELF_TEST */ /* * CTR_DRBG context initialization */ void mbedtls_ctr_drbg_init(mbedtls_ctr_drbg_context *ctx) { memset(ctx, 0, sizeof(mbedtls_ctr_drbg_context)); #if defined(MBEDTLS_THREADING_C) mbedtls_mutex_init(&ctx->mutex); #endif } /* * Non-public function wrapped by mbedtls_ctr_drbg_seed(). Necessary to allow * NIST tests to succeed (which require known length fixed entropy) */ int mbedtls_ctr_drbg_seed_entropy_len( mbedtls_ctr_drbg_context *ctx, int (*f_entropy)(void *, unsigned char *, size_t), void *p_entropy, const unsigned char *custom, size_t len, size_t entropy_len) { int ret; unsigned char key[MBEDTLS_CTR_DRBG_KEYSIZE]; memset(key, 0, MBEDTLS_CTR_DRBG_KEYSIZE); mbedtls_aes_init(&ctx->aes_ctx); ctx->f_entropy = f_entropy; ctx->p_entropy = p_entropy; ctx->entropy_len = entropy_len; ctx->reseed_interval = MBEDTLS_CTR_DRBG_RESEED_INTERVAL; /* * Initialize with an empty key */ if ((ret = mbedtls_aes_setkey_enc(&ctx->aes_ctx, key, MBEDTLS_CTR_DRBG_KEYBITS)) != 0) { return (ret); } if ((ret = mbedtls_ctr_drbg_reseed(ctx, custom, len)) != 0) { return (ret); } return (0); } int mbedtls_ctr_drbg_seed(mbedtls_ctr_drbg_context *ctx, int (*f_entropy)(void *, unsigned char *, size_t), void *p_entropy, const unsigned char *custom, size_t len) { return (mbedtls_ctr_drbg_seed_entropy_len(ctx, f_entropy, p_entropy, custom, len, MBEDTLS_CTR_DRBG_ENTROPY_LEN)); } void mbedtls_ctr_drbg_free(mbedtls_ctr_drbg_context *ctx) { if (ctx == NULL) return; #if defined(MBEDTLS_THREADING_C) mbedtls_mutex_free(&ctx->mutex); #endif mbedtls_aes_free(&ctx->aes_ctx); mbedtls_platform_zeroize(ctx, sizeof(mbedtls_ctr_drbg_context)); } void mbedtls_ctr_drbg_set_prediction_resistance(mbedtls_ctr_drbg_context *ctx, int resistance) { ctx->prediction_resistance = resistance; } void mbedtls_ctr_drbg_set_entropy_len(mbedtls_ctr_drbg_context *ctx, size_t len) { ctx->entropy_len = len; } void mbedtls_ctr_drbg_set_reseed_interval(mbedtls_ctr_drbg_context *ctx, int interval) { ctx->reseed_interval = interval; } static int block_cipher_df(unsigned char *output, const unsigned char *data, size_t data_len) { unsigned char buf[MBEDTLS_CTR_DRBG_MAX_SEED_INPUT + MBEDTLS_CTR_DRBG_BLOCKSIZE + 16]; unsigned char tmp[MBEDTLS_CTR_DRBG_SEEDLEN]; unsigned char key[MBEDTLS_CTR_DRBG_KEYSIZE]; unsigned char chain[MBEDTLS_CTR_DRBG_BLOCKSIZE]; unsigned char *p, *iv; mbedtls_aes_context aes_ctx; int ret = 0; int i, j; size_t buf_len, use_len; if (data_len > MBEDTLS_CTR_DRBG_MAX_SEED_INPUT) return (MBEDTLS_ERR_CTR_DRBG_INPUT_TOO_BIG); memset(buf, 0, MBEDTLS_CTR_DRBG_MAX_SEED_INPUT + MBEDTLS_CTR_DRBG_BLOCKSIZE + 16); mbedtls_aes_init(&aes_ctx); /* * Construct IV (16 bytes) and S in buffer * IV = Counter (in 32-bits) padded to 16 with zeroes * S = Length input string (in 32-bits) || Length of output (in 32-bits) || * data || 0x80 * (Total is padded to a multiple of 16-bytes with zeroes) */ p = buf + MBEDTLS_CTR_DRBG_BLOCKSIZE; *p++ = (data_len >> 24) & 0xff; *p++ = (data_len >> 16) & 0xff; *p++ = (data_len >> 8) & 0xff; *p++ = (data_len) & 0xff; p += 3; *p++ = MBEDTLS_CTR_DRBG_SEEDLEN; memcpy(p, data, data_len); p[data_len] = 0x80; buf_len = MBEDTLS_CTR_DRBG_BLOCKSIZE + 8 + data_len + 1; for (i = 0; i < MBEDTLS_CTR_DRBG_KEYSIZE; i++) key[i] = i; if ((ret = mbedtls_aes_setkey_enc(&aes_ctx, key, MBEDTLS_CTR_DRBG_KEYBITS)) != 0) { goto exit; } /* * Reduce data to MBEDTLS_CTR_DRBG_SEEDLEN bytes of data */ for (j = 0; j < MBEDTLS_CTR_DRBG_SEEDLEN; j += MBEDTLS_CTR_DRBG_BLOCKSIZE) { p = buf; memset(chain, 0, MBEDTLS_CTR_DRBG_BLOCKSIZE); use_len = buf_len; while (use_len > 0) { for (i = 0; i < MBEDTLS_CTR_DRBG_BLOCKSIZE; i++) chain[i] ^= p[i]; p += MBEDTLS_CTR_DRBG_BLOCKSIZE; use_len -= (use_len >= MBEDTLS_CTR_DRBG_BLOCKSIZE) ? MBEDTLS_CTR_DRBG_BLOCKSIZE : use_len; if ((ret = mbedtls_aes_crypt_ecb(&aes_ctx, MBEDTLS_AES_ENCRYPT, chain, chain)) != 0) { goto exit; } } memcpy(tmp + j, chain, MBEDTLS_CTR_DRBG_BLOCKSIZE); /* * Update IV */ buf[3]++; } /* * Do final encryption with reduced data */ if ((ret = mbedtls_aes_setkey_enc(&aes_ctx, tmp, MBEDTLS_CTR_DRBG_KEYBITS)) != 0) { goto exit; } iv = tmp + MBEDTLS_CTR_DRBG_KEYSIZE; p = output; for (j = 0; j < MBEDTLS_CTR_DRBG_SEEDLEN; j += MBEDTLS_CTR_DRBG_BLOCKSIZE) { if ((ret = mbedtls_aes_crypt_ecb(&aes_ctx, MBEDTLS_AES_ENCRYPT, iv, iv)) != 0) { goto exit; } memcpy(p, iv, MBEDTLS_CTR_DRBG_BLOCKSIZE); p += MBEDTLS_CTR_DRBG_BLOCKSIZE; } exit: mbedtls_aes_free(&aes_ctx); /* * tidy up the stack */ mbedtls_platform_zeroize(buf, sizeof(buf)); mbedtls_platform_zeroize(tmp, sizeof(tmp)); mbedtls_platform_zeroize(key, sizeof(key)); mbedtls_platform_zeroize(chain, sizeof(chain)); if (0 != ret) { /* * wipe partial seed from memory */ mbedtls_platform_zeroize(output, MBEDTLS_CTR_DRBG_SEEDLEN); } return (ret); } static int ctr_drbg_update_internal(mbedtls_ctr_drbg_context *ctx, const unsigned char data[MBEDTLS_CTR_DRBG_SEEDLEN]) { unsigned char tmp[MBEDTLS_CTR_DRBG_SEEDLEN]; unsigned char *p = tmp; int i, j; int ret = 0; memset(tmp, 0, MBEDTLS_CTR_DRBG_SEEDLEN); for (j = 0; j < MBEDTLS_CTR_DRBG_SEEDLEN; j += MBEDTLS_CTR_DRBG_BLOCKSIZE) { /* * Increase counter */ for (i = MBEDTLS_CTR_DRBG_BLOCKSIZE; i > 0; i--) if (++ctx->counter[i - 1] != 0) break; /* * Crypt counter block */ if ((ret = mbedtls_aes_crypt_ecb(&ctx->aes_ctx, MBEDTLS_AES_ENCRYPT, ctx->counter, p)) != 0) { return (ret); } p += MBEDTLS_CTR_DRBG_BLOCKSIZE; } for (i = 0; i < MBEDTLS_CTR_DRBG_SEEDLEN; i++) tmp[i] ^= data[i]; /* * Update key and counter */ if ((ret = mbedtls_aes_setkey_enc(&ctx->aes_ctx, tmp, MBEDTLS_CTR_DRBG_KEYBITS)) != 0) { return (ret); } memcpy(ctx->counter, tmp + MBEDTLS_CTR_DRBG_KEYSIZE, MBEDTLS_CTR_DRBG_BLOCKSIZE); return (0); } void mbedtls_ctr_drbg_update(mbedtls_ctr_drbg_context *ctx, const unsigned char *additional, size_t add_len) { unsigned char add_input[MBEDTLS_CTR_DRBG_SEEDLEN]; if (add_len > 0) { /* MAX_INPUT would be more logical here, but we have to match * block_cipher_df()'s limits since we can't propagate errors */ if (add_len > MBEDTLS_CTR_DRBG_MAX_SEED_INPUT) add_len = MBEDTLS_CTR_DRBG_MAX_SEED_INPUT; block_cipher_df(add_input, additional, add_len); ctr_drbg_update_internal(ctx, add_input); } } int mbedtls_ctr_drbg_reseed(mbedtls_ctr_drbg_context *ctx, const unsigned char *additional, size_t len) { unsigned char seed[MBEDTLS_CTR_DRBG_MAX_SEED_INPUT]; size_t seedlen = 0; int ret; if (ctx->entropy_len > MBEDTLS_CTR_DRBG_MAX_SEED_INPUT || len > MBEDTLS_CTR_DRBG_MAX_SEED_INPUT - ctx->entropy_len) return (MBEDTLS_ERR_CTR_DRBG_INPUT_TOO_BIG); memset(seed, 0, MBEDTLS_CTR_DRBG_MAX_SEED_INPUT); /* * Gather entropy_len bytes of entropy to seed state */ if (0 != ctx->f_entropy(ctx->p_entropy, seed, ctx->entropy_len)) { return (MBEDTLS_ERR_CTR_DRBG_ENTROPY_SOURCE_FAILED); } seedlen += ctx->entropy_len; /* * Add additional data */ if (additional && len) { memcpy(seed + seedlen, additional, len); seedlen += len; } /* * Reduce to 384 bits */ if ((ret = block_cipher_df(seed, seed, seedlen)) != 0) { return (ret); } /* * Update state */ if ((ret = ctr_drbg_update_internal(ctx, seed)) != 0) { return (ret); } ctx->reseed_counter = 1; return (0); } int mbedtls_ctr_drbg_random_with_add(void *p_rng, unsigned char *output, size_t output_len, const unsigned char *additional, size_t add_len) { int ret = 0; mbedtls_ctr_drbg_context *ctx = (mbedtls_ctr_drbg_context *) p_rng; unsigned char add_input[MBEDTLS_CTR_DRBG_SEEDLEN]; unsigned char *p = output; unsigned char tmp[MBEDTLS_CTR_DRBG_BLOCKSIZE]; int i; size_t use_len; if (output_len > MBEDTLS_CTR_DRBG_MAX_REQUEST) return (MBEDTLS_ERR_CTR_DRBG_REQUEST_TOO_BIG); if (add_len > MBEDTLS_CTR_DRBG_MAX_INPUT) return (MBEDTLS_ERR_CTR_DRBG_INPUT_TOO_BIG); memset(add_input, 0, MBEDTLS_CTR_DRBG_SEEDLEN); if (ctx->reseed_counter > ctx->reseed_interval || ctx->prediction_resistance) { if ((ret = mbedtls_ctr_drbg_reseed(ctx, additional, add_len)) != 0) { return (ret); } add_len = 0; } if (add_len > 0) { if ((ret = block_cipher_df(add_input, additional, add_len)) != 0) { return (ret); } if ((ret = ctr_drbg_update_internal(ctx, add_input)) != 0) { return (ret); } } while (output_len > 0) { /* * Increase counter */ for (i = MBEDTLS_CTR_DRBG_BLOCKSIZE; i > 0; i--) if (++ctx->counter[i - 1] != 0) break; /* * Crypt counter block */ if ((ret = mbedtls_aes_crypt_ecb(&ctx->aes_ctx, MBEDTLS_AES_ENCRYPT, ctx->counter, tmp)) != 0) { return (ret); } use_len = (output_len > MBEDTLS_CTR_DRBG_BLOCKSIZE) ? MBEDTLS_CTR_DRBG_BLOCKSIZE : output_len; /* * Copy random block to destination */ memcpy(p, tmp, use_len); p += use_len; output_len -= use_len; } if ((ret = ctr_drbg_update_internal(ctx, add_input)) != 0) { return (ret); } ctx->reseed_counter++; return (0); } int mbedtls_ctr_drbg_random(void *p_rng, unsigned char *output, size_t output_len) { int ret; mbedtls_ctr_drbg_context *ctx = (mbedtls_ctr_drbg_context *) p_rng; #if defined(MBEDTLS_THREADING_C) if ((ret = mbedtls_mutex_lock(&ctx->mutex)) != 0) return (ret); #endif ret = mbedtls_ctr_drbg_random_with_add(ctx, output, output_len, NULL, 0); #if defined(MBEDTLS_THREADING_C) if (mbedtls_mutex_unlock(&ctx->mutex) != 0) return (MBEDTLS_ERR_THREADING_MUTEX_ERROR); #endif return (ret); } #if defined(MBEDTLS_FS_IO) int mbedtls_ctr_drbg_write_seed_file(mbedtls_ctr_drbg_context *ctx, const char *path) { int ret = MBEDTLS_ERR_CTR_DRBG_FILE_IO_ERROR; FILE *f; unsigned char buf[ MBEDTLS_CTR_DRBG_MAX_INPUT ]; if ((f = fopen(path, "wb")) == NULL) return (MBEDTLS_ERR_CTR_DRBG_FILE_IO_ERROR); if ((ret = mbedtls_ctr_drbg_random(ctx, buf, MBEDTLS_CTR_DRBG_MAX_INPUT)) != 0) goto exit; if (fwrite(buf, 1, MBEDTLS_CTR_DRBG_MAX_INPUT, f) != MBEDTLS_CTR_DRBG_MAX_INPUT) ret = MBEDTLS_ERR_CTR_DRBG_FILE_IO_ERROR; else ret = 0; exit: mbedtls_platform_zeroize(buf, sizeof(buf)); fclose(f); return (ret); } int mbedtls_ctr_drbg_update_seed_file(mbedtls_ctr_drbg_context *ctx, const char *path) { int ret = 0; FILE *f; size_t n; unsigned char buf[ MBEDTLS_CTR_DRBG_MAX_INPUT ]; if ((f = fopen(path, "rb")) == NULL) return (MBEDTLS_ERR_CTR_DRBG_FILE_IO_ERROR); fseek(f, 0, SEEK_END); n = (size_t) ftell(f); fseek(f, 0, SEEK_SET); if (n > MBEDTLS_CTR_DRBG_MAX_INPUT) { fclose(f); return (MBEDTLS_ERR_CTR_DRBG_INPUT_TOO_BIG); } if (fread(buf, 1, n, f) != n) ret = MBEDTLS_ERR_CTR_DRBG_FILE_IO_ERROR; else mbedtls_ctr_drbg_update(ctx, buf, n); fclose(f); mbedtls_platform_zeroize(buf, sizeof(buf)); if (ret != 0) return (ret); return (mbedtls_ctr_drbg_write_seed_file(ctx, path)); } #endif /* MBEDTLS_FS_IO */ #if defined(MBEDTLS_SELF_TEST) static const unsigned char entropy_source_pr[96] = { 0xc1, 0x80, 0x81, 0xa6, 0x5d, 0x44, 0x02, 0x16, 0x19, 0xb3, 0xf1, 0x80, 0xb1, 0xc9, 0x20, 0x02, 0x6a, 0x54, 0x6f, 0x0c, 0x70, 0x81, 0x49, 0x8b, 0x6e, 0xa6, 0x62, 0x52, 0x6d, 0x51, 0xb1, 0xcb, 0x58, 0x3b, 0xfa, 0xd5, 0x37, 0x5f, 0xfb, 0xc9, 0xff, 0x46, 0xd2, 0x19, 0xc7, 0x22, 0x3e, 0x95, 0x45, 0x9d, 0x82, 0xe1, 0xe7, 0x22, 0x9f, 0x63, 0x31, 0x69, 0xd2, 0x6b, 0x57, 0x47, 0x4f, 0xa3, 0x37, 0xc9, 0x98, 0x1c, 0x0b, 0xfb, 0x91, 0x31, 0x4d, 0x55, 0xb9, 0xe9, 0x1c, 0x5a, 0x5e, 0xe4, 0x93, 0x92, 0xcf, 0xc5, 0x23, 0x12, 0xd5, 0x56, 0x2c, 0x4a, 0x6e, 0xff, 0xdc, 0x10, 0xd0, 0x68 }; static const unsigned char entropy_source_nopr[64] = { 0x5a, 0x19, 0x4d, 0x5e, 0x2b, 0x31, 0x58, 0x14, 0x54, 0xde, 0xf6, 0x75, 0xfb, 0x79, 0x58, 0xfe, 0xc7, 0xdb, 0x87, 0x3e, 0x56, 0x89, 0xfc, 0x9d, 0x03, 0x21, 0x7c, 0x68, 0xd8, 0x03, 0x38, 0x20, 0xf9, 0xe6, 0x5e, 0x04, 0xd8, 0x56, 0xf3, 0xa9, 0xc4, 0x4a, 0x4c, 0xbd, 0xc1, 0xd0, 0x08, 0x46, 0xf5, 0x98, 0x3d, 0x77, 0x1c, 0x1b, 0x13, 0x7e, 0x4e, 0x0f, 0x9d, 0x8e, 0xf4, 0x09, 0xf9, 0x2e }; static const unsigned char nonce_pers_pr[16] = { 0xd2, 0x54, 0xfc, 0xff, 0x02, 0x1e, 0x69, 0xd2, 0x29, 0xc9, 0xcf, 0xad, 0x85, 0xfa, 0x48, 0x6c }; static const unsigned char nonce_pers_nopr[16] = { 0x1b, 0x54, 0xb8, 0xff, 0x06, 0x42, 0xbf, 0xf5, 0x21, 0xf1, 0x5c, 0x1c, 0x0b, 0x66, 0x5f, 0x3f }; static const unsigned char result_pr[16] = { 0x34, 0x01, 0x16, 0x56, 0xb4, 0x29, 0x00, 0x8f, 0x35, 0x63, 0xec, 0xb5, 0xf2, 0x59, 0x07, 0x23 }; static const unsigned char result_nopr[16] = { 0xa0, 0x54, 0x30, 0x3d, 0x8a, 0x7e, 0xa9, 0x88, 0x9d, 0x90, 0x3e, 0x07, 0x7c, 0x6f, 0x21, 0x8f }; static size_t test_offset; static int ctr_drbg_self_test_entropy(void *data, unsigned char *buf, size_t len) { const unsigned char *p = data; memcpy(buf, p + test_offset, len); test_offset += len; return (0); } #define CHK( c ) if( (c) != 0 ) \ { \ if( verbose != 0 ) \ mbedtls_printf( "failed\n" ); \ return( 1 ); \ } /* * Checkup routine */ int mbedtls_ctr_drbg_self_test(int verbose) { mbedtls_ctr_drbg_context ctx; unsigned char buf[16]; mbedtls_ctr_drbg_init(&ctx); /* * Based on a NIST CTR_DRBG test vector (PR = True) */ if (verbose != 0) mbedtls_printf(" CTR_DRBG (PR = TRUE) : "); test_offset = 0; CHK(mbedtls_ctr_drbg_seed_entropy_len(&ctx, ctr_drbg_self_test_entropy, (void *) entropy_source_pr, nonce_pers_pr, 16, 32)); mbedtls_ctr_drbg_set_prediction_resistance(&ctx, MBEDTLS_CTR_DRBG_PR_ON); CHK(mbedtls_ctr_drbg_random(&ctx, buf, MBEDTLS_CTR_DRBG_BLOCKSIZE)); CHK(mbedtls_ctr_drbg_random(&ctx, buf, MBEDTLS_CTR_DRBG_BLOCKSIZE)); CHK(memcmp(buf, result_pr, MBEDTLS_CTR_DRBG_BLOCKSIZE)); mbedtls_ctr_drbg_free(&ctx); if (verbose != 0) mbedtls_printf("passed\n"); /* * Based on a NIST CTR_DRBG test vector (PR = FALSE) */ if (verbose != 0) mbedtls_printf(" CTR_DRBG (PR = FALSE): "); mbedtls_ctr_drbg_init(&ctx); test_offset = 0; CHK(mbedtls_ctr_drbg_seed_entropy_len(&ctx, ctr_drbg_self_test_entropy, (void *) entropy_source_nopr, nonce_pers_nopr, 16, 32)); CHK(mbedtls_ctr_drbg_random(&ctx, buf, 16)); CHK(mbedtls_ctr_drbg_reseed(&ctx, NULL, 0)); CHK(mbedtls_ctr_drbg_random(&ctx, buf, 16)); CHK(memcmp(buf, result_nopr, 16)); mbedtls_ctr_drbg_free(&ctx); if (verbose != 0) mbedtls_printf("passed\n"); if (verbose != 0) mbedtls_printf("\n"); return (0); } #endif /* MBEDTLS_SELF_TEST */ #endif /* MBEDTLS_CTR_DRBG_C */