//----------------------------------------------------------------------------- // Copyright (C) Gerhard de Koning Gans - May 2008 // Copyright (C) Proxmark3 contributors. See AUTHORS.md for details. // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // See LICENSE.txt for the text of the license. //----------------------------------------------------------------------------- #include "mifarecmd.h" #include "pmflash.h" #include "proxmark3_arm.h" #include "string.h" #include "mifareutil.h" #include "protocols.h" #include "parity.h" #include "BigBuf.h" #include "cmd.h" #include "flashmem.h" #include "fpgaloader.h" #include "iso14443a.h" #include "mifaredesfire.h" #include "util.h" #include "commonutil.h" #include "crc16.h" #include "dbprint.h" #include "ticks.h" #include "usb_cdc.h" // usb_poll_validate_length #include "spiffs.h" // spiffs #include "appmain.h" // print_stack_usage #ifndef HARDNESTED_AUTHENTICATION_TIMEOUT # define HARDNESTED_AUTHENTICATION_TIMEOUT 848 // card times out 1ms after wrong authentication (according to NXP documentation) #endif #ifndef HARDNESTED_PRE_AUTHENTICATION_LEADTIME # define HARDNESTED_PRE_AUTHENTICATION_LEADTIME 400 // some (non standard) cards need a pause after select before they are ready for first authentication #endif // send an incomplete dummy response in order to trigger the card's authentication failure timeout #ifndef CHK_TIMEOUT # define CHK_TIMEOUT(void) { \ ReaderTransmit(&dummy_answer, 1, NULL); \ uint32_t timeout = GetCountSspClk() + HARDNESTED_AUTHENTICATION_TIMEOUT; \ while (GetCountSspClk() < timeout) {}; \ } #endif static uint8_t dummy_answer = 0; //----------------------------------------------------------------------------- // Select, Authenticate, Read a MIFARE tag. // key_auth_cmd is one of MIFARE_AUTH_KEYA, MIFARE_AUTH_KEYB, or MIFARE_MAGIC_GDM_AUTH_KEY // read_cmd is one of ISO14443A_CMD_READBLOCK, MIFARE_MAGIC_GDM_READBLOCK, or MIFARE_MAGIC_GDM_READ_CFG // block_data must be 16*count bytes large // block_no through block_no+count-1 normally needs to be within the same sector //----------------------------------------------------------------------------- int16_t mifare_cmd_readblocks(uint8_t key_auth_cmd, uint8_t *key, uint8_t read_cmd, uint8_t block_no, uint8_t count, uint8_t *block_data) { uint64_t ui64key = bytes_to_num(key, 6); uint8_t uid[10] = {0x00}; uint32_t cuid = 0; struct Crypto1State mpcs = {0, 0}; struct Crypto1State *pcs = &mpcs; iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); clear_trace(); set_tracing(true); uint32_t timeout = iso14a_get_timeout(); LED_A_ON(); LED_B_OFF(); LED_C_OFF(); int retval = PM3_SUCCESS; if (iso14443a_select_card(uid, NULL, &cuid, true, 0, true) == false) { if (g_dbglevel >= DBG_ERROR) Dbprintf("Can't select card"); retval = PM3_ESOFT; goto OUT; } if (mifare_classic_authex_cmd(pcs, cuid, block_no, key_auth_cmd, ui64key, AUTH_FIRST, NULL, NULL)) { if (g_dbglevel >= DBG_ERROR) Dbprintf("Auth error"); retval = PM3_ESOFT; goto OUT; }; // frame waiting time (FWT) in 1/fc uint32_t fwt = 256 * 16 * (1 << 7); iso14a_set_timeout(fwt / (8 * 16)); for (uint8_t i = 0; i < count; i++) { if (mifare_classic_readblock_ex(pcs, block_no + i, block_data + (i * 16), read_cmd)) { if (g_dbglevel >= DBG_ERROR) Dbprintf("Read block error"); retval = PM3_ESOFT; goto OUT; }; } if (mifare_classic_halt(pcs)) { if (g_dbglevel >= DBG_ERROR) Dbprintf("Halt error"); retval = PM3_ESOFT; goto OUT; }; OUT: crypto1_deinit(pcs); iso14a_set_timeout(timeout); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); set_tracing(false); BigBuf_free(); return retval; } //----------------------------------------------------------------------------- // Select, Authenticate, Write a MIFARE tag. // key_auth_cmd is one of MIFARE_AUTH_KEYA, MIFARE_AUTH_KEYB, or MIFARE_MAGIC_GDM_AUTH_KEY // write_cmd is one of ISO14443A_CMD_WRITEBLOCK, MIFARE_MAGIC_GDM_WRITEBLOCK, or MIFARE_MAGIC_GDM_WRITE_CFG // block_data must be 16*count bytes large // block_no through block_no+count-1 normally needs to be within the same sector //----------------------------------------------------------------------------- int16_t mifare_cmd_writeblocks(uint8_t key_auth_cmd, uint8_t *key, uint8_t write_cmd, uint8_t block_no, uint8_t count, uint8_t *block_data) { uint64_t ui64key = bytes_to_num(key, 6); uint8_t uid[10] = {0x00}; uint32_t cuid = 0; struct Crypto1State mpcs = {0, 0}; struct Crypto1State *pcs = &mpcs; iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); clear_trace(); set_tracing(true); LED_A_ON(); LED_B_OFF(); LED_C_OFF(); int retval = PM3_SUCCESS; if (!iso14443a_select_card(uid, NULL, &cuid, true, 0, true)) { if (g_dbglevel >= DBG_ERROR) Dbprintf("Can't select card"); retval = PM3_ESOFT; goto OUT; }; if (mifare_classic_authex_cmd(pcs, cuid, block_no, key_auth_cmd, ui64key, AUTH_FIRST, NULL, NULL)) { if (g_dbglevel >= DBG_ERROR) Dbprintf("Auth error"); retval = PM3_ESOFT; goto OUT; }; for (uint8_t i = 0; i < count; i++) { int res = mifare_classic_writeblock_ex(pcs, block_no + i, block_data + (i * 16), write_cmd); if (res == PM3_ETEAROFF) { retval = PM3_ETEAROFF; goto OUT; } else if (res != PM3_SUCCESS) { if (g_dbglevel >= DBG_INFO) Dbprintf("Write block error"); retval = PM3_ESOFT; goto OUT; } } if (mifare_classic_halt(pcs)) { if (g_dbglevel >= DBG_ERROR) Dbprintf("Halt error"); retval = PM3_ESOFT; goto OUT; }; OUT: crypto1_deinit(pcs); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); set_tracing(false); BigBuf_free(); return retval; } //----------------------------------------------------------------------------- // Select, Authenticate, Read a MIFARE tag. // read sector (data = 4 x 16 bytes = 64 bytes, or 16 x 16 bytes = 256 bytes) //----------------------------------------------------------------------------- void MifareReadSector(uint8_t sector_no, uint8_t key_type, uint8_t *key) { uint8_t block_no = FirstBlockOfSector(sector_no); uint8_t num_blocks = NumBlocksPerSector(sector_no); uint8_t outbuf[16 * 16]; int16_t retval = mifare_cmd_readblocks(MIFARE_AUTH_KEYA + (key_type & 1), key, ISO14443A_CMD_READBLOCK, block_no, num_blocks, outbuf); reply_old(CMD_ACK, retval == PM3_SUCCESS, 0, 0, outbuf, 16 * num_blocks); } void MifareUC_Auth(uint8_t arg0, uint8_t *keybytes) { bool turnOffField = (arg0 == 1); LED_A_ON(); LED_B_OFF(); LED_C_OFF(); iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); clear_trace(); set_tracing(true); if (!iso14443a_select_card(NULL, NULL, NULL, true, 0, true)) { if (g_dbglevel >= DBG_ERROR) Dbprintf("Can't select card"); OnError(0); return; }; if (!mifare_ultra_auth(keybytes)) { if (g_dbglevel >= DBG_ERROR) Dbprintf("Authentication failed"); OnError(1); return; } if (turnOffField) { FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); } reply_mix(CMD_ACK, 1, 0, 0, 0, 0); } // Arg0 = BlockNo, // Arg1 = UsePwd bool // datain = PWD bytes, void MifareUReadBlock(uint8_t arg0, uint8_t arg1, uint8_t *datain) { uint8_t blockNo = arg0; uint8_t dataout[16] = {0x00}; bool useKey = (arg1 == 1); //UL_C bool usePwd = (arg1 == 2); //UL_EV1/NTAG LEDsoff(); LED_A_ON(); iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); clear_trace(); set_tracing(true); int len = iso14443a_select_card(NULL, NULL, NULL, true, 0, true); if (!len) { if (g_dbglevel >= DBG_ERROR) Dbprintf("Can't select card (RC:%02X)", len); OnError(1); return; } // UL-C authentication if (useKey) { uint8_t key[16] = {0x00}; memcpy(key, datain, sizeof(key)); if (!mifare_ultra_auth(key)) { OnError(1); return; } } // UL-EV1 / NTAG authentication if (usePwd) { uint8_t pwd[4] = {0x00}; memcpy(pwd, datain, 4); uint8_t pack[4] = {0, 0, 0, 0}; if (!mifare_ul_ev1_auth(pwd, pack)) { OnError(1); return; } } if (mifare_ultra_readblock(blockNo, dataout)) { if (g_dbglevel >= DBG_ERROR) Dbprintf("Read block error"); OnError(2); return; } if (mifare_ultra_halt()) { if (g_dbglevel >= DBG_ERROR) Dbprintf("Halt error"); OnError(3); return; } reply_mix(CMD_ACK, 1, 0, 0, dataout, 16); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); } // arg0 = blockNo (start) // arg1 = Pages (number of blocks) // arg2 = useKey // datain = KEY bytes void MifareUReadCard(uint8_t arg0, uint16_t arg1, uint8_t arg2, uint8_t *datain) { LEDsoff(); LED_A_ON(); iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); // free eventually allocated BigBuf memory BigBuf_free(); BigBuf_Clear_ext(false); clear_trace(); set_tracing(true); // params uint8_t blockNo = arg0; uint16_t blocks = arg1; bool useKey = (arg2 == 1); //UL_C bool usePwd = (arg2 == 2); //UL_EV1/NTAG uint32_t countblocks = 0; uint8_t *dataout = BigBuf_malloc(CARD_MEMORY_SIZE); if (dataout == NULL) { Dbprintf("out of memory"); OnError(1); return; } int len = iso14443a_select_card(NULL, NULL, NULL, true, 0, true); if (!len) { if (g_dbglevel >= DBG_ERROR) Dbprintf("Can't select card (RC:%d)", len); OnError(1); return; } // UL-C authentication if (useKey) { uint8_t key[16] = {0x00}; memcpy(key, datain, sizeof(key)); if (!mifare_ultra_auth(key)) { OnError(1); return; } } // UL-EV1 / NTAG authentication if (usePwd) { uint8_t pwd[4] = {0x00}; memcpy(pwd, datain, sizeof(pwd)); uint8_t pack[4] = {0, 0, 0, 0}; if (!mifare_ul_ev1_auth(pwd, pack)) { OnError(1); return; } } for (int i = 0; i < blocks; i++) { if ((i * 4) + 4 >= CARD_MEMORY_SIZE) { Dbprintf("Data exceeds buffer!!"); break; } len = mifare_ultra_readblock(blockNo + i, dataout + 4 * i); if (len) { if (g_dbglevel >= DBG_ERROR) Dbprintf("Read block %d error", i); // if no blocks read - error out if (i == 0) { OnError(2); return; } else { //stop at last successful read block and return what we got break; } } else { countblocks++; } } len = mifare_ultra_halt(); if (len) { if (g_dbglevel >= DBG_ERROR) Dbprintf("Halt error"); OnError(3); return; } if (g_dbglevel >= DBG_EXTENDED) Dbprintf("Blocks read %d", countblocks); countblocks *= 4; reply_mix(CMD_ACK, 1, countblocks, dataout - BigBuf_get_addr(), 0, 0); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); BigBuf_free(); set_tracing(false); } void MifareValue(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain) { // params uint8_t blockNo = arg0; uint8_t keyType = arg1; uint8_t transferKeyType = arg2; uint64_t ui64Key = 0; uint64_t transferUi64Key = 0; uint8_t blockdata[16] = {0x00}; ui64Key = bytes_to_num(datain, 6); memcpy(blockdata, datain + 11, 16); transferUi64Key = bytes_to_num(datain + 27, 6); // variables uint8_t action = datain[9]; uint8_t transferBlk = datain[10]; bool needAuth = datain[33]; uint8_t isOK = 0; uint8_t uid[10] = {0x00}; uint32_t cuid = 0; uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = {0x00}; uint8_t len = 0; struct Crypto1State mpcs = {0, 0}; struct Crypto1State *pcs; pcs = &mpcs; iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); clear_trace(); set_tracing(true); LED_A_ON(); LED_B_OFF(); LED_C_OFF(); while (true) { if (!iso14443a_select_card(uid, NULL, &cuid, true, 0, true)) { if (g_dbglevel >= DBG_ERROR) Dbprintf("Can't select card"); break; }; if (mifare_classic_auth(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST)) { if (g_dbglevel >= DBG_ERROR) Dbprintf("Auth error"); break; }; if (mifare_classic_value(pcs, blockNo, blockdata, action) != PM3_SUCCESS) { if (g_dbglevel >= DBG_INFO) Dbprintf("Write block error"); break; }; if (needAuth) { // transfer to other sector if (mifare_classic_auth(pcs, cuid, transferBlk, transferKeyType, transferUi64Key, AUTH_NESTED)) { if (g_dbglevel >= DBG_ERROR) Dbprintf("Nested auth error"); break; } } // send transfer (commit the change) len = mifare_sendcmd_short(pcs, 1, MIFARE_CMD_TRANSFER, (transferBlk != 0) ? transferBlk : blockNo, receivedAnswer, NULL, NULL); if (len != 1 && receivedAnswer[0] != 0x0A) { // 0x0a - ACK if (g_dbglevel >= DBG_ERROR) Dbprintf("Cmd Error in transfer: %02x", receivedAnswer[0]); break; } if (mifare_classic_halt(pcs)) { if (g_dbglevel >= DBG_ERROR) Dbprintf("Halt error"); break; }; isOK = 1; break; } crypto1_deinit(pcs); if (g_dbglevel >= 2) DbpString("WRITE BLOCK FINISHED"); reply_mix(CMD_ACK, isOK, 0, 0, 0, 0); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); set_tracing(false); } // Arg0 : Block to write to. // Arg1 : 0 = use no authentication. // 1 = use 0x1A authentication. // 2 = use 0x1B authentication. // datain : 4 first bytes is data to be written. // : 4/16 next bytes is authentication key. static void MifareUWriteBlockEx(uint8_t arg0, uint8_t arg1, uint8_t *datain, bool reply) { uint8_t blockNo = arg0; bool useKey = (arg1 == 1); //UL_C bool usePwd = (arg1 == 2); //UL_EV1/NTAG uint8_t blockdata[4] = {0x00}; memcpy(blockdata, datain, 4); LEDsoff(); LED_A_ON(); iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); clear_trace(); set_tracing(true); if (!iso14443a_select_card(NULL, NULL, NULL, true, 0, true)) { if (g_dbglevel >= DBG_ERROR) Dbprintf("Can't select card"); OnError(0); return; }; // UL-C authentication if (useKey) { uint8_t key[16] = {0x00}; memcpy(key, datain + 4, sizeof(key)); if (!mifare_ultra_auth(key)) { OnError(1); return; } } // UL-EV1 / NTAG authentication if (usePwd) { uint8_t pwd[4] = {0x00}; memcpy(pwd, datain + 4, 4); uint8_t pack[4] = {0, 0, 0, 0}; if (!mifare_ul_ev1_auth(pwd, pack)) { OnError(1); return; } } if (mifare_ultra_writeblock(blockNo, blockdata) != PM3_SUCCESS) { if (g_dbglevel >= DBG_INFO) Dbprintf("Write block error"); OnError(0); return; }; if (mifare_ultra_halt()) { if (g_dbglevel >= DBG_ERROR) Dbprintf("Halt error"); OnError(0); return; }; if (g_dbglevel >= 2) DbpString("WRITE BLOCK FINISHED"); if (reply) reply_mix(CMD_ACK, 1, 0, 0, 0, 0); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); set_tracing(false); } void MifareUWriteBlock(uint8_t arg0, uint8_t arg1, uint8_t *datain) { MifareUWriteBlockEx(arg0, arg1, datain, true); } // Arg0 : Block to write to. // Arg1 : 0 = use no authentication. // 1 = use 0x1A authentication. // 2 = use 0x1B authentication. // datain : 16 first bytes is data to be written. // : 4/16 next bytes is authentication key. void MifareUWriteBlockCompat(uint8_t arg0, uint8_t arg1, uint8_t *datain) { uint8_t blockNo = arg0; bool useKey = (arg1 == 1); //UL_C bool usePwd = (arg1 == 2); //UL_EV1/NTAG uint8_t blockdata[16] = {0x00}; memcpy(blockdata, datain, 16); LEDsoff(); LED_A_ON(); iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); clear_trace(); set_tracing(true); if (!iso14443a_select_card(NULL, NULL, NULL, true, 0, true)) { if (g_dbglevel >= DBG_ERROR) Dbprintf("Can't select card"); OnError(0); return; }; // UL-C authentication if (useKey) { uint8_t key[16] = {0x00}; memcpy(key, datain + 16, sizeof(key)); if (!mifare_ultra_auth(key)) { OnError(1); return; } } // UL-EV1 / NTAG authentication if (usePwd) { uint8_t pwd[4] = {0x00}; memcpy(pwd, datain + 16, 4); uint8_t pack[4] = {0, 0, 0, 0}; if (!mifare_ul_ev1_auth(pwd, pack)) { OnError(1); return; } } if (mifare_ultra_writeblock_compat(blockNo, blockdata) != PM3_SUCCESS) { if (g_dbglevel >= DBG_INFO) Dbprintf("Write block error"); OnError(0); return; }; if (mifare_ultra_halt()) { if (g_dbglevel >= DBG_ERROR) Dbprintf("Halt error"); OnError(0); return; }; if (g_dbglevel >= 2) DbpString("WRITE BLOCK FINISHED"); reply_mix(CMD_ACK, 1, 0, 0, 0, 0); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); set_tracing(false); } void MifareUSetPwd(uint8_t arg0, uint8_t *datain) { uint8_t pwd[16] = {0x00}; uint8_t blockdata[4] = {0x00}; memcpy(pwd, datain, 16); LED_A_ON(); LED_B_OFF(); LED_C_OFF(); iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); clear_trace(); set_tracing(true); if (!iso14443a_select_card(NULL, NULL, NULL, true, 0, true)) { if (g_dbglevel >= DBG_ERROR) Dbprintf("Can't select card"); OnError(0); return; }; blockdata[0] = pwd[7]; blockdata[1] = pwd[6]; blockdata[2] = pwd[5]; blockdata[3] = pwd[4]; if (mifare_ultra_writeblock(44, blockdata) != PM3_SUCCESS) { if (g_dbglevel >= DBG_INFO) Dbprintf("Write block error"); OnError(44); return; }; blockdata[0] = pwd[3]; blockdata[1] = pwd[2]; blockdata[2] = pwd[1]; blockdata[3] = pwd[0]; if (mifare_ultra_writeblock(45, blockdata) != PM3_SUCCESS) { if (g_dbglevel >= DBG_INFO) Dbprintf("Write block error"); OnError(45); return; }; blockdata[0] = pwd[15]; blockdata[1] = pwd[14]; blockdata[2] = pwd[13]; blockdata[3] = pwd[12]; if (mifare_ultra_writeblock(46, blockdata) != PM3_SUCCESS) { if (g_dbglevel >= DBG_INFO) Dbprintf("Write block error"); OnError(46); return; }; blockdata[0] = pwd[11]; blockdata[1] = pwd[10]; blockdata[2] = pwd[9]; blockdata[3] = pwd[8]; if (mifare_ultra_writeblock(47, blockdata) != PM3_SUCCESS) { if (g_dbglevel >= DBG_INFO) Dbprintf("Write block error"); OnError(47); return; }; if (mifare_ultra_halt()) { if (g_dbglevel >= DBG_ERROR) Dbprintf("Halt error"); OnError(0); return; }; reply_mix(CMD_ACK, 1, 0, 0, 0, 0); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); set_tracing(false); } // Return 1 if the nonce is invalid else return 0 static int valid_nonce(uint32_t Nt, uint32_t NtEnc, uint32_t Ks1, const uint8_t *parity) { return ( (oddparity8((Nt >> 24) & 0xFF) == ((parity[0]) ^ oddparity8((NtEnc >> 24) & 0xFF) ^ BIT(Ks1, 16))) && \ (oddparity8((Nt >> 16) & 0xFF) == ((parity[1]) ^ oddparity8((NtEnc >> 16) & 0xFF) ^ BIT(Ks1, 8))) && \ (oddparity8((Nt >> 8) & 0xFF) == ((parity[2]) ^ oddparity8((NtEnc >> 8) & 0xFF) ^ BIT(Ks1, 0))) ) ? 1 : 0; } void MifareAcquireNonces(uint32_t arg0, uint32_t flags) { uint8_t uid[10] = {0x00}; uint8_t answer[MAX_MIFARE_FRAME_SIZE] = {0x00}; uint8_t par[1] = {0x00}; uint8_t buf[PM3_CMD_DATA_SIZE] = {0x00}; uint32_t cuid = 0; int16_t isOK = 0; uint16_t num_nonces = 0; uint8_t cascade_levels = 0; uint8_t blockNo = arg0 & 0xff; uint8_t keyType = (arg0 >> 8) & 0xff; bool initialize = flags & 0x0001; bool field_off = flags & 0x0004; bool have_uid = false; LED_A_ON(); LED_C_OFF(); BigBuf_free(); BigBuf_Clear_ext(false); clear_trace(); set_tracing(true); if (initialize) iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); LED_C_ON(); while (num_nonces < PM3_CMD_DATA_SIZE / 4) { // Test if the action was cancelled if (BUTTON_PRESS()) { isOK = 2; field_off = true; break; } if (!have_uid) { // need a full select cycle to get the uid first iso14a_card_select_t card_info; if (iso14443a_select_card(uid, &card_info, &cuid, true, 0, true) == 0) { if (g_dbglevel >= DBG_ERROR) Dbprintf("AcquireNonces: Can't select card (ALL)"); continue; } switch (card_info.uidlen) { case 4 : cascade_levels = 1; break; case 7 : cascade_levels = 2; break; case 10: cascade_levels = 3; break; default: break; } have_uid = true; } else { // no need for anticollision. We can directly select the card if (iso14443a_fast_select_card(uid, cascade_levels) == 0) { if (g_dbglevel >= DBG_ERROR) Dbprintf("AcquireNonces: Can't select card (UID)"); continue; } } // Transmit MIFARE_CLASSIC_AUTH uint8_t dcmd[4] = {0x60 + (keyType & 0x01), blockNo, 0x00, 0x00}; AddCrc14A(dcmd, 2); ReaderTransmit(dcmd, sizeof(dcmd), NULL); int len = ReaderReceive(answer, par); // wait for the card to become ready again CHK_TIMEOUT(); if (len != 4) { if (g_dbglevel >= 2) Dbprintf("AcquireNonces: Auth1 error"); continue; } // Save the tag nonce (nt) memcpy(buf + num_nonces * 4, answer, 4); num_nonces++; } LED_C_OFF(); LED_B_ON(); reply_old(CMD_ACK, isOK, cuid, num_nonces, buf, sizeof(buf)); LED_B_OFF(); if (g_dbglevel >= 3) DbpString("AcquireNonces finished"); if (field_off) { FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); set_tracing(false); } } //----------------------------------------------------------------------------- // acquire encrypted nonces in order to perform the attack described in // Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened // Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on // Computer and Communications Security, 2015 //----------------------------------------------------------------------------- void MifareAcquireEncryptedNonces(uint32_t arg0, uint32_t arg1, uint32_t flags, uint8_t *datain) { struct Crypto1State mpcs = {0, 0}; struct Crypto1State *pcs; pcs = &mpcs; uint8_t uid[10] = {0x00}; uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = {0x00}; uint8_t par_enc[1] = {0x00}; uint8_t buf[PM3_CMD_DATA_SIZE] = {0x00}; uint64_t ui64Key = bytes_to_num(datain, 6); uint32_t cuid = 0; int16_t isOK = PM3_SUCCESS; uint16_t num_nonces = 0; uint8_t nt_par_enc = 0; uint8_t cascade_levels = 0; uint8_t blockNo = arg0 & 0xff; uint8_t keyType = (arg0 >> 8) & 0xff; uint8_t targetBlockNo = arg1 & 0xff; uint8_t targetKeyType = (arg1 >> 8) & 0xff; bool initialize = flags & 0x0001; bool slow = flags & 0x0002; bool field_off = flags & 0x0004; bool have_uid = false; LED_A_ON(); LED_C_OFF(); BigBuf_free(); BigBuf_Clear_ext(false); clear_trace(); set_tracing(false); if (initialize) iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); LED_C_ON(); uint8_t prev_enc_nt[] = {0, 0, 0, 0}; uint8_t prev_counter = 0; for (uint16_t i = 0; i <= PM3_CMD_DATA_SIZE - 9;) { // Test if the action was cancelled if (BUTTON_PRESS()) { isOK = PM3_EOPABORTED; field_off = true; break; } if (have_uid == false) { // need a full select cycle to get the uid first iso14a_card_select_t card_info; if (iso14443a_select_card(uid, &card_info, &cuid, true, 0, true) == 0) { if (g_dbglevel >= DBG_ERROR) Dbprintf("AcquireEncryptedNonces: Can't select card (ALL)"); continue; } switch (card_info.uidlen) { case 4 : cascade_levels = 1; break; case 7 : cascade_levels = 2; break; case 10: cascade_levels = 3; break; default: break; } have_uid = true; } else { // no need for anticollision. We can directly select the card if (iso14443a_fast_select_card(uid, cascade_levels) == 0) { if (g_dbglevel >= DBG_ERROR) Dbprintf("AcquireEncryptedNonces: Can't select card (UID)"); continue; } } if (slow) SpinDelayUs(HARDNESTED_PRE_AUTHENTICATION_LEADTIME); uint32_t nt1 = 0; if (mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST, &nt1, NULL)) { if (g_dbglevel >= DBG_ERROR) Dbprintf("AcquireEncryptedNonces: Auth1 error"); continue; } // nested authentication uint16_t len = mifare_sendcmd_short(pcs, AUTH_NESTED, MIFARE_AUTH_KEYA + (targetKeyType & 0x01), targetBlockNo, receivedAnswer, par_enc, NULL); // wait for the card to become ready again CHK_TIMEOUT(); if (len != 4) { if (g_dbglevel >= DBG_ERROR) Dbprintf("AcquireEncryptedNonces: Auth2 error len=%d", len); continue; } num_nonces++; if (num_nonces % 2) { memcpy(buf + i, receivedAnswer, 4); nt_par_enc = par_enc[0] & 0xf0; } else { nt_par_enc |= par_enc[0] >> 4; memcpy(buf + i + 4, receivedAnswer, 4); memcpy(buf + i + 8, &nt_par_enc, 1); i += 9; } if (prev_enc_nt[0] == receivedAnswer[0] && prev_enc_nt[1] == receivedAnswer[1] && prev_enc_nt[2] == receivedAnswer[2] && prev_enc_nt[3] == receivedAnswer[3] ) { prev_counter++; } memcpy(prev_enc_nt, receivedAnswer, 4); if (prev_counter == 5) { if (g_dbglevel >= DBG_EXTENDED) { DbpString("Static encrypted nonce detected, exiting..."); uint32_t a = bytes_to_num(prev_enc_nt, 4); uint32_t b = bytes_to_num(receivedAnswer, 4); Dbprintf("( %08x vs %08x )", a, b); } isOK = PM3_ESTATIC_NONCE; break; } } LED_C_OFF(); crypto1_deinit(pcs); LED_B_ON(); reply_old(CMD_ACK, isOK, cuid, num_nonces, buf, sizeof(buf)); LED_B_OFF(); if (field_off) { FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); set_tracing(false); } } //----------------------------------------------------------------------------- // MIFARE nested authentication. // //----------------------------------------------------------------------------- void MifareNested(uint8_t blockNo, uint8_t keyType, uint8_t targetBlockNo, uint8_t targetKeyType, bool calibrate, uint8_t *key) { uint64_t ui64Key = 0; ui64Key = bytes_to_num(key, 6); // variables uint16_t i, j, len; static uint16_t dmin, dmax; uint8_t par[1] = {0x00}; uint8_t par_array[4] = {0x00}; uint8_t uid[10] = {0x00}; uint32_t cuid = 0, nt1, nt2, nttest, ks1; uint32_t target_nt[2] = {0x00}, target_ks[2] = {0x00}; uint16_t ncount = 0; struct Crypto1State mpcs = {0, 0}; struct Crypto1State *pcs; pcs = &mpcs; uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = {0x00}; uint32_t auth1_time, auth2_time; static uint16_t delta_time = 0; LED_A_ON(); LED_C_OFF(); iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); // free eventually allocated BigBuf memory BigBuf_free(); BigBuf_Clear_ext(false); if (calibrate) clear_trace(); set_tracing(true); // statistics on nonce distance int16_t isOK = PM3_SUCCESS; #define NESTED_MAX_TRIES 12 if (calibrate) { // calibrate: for first call only. Otherwise reuse previous calibration LED_B_ON(); WDT_HIT(); uint32_t prev_enc_nt = 0; uint8_t prev_counter = 0; uint16_t unsuccessful_tries = 0; uint16_t davg = 0; dmax = 0; dmin = 2000; delta_time = 0; uint16_t rtr; for (rtr = 0; rtr < 17; rtr++) { // Test if the action was cancelled if (BUTTON_PRESS() || data_available()) { isOK = PM3_EOPABORTED; break; } // prepare next select. No need to power down the card. if (mifare_classic_halt(pcs)) { if (g_dbglevel >= DBG_INFO) Dbprintf("Nested: Halt error"); rtr--; continue; } if (iso14443a_select_card(uid, NULL, &cuid, true, 0, true) == 0) { if (g_dbglevel >= DBG_INFO) Dbprintf("Nested: Can't select card"); rtr--; continue; }; auth1_time = 0; if (mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST, &nt1, &auth1_time)) { if (g_dbglevel >= DBG_INFO) Dbprintf("Nested: Auth1 error"); rtr--; continue; }; auth2_time = (delta_time) ? auth1_time + delta_time : 0; if (mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_NESTED, &nt2, &auth2_time)) { if (g_dbglevel >= DBG_INFO) Dbprintf("Nested: Auth2 error"); rtr--; continue; }; // cards with fixed nonce /* if (nt1 == nt2) { Dbprintf("Nested: %08x vs %08x", nt1, nt2); break; } */ uint32_t nttmp = prng_successor(nt1, 100); //NXP Mifare is typical around 840,but for some unlicensed/compatible mifare card this can be 160 for (i = 101; i < 1200; i++) { nttmp = prng_successor(nttmp, 1); if (nttmp == nt2) break; } if (i != 1200) { if (rtr != 0) { davg += i; dmin = MIN(dmin, i); dmax = MAX(dmax, i); } else { delta_time = auth2_time - auth1_time + 32; // allow some slack for proper timing } if (g_dbglevel >= DBG_DEBUG) Dbprintf("Nested: calibrating... ntdist=%d", i); } else { unsuccessful_tries++; if (unsuccessful_tries > NESTED_MAX_TRIES) { // card isn't vulnerable to nested attack (random numbers are not predictable) isOK = PM3_EFAILED; } } if (nt1 == nt2) { prev_counter++; } prev_enc_nt = nt2; if (prev_counter == 5) { if (g_dbglevel >= DBG_EXTENDED) { DbpString("Static encrypted nonce detected, exiting..."); Dbprintf("( %08x vs %08x )", prev_enc_nt, nt2); } isOK = PM3_ESTATIC_NONCE; break; } } if (rtr > 1) davg = (davg + (rtr - 1) / 2) / (rtr - 1); if (g_dbglevel >= DBG_DEBUG) Dbprintf("rtr=%d isOK=%d min=%d max=%d avg=%d, delta_time=%d", rtr, isOK, dmin, dmax, davg, delta_time); dmin = davg - 2; dmax = davg + 2; LED_B_OFF(); } // ------------------------------------------------------------------------------------------------- LED_C_ON(); // get crypted nonces for target sector for (i = 0; ((i < 2) && (isOK == PM3_SUCCESS)); i++) { // look for exactly two different nonces target_nt[i] = 0; // continue until we have an unambiguous nonce while (target_nt[i] == 0) { // Test if the action was cancelled if (BUTTON_PRESS() || data_available()) { isOK = PM3_EOPABORTED; break; } // prepare next select. No need to power down the card. if (mifare_classic_halt(pcs)) { if (g_dbglevel >= DBG_INFO) Dbprintf("Nested: Halt error"); continue; } if (iso14443a_select_card(uid, NULL, &cuid, true, 0, true) == false) { if (g_dbglevel >= DBG_INFO) Dbprintf("Nested: Can't select card"); continue; }; auth1_time = 0; if (mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST, &nt1, &auth1_time)) { if (g_dbglevel >= DBG_INFO) Dbprintf("Nested: Auth1 error"); continue; }; // nested authentication auth2_time = auth1_time + delta_time; len = mifare_sendcmd_short(pcs, AUTH_NESTED, 0x60 + (targetKeyType & 0x01), targetBlockNo, receivedAnswer, par, &auth2_time); if (len != 4) { if (g_dbglevel >= DBG_INFO) Dbprintf("Nested: Auth2 error len=%d", len); continue; }; nt2 = bytes_to_num(receivedAnswer, 4); if (g_dbglevel >= DBG_DEBUG) Dbprintf("Nonce#%d: Testing nt1=%08x nt2enc=%08x nt2par=%02x", i + 1, nt1, nt2, par[0]); // Parity validity check for (j = 0; j < 4; j++) { par_array[j] = (oddparity8(receivedAnswer[j]) != ((par[0] >> (7 - j)) & 0x01)); } ncount = 0; nttest = prng_successor(nt1, dmin - 1); for (j = dmin; j < dmax + 1; j++) { nttest = prng_successor(nttest, 1); ks1 = nt2 ^ nttest; if (valid_nonce(nttest, nt2, ks1, par_array)) { if (ncount > 0) { // we are only interested in disambiguous nonces, try again if (g_dbglevel >= DBG_DEBUG) Dbprintf("Nonce#%d: dismissed (ambiguous), ntdist=%d", i + 1, j); target_nt[i] = 0; break; } target_nt[i] = nttest; target_ks[i] = ks1; ncount++; if (i == 1 && target_nt[1] == target_nt[0]) { // we need two different nonces target_nt[i] = 0; if (g_dbglevel >= DBG_DEBUG) Dbprintf("Nonce#2: dismissed (= nonce#1), ntdist=%d", j); break; } if (g_dbglevel >= DBG_DEBUG) Dbprintf("Nonce#%d: valid, ntdist=%d", i + 1, j); } } if (target_nt[i] == 0 && j == dmax + 1 && g_dbglevel >= 3) Dbprintf("Nonce#%d: dismissed (all invalid)", i + 1); } } LED_C_OFF(); crypto1_deinit(pcs); struct p { int16_t isOK; uint8_t block; uint8_t keytype; uint8_t cuid[4]; uint8_t nt_a[4]; uint8_t ks_a[4]; uint8_t nt_b[4]; uint8_t ks_b[4]; } PACKED payload; payload.isOK = isOK; payload.block = targetBlockNo; payload.keytype = targetKeyType; memcpy(payload.cuid, &cuid, 4); memcpy(payload.nt_a, &target_nt[0], 4); memcpy(payload.ks_a, &target_ks[0], 4); memcpy(payload.nt_b, &target_nt[1], 4); memcpy(payload.ks_b, &target_ks[1], 4); LED_B_ON(); reply_ng(CMD_HF_MIFARE_NESTED, PM3_SUCCESS, (uint8_t *)&payload, sizeof(payload)); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); set_tracing(false); } void MifareStaticNested(uint8_t blockNo, uint8_t keyType, uint8_t targetBlockNo, uint8_t targetKeyType, uint8_t *key) { LEDsoff(); uint64_t ui64Key = bytes_to_num(key, 6); uint16_t len; uint8_t uid[10] = { 0x00 }; uint32_t cuid = 0, nt1 = 0, nt2 = 0, nt3 = 0; uint32_t target_nt[2] = {0x00}, target_ks[2] = {0x00}; uint8_t par[1] = { 0x00 }; uint8_t receivedAnswer[10] = { 0x00 }; struct Crypto1State mpcs = { 0, 0 }; struct Crypto1State *pcs; pcs = &mpcs; LED_A_ON(); iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); // free eventually allocated BigBuf memory BigBuf_free(); BigBuf_Clear_ext(false); clear_trace(); set_tracing(true); int16_t isOK = PM3_ESOFT; LED_C_ON(); // Main loop - get crypted nonces for target sector for (uint8_t rtr = 0; rtr < 2; rtr++) { if (mifare_classic_halt(pcs)) { continue; } if (iso14443a_select_card(uid, NULL, &cuid, true, 0, true) == false) { continue; }; // first collection if (mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST, &nt1, NULL)) { continue; }; // pre-generate nonces if (targetKeyType == 1 && nt1 == 0x009080A2) { target_nt[0] = prng_successor(nt1, 161); target_nt[1] = prng_successor(nt1, 321); } else { target_nt[0] = prng_successor(nt1, 160); target_nt[1] = prng_successor(nt1, 320); } len = mifare_sendcmd_short(pcs, AUTH_NESTED, 0x60 + (targetKeyType & 0x01), targetBlockNo, receivedAnswer, par, NULL); if (len != 4) { continue; }; nt2 = bytes_to_num(receivedAnswer, 4); target_ks[0] = nt2 ^ target_nt[0]; // second collection if (mifare_classic_halt(pcs)) { continue; } if (iso14443a_select_card(uid, NULL, &cuid, true, 0, true) == false) { continue; }; if (mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST, &nt1, NULL)) { continue; }; if (mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_NESTED, NULL, NULL)) { continue; }; len = mifare_sendcmd_short(pcs, AUTH_NESTED, 0x60 + (targetKeyType & 0x01), targetBlockNo, receivedAnswer, par, NULL); if (len != 4) { continue; }; nt3 = bytes_to_num(receivedAnswer, 4); target_ks[1] = nt3 ^ target_nt[1]; isOK = PM3_SUCCESS; } LED_C_OFF(); crypto1_deinit(pcs); struct p { uint8_t block; uint8_t keytype; uint8_t cuid[4]; uint8_t nt_a[4]; uint8_t ks_a[4]; uint8_t nt_b[4]; uint8_t ks_b[4]; } PACKED payload; payload.block = targetBlockNo; payload.keytype = targetKeyType; memcpy(payload.cuid, &cuid, 4); memcpy(payload.nt_a, &target_nt[0], 4); memcpy(payload.ks_a, &target_ks[0], 4); memcpy(payload.nt_b, &target_nt[1], 4); memcpy(payload.ks_b, &target_ks[1], 4); LED_B_ON(); reply_ng(CMD_HF_MIFARE_STATIC_NESTED, isOK, (uint8_t *)&payload, sizeof(payload)); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); set_tracing(false); } //----------------------------------------------------------------------------- // MIFARE check keys. key count up to 85. // //----------------------------------------------------------------------------- typedef struct sector_t { uint8_t keyA[6]; uint8_t keyB[6]; } sector_t; typedef struct chk_t { uint64_t key; uint32_t cuid; uint8_t cl; uint8_t block; uint8_t keyType; uint8_t *uid; struct Crypto1State *pcs; } chk_t; // checks one key. // fast select, tries 5 times to select // // return: // 2 = failed to select. // 1 = wrong key // 0 = correct key static uint8_t chkKey(struct chk_t *c) { uint8_t i = 0, res = 2; while (i < 5) { // this part is from Piwi's faster nonce collecting part in Hardnested. // assume: fast select if (!iso14443a_fast_select_card(c->uid, c->cl)) { ++i; continue; } res = mifare_classic_authex(c->pcs, c->cuid, c->block, c->keyType, c->key, AUTH_FIRST, NULL, NULL); // CHK_TIMEOUT(); // if successful auth, send HALT // if ( !res ) // mifare_classic_halt(c->pcs); break; } return res; } static uint8_t chkKey_readb(struct chk_t *c, uint8_t *keyb) { if (!iso14443a_fast_select_card(c->uid, c->cl)) return 2; if (mifare_classic_authex(c->pcs, c->cuid, c->block, 0, c->key, AUTH_FIRST, NULL, NULL)) return 1; uint8_t data[16] = {0x00}; uint8_t res = mifare_classic_readblock(c->pcs, c->block, data); // successful read if (!res) { // data was something else than zeros. if (memcmp(data + 10, "\x00\x00\x00\x00\x00\x00", 6) != 0) { memcpy(keyb, data + 10, 6); res = 0; } else { res = 3; } mifare_classic_halt(c->pcs); } return res; } static void chkKey_scanA(struct chk_t *c, struct sector_t *k_sector, uint8_t *found, const uint8_t *sectorcnt, uint8_t *foundkeys) { for (uint8_t s = 0; s < *sectorcnt; s++) { // skip already found A keys if (found[(s * 2)]) continue; c->block = FirstBlockOfSector(s); if (chkKey(c) == 0) { num_to_bytes(c->key, 6, k_sector[s].keyA); found[(s * 2)] = 1; ++*foundkeys; if (g_dbglevel >= 3) Dbprintf("ChkKeys_fast: Scan A found (%d)", c->block); } } } static void chkKey_scanB(struct chk_t *c, struct sector_t *k_sector, uint8_t *found, const uint8_t *sectorcnt, uint8_t *foundkeys) { for (uint8_t s = 0; s < *sectorcnt; s++) { // skip already found B keys if (found[(s * 2) + 1]) continue; c->block = FirstBlockOfSector(s); if (chkKey(c) == 0) { num_to_bytes(c->key, 6, k_sector[s].keyB); found[(s * 2) + 1] = 1; ++*foundkeys; if (g_dbglevel >= 3) Dbprintf("ChkKeys_fast: Scan B found (%d)", c->block); } } } // loop all A keys, // when A is found but not B, try to read B. static void chkKey_loopBonly(struct chk_t *c, struct sector_t *k_sector, uint8_t *found, uint8_t *sectorcnt, uint8_t *foundkeys) { // read Block B, if A is found. for (uint8_t s = 0; s < *sectorcnt; ++s) { if (found[(s * 2)] && found[(s * 2) + 1]) continue; c->block = (FirstBlockOfSector(s) + NumBlocksPerSector(s) - 1); // A but not B if (found[(s * 2)] && !found[(s * 2) + 1]) { c->key = bytes_to_num(k_sector[s].keyA, 6); uint8_t status = chkKey_readb(c, k_sector[s].keyB); if (status == 0) { found[(s * 2) + 1] = 1; ++*foundkeys; if (g_dbglevel >= 3) Dbprintf("ChkKeys_fast: Reading B found (%d)", c->block); // try quick find all B? // assume: keys comes in groups. Find one B, test against all B. c->key = bytes_to_num(k_sector[s].keyB, 6); c->keyType = 1; chkKey_scanB(c, k_sector, found, sectorcnt, foundkeys); } } } } // get Chunks of keys, to test authentication against card. // arg0 = antal sectorer // arg0 = first time // arg1 = clear trace // arg2 = antal nycklar i keychunk // datain = keys as array void MifareChkKeys_fast(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain) { // first call or uint8_t sectorcnt = arg0 & 0xFF; // 16; uint8_t firstchunk = (arg0 >> 8) & 0xF; uint8_t lastchunk = (arg0 >> 12) & 0xF; uint8_t strategy = arg1 & 0xFF; uint8_t use_flashmem = (arg1 >> 8) & 0xFF; uint16_t keyCount = arg2 & 0xFF; uint8_t status = 0; struct Crypto1State mpcs = {0, 0}; struct Crypto1State *pcs; pcs = &mpcs; struct chk_t chk_data; uint8_t allkeys = sectorcnt << 1; static uint32_t cuid = 0; static uint8_t cascade_levels = 0; static uint8_t foundkeys = 0; static sector_t k_sector[80]; static uint8_t found[80]; static uint8_t *uid; int oldbg = g_dbglevel; #ifdef WITH_FLASH if (use_flashmem) { BigBuf_free(); uint16_t isok = 0; uint8_t size[2] = {0x00, 0x00}; isok = Flash_ReadData(DEFAULT_MF_KEYS_OFFSET, size, 2); if (isok != 2) goto OUT; keyCount = size[1] << 8 | size[0]; if (keyCount == 0) goto OUT; // limit size of available for keys in bigbuff // a key is 6bytes uint16_t key_mem_available = MIN(BigBuf_get_size(), keyCount * 6); keyCount = key_mem_available / 6; datain = BigBuf_malloc(key_mem_available); if (datain == NULL) goto OUT; isok = Flash_ReadData(DEFAULT_MF_KEYS_OFFSET + 2, datain, key_mem_available); if (isok != key_mem_available) goto OUT; } #endif if (uid == NULL || firstchunk) { uid = BigBuf_malloc(10); if (uid == NULL) goto OUT; } iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); LEDsoff(); LED_A_ON(); if (firstchunk) { clear_trace(); set_tracing(false); memset(k_sector, 0x00, 480 + 10); memset(found, 0x00, sizeof(found)); foundkeys = 0; iso14a_card_select_t card_info; if (!iso14443a_select_card(uid, &card_info, &cuid, true, 0, true)) { if (g_dbglevel >= DBG_ERROR) Dbprintf("ChkKeys_fast: Can't select card (ALL)"); goto OUT; } switch (card_info.uidlen) { case 4 : cascade_levels = 1; break; case 7 : cascade_levels = 2; break; case 10: cascade_levels = 3; break; default: break; } CHK_TIMEOUT(); } // clear debug level. We are expecting lots of authentication failures... g_dbglevel = DBG_NONE; // set check struct. chk_data.uid = uid; chk_data.cuid = cuid; chk_data.cl = cascade_levels; chk_data.pcs = pcs; chk_data.block = 0; // keychunk loop - depth first one sector. if (strategy == 1 || use_flashmem) { uint8_t newfound = foundkeys; uint16_t lastpos = 0; uint16_t s_point = 0; // Sector main loop // keep track of how many sectors on card. for (uint8_t s = 0; s < sectorcnt; ++s) { if (found[(s * 2)] && found[(s * 2) + 1]) continue; for (uint16_t i = s_point; i < keyCount; ++i) { // Allow button press / usb cmd to interrupt device if (BUTTON_PRESS() || data_available()) { goto OUT; } // found all keys? if (foundkeys == allkeys) goto OUT; WDT_HIT(); // assume: block0,1,2 has more read rights in accessbits than the sectortrailer. authenticating against block0 in each sector chk_data.block = FirstBlockOfSector(s); // new key chk_data.key = bytes_to_num(datain + i * 6, 6); // skip already found A keys if (!found[(s * 2)]) { chk_data.keyType = 0; status = chkKey(&chk_data); if (status == 0) { memcpy(k_sector[s].keyA, datain + i * 6, 6); found[(s * 2)] = 1; ++foundkeys; chkKey_scanA(&chk_data, k_sector, found, §orcnt, &foundkeys); // read Block B, if A is found. chkKey_loopBonly(&chk_data, k_sector, found, §orcnt, &foundkeys); chk_data.keyType = 1; chkKey_scanB(&chk_data, k_sector, found, §orcnt, &foundkeys); chk_data.keyType = 0; chk_data.block = FirstBlockOfSector(s); if (use_flashmem) { if (lastpos != i && lastpos != 0) { if (i - lastpos < 0xF) { s_point = i & 0xFFF0; } } else { lastpos = i; } } } } // skip already found B keys if (!found[(s * 2) + 1]) { chk_data.keyType = 1; status = chkKey(&chk_data); if (status == 0) { memcpy(k_sector[s].keyB, datain + i * 6, 6); found[(s * 2) + 1] = 1; ++foundkeys; chkKey_scanB(&chk_data, k_sector, found, §orcnt, &foundkeys); if (use_flashmem) { if (lastpos != i && lastpos != 0) { if (i - lastpos < 0xF) s_point = i & 0xFFF0; } else { lastpos = i; } } } } if (found[(s * 2)] && found[(s * 2) + 1]) break; } // end keys test loop - depth first // assume1. if no keys found in first sector, get next keychunk from client if (!use_flashmem && (newfound - foundkeys == 0)) goto OUT; } // end loop - sector } // end strategy 1 if (foundkeys == allkeys) goto OUT; if (strategy == 2 || use_flashmem) { // Keychunk loop for (uint16_t i = 0; i < keyCount; i++) { // Allow button press / usb cmd to interrupt device if (BUTTON_PRESS() || data_available()) break; // found all keys? if (foundkeys == allkeys) goto OUT; WDT_HIT(); // new key chk_data.key = bytes_to_num(datain + i * 6, 6); // Sector main loop // keep track of how many sectors on card. for (uint8_t s = 0; s < sectorcnt; ++s) { if (found[(s * 2)] && found[(s * 2) + 1]) continue; // found all keys? if (foundkeys == allkeys) goto OUT; // assume: block0,1,2 has more read rights in accessbits than the sectortrailer. authenticating against block0 in each sector chk_data.block = FirstBlockOfSector(s); // skip already found A keys if (!found[(s * 2)]) { chk_data.keyType = 0; status = chkKey(&chk_data); if (status == 0) { memcpy(k_sector[s].keyA, datain + i * 6, 6); found[(s * 2)] = 1; ++foundkeys; chkKey_scanA(&chk_data, k_sector, found, §orcnt, &foundkeys); // read Block B, if A is found. chkKey_loopBonly(&chk_data, k_sector, found, §orcnt, &foundkeys); chk_data.block = FirstBlockOfSector(s); } } // skip already found B keys if (!found[(s * 2) + 1]) { chk_data.keyType = 1; status = chkKey(&chk_data); if (status == 0) { memcpy(k_sector[s].keyB, datain + i * 6, 6); found[(s * 2) + 1] = 1; ++foundkeys; chkKey_scanB(&chk_data, k_sector, found, §orcnt, &foundkeys); } } } // end loop sectors } // end loop keys } // end loop strategy 2 OUT: LEDsoff(); crypto1_deinit(pcs); // All keys found, send to client, or last keychunk from client if (foundkeys == allkeys || lastchunk) { uint64_t foo = 0; for (uint8_t m = 0; m < 64; m++) { foo |= ((uint64_t)(found[m] & 1) << m); } uint16_t bar = 0; uint8_t j = 0; for (uint8_t m = 64; m < ARRAYLEN(found); m++) { bar |= ((uint16_t)(found[m] & 1) << j++); } uint8_t *tmp = BigBuf_malloc(480 + 10); memcpy(tmp, k_sector, sectorcnt * sizeof(sector_t)); num_to_bytes(foo, 8, tmp + 480); tmp[488] = bar & 0xFF; tmp[489] = bar >> 8 & 0xFF; reply_old(CMD_ACK, foundkeys, 0, 0, tmp, 480 + 10); set_tracing(false); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); BigBuf_free(); BigBuf_Clear_ext(false); // special trick ecfill if (use_flashmem && foundkeys == allkeys) { uint8_t block[16] = {0}; for (int i = 0; i < sectorcnt; i++) { uint8_t blockno; if (i < 32) { blockno = (i * 4) ^ 0x3; } else { blockno = (32 * 4 + (i - 32) * 16) ^ 0xF; } // get ST emlGetMem(block, blockno, 1); memcpy(block, k_sector[i].keyA, 6); memcpy(block + 10, k_sector[i].keyB, 6); emlSetMem_xt(block, blockno, 1, sizeof(block)); } MifareECardLoad(sectorcnt, MF_KEY_A); MifareECardLoad(sectorcnt, MF_KEY_B); } } else { // partial/none keys found reply_mix(CMD_ACK, foundkeys, 0, 0, 0, 0); } g_dbglevel = oldbg; } void MifareChkKeys(uint8_t *datain, uint8_t reserved_mem) { FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); struct Crypto1State mpcs = {0, 0}; struct Crypto1State *pcs; pcs = &mpcs; uint8_t uid[10] = {0x00}; uint64_t key = 0; uint32_t cuid = 0; uint8_t cascade_levels = 0; struct { uint8_t key[6]; bool found; } PACKED keyresult; keyresult.found = false; memset(keyresult.key, 0x00, sizeof(keyresult.key)); bool have_uid = false; uint8_t keyType = datain[0]; uint8_t blockNo = datain[1]; bool clearTrace = datain[2]; uint16_t key_count = (datain[3] << 8) | datain[4]; uint16_t key_mem_available; if (reserved_mem) key_mem_available = key_count * 6; else key_mem_available = MIN((PM3_CMD_DATA_SIZE - 5), key_count * 6); key_count = key_mem_available / 6; datain += 5; LEDsoff(); LED_A_ON(); iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); if (clearTrace) clear_trace(); int oldbg = g_dbglevel; g_dbglevel = DBG_NONE; set_tracing(false); for (uint16_t i = 0; i < key_count; i++) { // Iceman: use piwi's faster nonce collecting part in hardnested. if (have_uid == false) { // need a full select cycle to get the uid first iso14a_card_select_t card_info; if (iso14443a_select_card(uid, &card_info, &cuid, true, 0, true) == false) { if (g_dbglevel >= DBG_ERROR) Dbprintf("ChkKeys: Can't select card (ALL)"); --i; // try same key once again continue; } switch (card_info.uidlen) { case 4 : cascade_levels = 1; break; case 7 : cascade_levels = 2; break; case 10: cascade_levels = 3; break; default: break; } have_uid = true; } else { // no need for anticollision. We can directly select the card if (iso14443a_select_card(uid, NULL, NULL, false, cascade_levels, true) == false) { if (g_dbglevel >= DBG_ERROR) Dbprintf("ChkKeys: Can't select card (UID)"); --i; // try same key once again continue; } } key = bytes_to_num(datain + i * 6, 6); if (mifare_classic_auth(pcs, cuid, blockNo, keyType, key, AUTH_FIRST)) { // CHK_TIMEOUT(); continue; } memcpy(keyresult.key, datain + i * 6, 6); keyresult.found = true; break; } LED_B_ON(); crypto1_deinit(pcs); reply_ng(CMD_HF_MIFARE_CHKKEYS, PM3_SUCCESS, (uint8_t *)&keyresult, sizeof(keyresult)); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); set_tracing(false); g_dbglevel = oldbg; } void MifareChkKeys_file(uint8_t *fn) { #ifdef WITH_FLASH BigBuf_free(); SpinOff(0); int changed = rdv40_spiffs_lazy_mount(); uint32_t size = size_in_spiffs((char *)fn); uint8_t *mem = BigBuf_malloc(size); rdv40_spiffs_read_as_filetype((char *)fn, mem, size, RDV40_SPIFFS_SAFETY_SAFE); if (changed) { rdv40_spiffs_lazy_unmount(); } SpinOff(0); MifareChkKeys(mem, true); BigBuf_free(); #endif } //----------------------------------------------------------------------------- // MIFARE Personalize UID. Only for Mifare Classic EV1 7Byte UID //----------------------------------------------------------------------------- void MifarePersonalizeUID(uint8_t keyType, uint8_t perso_option, uint64_t key) { uint16_t isOK = PM3_EUNDEF; uint8_t uid[10]; uint32_t cuid; struct Crypto1State mpcs = {0, 0}; struct Crypto1State *pcs; pcs = &mpcs; iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); clear_trace(); set_tracing(true); LED_A_ON(); while (true) { if (!iso14443a_select_card(uid, NULL, &cuid, true, 0, true)) { if (g_dbglevel >= DBG_ERROR) Dbprintf("Can't select card"); break; } uint8_t block_number = 0; if (mifare_classic_auth(pcs, cuid, block_number, keyType, key, AUTH_FIRST)) { if (g_dbglevel >= DBG_ERROR) Dbprintf("Auth error"); break; } uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE]; uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE]; int len = mifare_sendcmd_short(pcs, true, MIFARE_EV1_PERSONAL_UID, perso_option, receivedAnswer, receivedAnswerPar, NULL); if (len != 1 || receivedAnswer[0] != CARD_ACK) { if (g_dbglevel >= DBG_ERROR) Dbprintf("Cmd Error: %02x", receivedAnswer[0]); break; } if (mifare_classic_halt(pcs)) { if (g_dbglevel >= DBG_ERROR) Dbprintf("Halt error"); break; } isOK = PM3_SUCCESS; break; } crypto1_deinit(pcs); LED_B_ON(); reply_ng(CMD_HF_MIFARE_PERSONALIZE_UID, isOK, NULL, 0); LED_B_OFF(); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); } //----------------------------------------------------------------------------- // Work with emulator memory // // Note: we call FpgaDownloadAndGo(FPGA_BITSTREAM_HF) here although FPGA is not // involved in dealing with emulator memory. But if it is called later, it might // destroy the Emulator Memory. //----------------------------------------------------------------------------- void MifareEMemClr(void) { FpgaDownloadAndGo(FPGA_BITSTREAM_HF); emlClearMem(); } void MifareEMemGet(uint8_t blockno, uint8_t blockcnt) { FpgaDownloadAndGo(FPGA_BITSTREAM_HF); // size_t size = blockcnt * 16; if (size > PM3_CMD_DATA_SIZE) { reply_ng(CMD_HF_MIFARE_EML_MEMGET, PM3_EMALLOC, NULL, 0); return; } uint8_t *buf = BigBuf_malloc(size); emlGetMem(buf, blockno, blockcnt); // data, block num, blocks count (max 4) LED_B_ON(); reply_ng(CMD_HF_MIFARE_EML_MEMGET, PM3_SUCCESS, buf, size); LED_B_OFF(); BigBuf_free_keep_EM(); } //----------------------------------------------------------------------------- // Load a card into the emulator memory // //----------------------------------------------------------------------------- int MifareECardLoadExt(uint8_t sectorcnt, uint8_t keytype) { int retval = MifareECardLoad(sectorcnt, keytype); reply_ng(CMD_HF_MIFARE_EML_LOAD, retval, NULL, 0); return retval; } int MifareECardLoad(uint8_t sectorcnt, uint8_t keytype) { LED_A_ON(); iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); clear_trace(); set_tracing(true); // variables bool have_uid = false; uint8_t cascade_levels = 0; uint32_t cuid = 0; uint8_t uid[10] = {0x00}; struct Crypto1State mpcs = {0, 0}; struct Crypto1State *pcs; pcs = &mpcs; int retval = PM3_SUCCESS; // increase time-out. Magic card etc are slow uint32_t timeout = iso14a_get_timeout(); // frame waiting time (FWT) in 1/fc uint32_t fwt = 256 * 16 * (1 << 6); iso14a_set_timeout(fwt / (8 * 16)); for (uint8_t s = 0; s < sectorcnt; s++) { uint64_t ui64Key = emlGetKey(s, keytype); if (sectorcnt == 18) { // MFC 1K EV1, skip sector 16 since its lockdown if (s == 16) { // unknown sector trailer, keep the keys, set only the AC uint8_t st[16] = {0x00}; emlGetMem(st, FirstBlockOfSector(s) + 3, 1); memcpy(st + 6, "\x70\xF0\xF8\x69", 4); emlSetMem_xt(st, FirstBlockOfSector(s) + 3, 1, 16); continue; } // ICEMAN: ugly hack, we don't want to trigger the partial load message // MFC 1K EV1 sector 17 don't use key A. // not mention we don't save signatures in our MFC dump files. if (s == 17 && keytype == 0) { ui64Key = 0x4B791BEA7BCC; keytype = 1; } } // use fast select if (have_uid == false) { // need a full select cycle to get the uid first iso14a_card_select_t card_info; if (iso14443a_select_card(uid, &card_info, &cuid, true, 0, true) == 0) { continue; } switch (card_info.uidlen) { case 4 : cascade_levels = 1; break; case 7 : cascade_levels = 2; break; case 10: cascade_levels = 3; break; default: break; } have_uid = true; } else { // no need for anticollision. We can directly select the card if (iso14443a_fast_select_card(uid, cascade_levels) == 0) { continue; } } // Auth if (mifare_classic_auth(pcs, cuid, FirstBlockOfSector(s), keytype, ui64Key, AUTH_FIRST)) { retval = PM3_EPARTIAL; if (g_dbglevel >= DBG_ERROR) { Dbprintf("Sector %2d - Auth error", s); } continue; } #define MAX_RETRIES 2 uint8_t data[16] = {0x00}; for (uint8_t b = 0; b < NumBlocksPerSector(s); b++) { memset(data, 0x00, sizeof(data)); uint8_t tb = FirstBlockOfSector(s) + b; uint8_t r = 0; for (; r < MAX_RETRIES; r++) { int res = mifare_classic_readblock(pcs, tb, data); if (res == 1) { retval |= PM3_EPARTIAL; if (g_dbglevel >= DBG_ERROR) { Dbprintf("Error No rights reading sector %2d block %2d", s, b); } break; } // retry if wrong len. if (res != 0) { continue; } // No need to copy empty if (memcmp(data, "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16) == 0) { break; } if (IsSectorTrailer(b)) { // sector trailer, keep the keys, set only the AC uint8_t st[16] = {0x00}; emlGetMem(st, tb, 1); memcpy(st + 6, data + 6, 4); emlSetMem_xt(st, tb, 1, 16); } else { emlSetMem_xt(data, tb, 1, 16); } break; } // if we failed all retries, notify client if (r == MAX_RETRIES) { retval |= PM3_EPARTIAL; } } } int res = mifare_classic_halt(pcs); (void)res; iso14a_set_timeout(timeout); crypto1_deinit(pcs); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); set_tracing(false); return retval; } //----------------------------------------------------------------------------- // Work with "magic Chinese" card (email him: ouyangweidaxian@live.cn) // // PARAMS - workFlags // bit 0 - need get UID // bit 1 - need wupC // bit 2 - need HALT after sequence // bit 3 - need turn on FPGA before sequence // bit 4 - need turn off FPGA // bit 5 - need to set datain instead of issuing USB reply (called via ARM for StandAloneMode14a) // bit 6 - wipe tag. //----------------------------------------------------------------------------- // magic uid card generation 1 commands static uint8_t wupC1[] = { MIFARE_MAGICWUPC1 }; static uint8_t wupC2[] = { MIFARE_MAGICWUPC2 }; static uint8_t wipeC[] = { MIFARE_MAGICWIPEC }; void MifareCSetBlock(uint32_t arg0, uint32_t arg1, uint8_t *datain) { // params uint8_t workFlags = arg0; uint8_t blockNo = arg1; // detect 1a/1b bool is1b = false; // variables bool isOK = false; //assume we will get an error uint8_t errormsg = 0x00; uint8_t uid[10] = {0x00}; uint8_t data[18] = {0x00}; uint32_t cuid = 0; uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = {0x00}; uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE] = {0x00}; if (workFlags & MAGIC_INIT) { LED_A_ON(); LED_B_OFF(); iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); clear_trace(); set_tracing(true); } //loop doesn't loop just breaks out if error while (true) { // read UID and return to client with write if (workFlags & MAGIC_UID) { if (!iso14443a_select_card(uid, NULL, &cuid, true, 0, true)) { if (g_dbglevel >= DBG_ERROR) Dbprintf("Can't select card"); errormsg = MAGIC_UID; mifare_classic_halt(NULL); break; } mifare_classic_halt(NULL); } // wipe tag, fill it with zeros if (workFlags & MAGIC_WIPE) { ReaderTransmitBitsPar(wupC1, 7, NULL, NULL); if (!ReaderReceive(receivedAnswer, receivedAnswerPar) || (receivedAnswer[0] != 0x0a)) { if (g_dbglevel >= DBG_ERROR) Dbprintf("wupC1 error"); errormsg = MAGIC_WIPE; break; } uint32_t old_timeout = iso14a_get_timeout(); // 2000 ms timeout // 13560000 / 1000 / (8 * 16) * timeout iso14a_set_timeout(21190); ReaderTransmit(wipeC, sizeof(wipeC), NULL); if (!ReaderReceive(receivedAnswer, receivedAnswerPar) || (receivedAnswer[0] != 0x0a)) { if (g_dbglevel >= DBG_ERROR) Dbprintf("wipeC error"); errormsg = MAGIC_WIPE; break; } iso14a_set_timeout(old_timeout); mifare_classic_halt(NULL); } // write block if (workFlags & MAGIC_WUPC) { ReaderTransmitBitsPar(wupC1, 7, NULL, NULL); if (!ReaderReceive(receivedAnswer, receivedAnswerPar) || (receivedAnswer[0] != 0x0a)) { if (g_dbglevel >= DBG_ERROR) Dbprintf("wupC1 error"); errormsg = MAGIC_WUPC; break; } if (!is1b) { ReaderTransmit(wupC2, sizeof(wupC2), NULL); if (!ReaderReceive(receivedAnswer, receivedAnswerPar) || (receivedAnswer[0] != 0x0a)) { if (g_dbglevel >= DBG_INFO) Dbprintf("Assuming Magic Gen 1B tag. [wupC2 failed]"); is1b = true; continue; } } } if ((mifare_sendcmd_short(NULL, CRYPT_NONE, ISO14443A_CMD_WRITEBLOCK, blockNo, receivedAnswer, receivedAnswerPar, NULL) != 1) || (receivedAnswer[0] != 0x0a)) { if (g_dbglevel >= DBG_ERROR) Dbprintf("write block send command error"); errormsg = 4; break; } memcpy(data, datain, 16); AddCrc14A(data, 16); ReaderTransmit(data, sizeof(data), NULL); if ((ReaderReceive(receivedAnswer, receivedAnswerPar) != 1) || (receivedAnswer[0] != 0x0a)) { if (g_dbglevel >= DBG_ERROR) Dbprintf("write block send data error"); errormsg = 0; break; } if (workFlags & MAGIC_HALT) mifare_classic_halt(NULL); isOK = true; break; } // end while if (isOK) reply_mix(CMD_ACK, 1, 0, 0, uid, sizeof(uid)); else OnErrorMagic(errormsg); if (workFlags & MAGIC_OFF) OnSuccessMagic(); } void MifareCGetBlock(uint32_t arg0, uint32_t arg1, uint8_t *datain) { uint8_t workFlags = arg0; uint8_t blockNo = arg1; uint8_t errormsg = 0x00; bool isOK = false; //assume we will get an error // detect 1a/1b bool is1b = false; // variables uint8_t data[MAX_MIFARE_FRAME_SIZE]; uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = {0x00}; uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE] = {0x00}; memset(data, 0x00, sizeof(data)); if (workFlags & MAGIC_INIT) { LED_A_ON(); LED_B_OFF(); iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); clear_trace(); set_tracing(true); } // increase time-out. Magic card etc are slow uint32_t timeout = iso14a_get_timeout(); // frame waiting time (FWT) in 1/fc uint32_t fwt = 256 * 16 * (1 << 7); iso14a_set_timeout(fwt / (8 * 16)); //loop doesn't loop just breaks out if error or done while (true) { if (workFlags & MAGIC_WUPC) { ReaderTransmitBitsPar(wupC1, 7, NULL, NULL); if (!ReaderReceive(receivedAnswer, receivedAnswerPar) || (receivedAnswer[0] != 0x0a)) { if (g_dbglevel >= DBG_ERROR) Dbprintf("wupC1 error"); errormsg = MAGIC_WUPC; break; } if (!is1b) { ReaderTransmit(wupC2, sizeof(wupC2), NULL); if (!ReaderReceive(receivedAnswer, receivedAnswerPar) || (receivedAnswer[0] != 0x0a)) { if (g_dbglevel >= DBG_INFO) Dbprintf("Assuming Magic Gen 1B tag. [wupC2 failed]"); is1b = true; continue; } } } // read block if ((mifare_sendcmd_short(NULL, CRYPT_NONE, ISO14443A_CMD_READBLOCK, blockNo, receivedAnswer, receivedAnswerPar, NULL) != MAX_MIFARE_FRAME_SIZE)) { if (g_dbglevel >= DBG_ERROR) Dbprintf("read block send command error"); errormsg = 0; break; } memcpy(data, receivedAnswer, sizeof(data)); // send HALT if (workFlags & MAGIC_HALT) mifare_classic_halt(NULL); isOK = true; break; } // if MAGIC_DATAIN, the data stays on device side. if (workFlags & MAGIC_DATAIN) { if (isOK) memcpy(datain, data, sizeof(data)); } else { if (isOK) reply_old(CMD_ACK, 1, 0, 0, data, sizeof(data)); else OnErrorMagic(errormsg); } if (workFlags & MAGIC_OFF) OnSuccessMagic(); iso14a_set_timeout(timeout); } void MifareCIdent(bool is_mfc) { // variables uint8_t isGen = 0; uint8_t rec[1] = {0x00}; uint8_t recpar[1] = {0x00}; uint8_t rats[4] = {ISO14443A_CMD_RATS, 0x80, 0x31, 0x73}; uint8_t rdblf0[4] = {ISO14443A_CMD_READBLOCK, 0xF0, 0x8D, 0x5f}; uint8_t rdbl00[4] = {ISO14443A_CMD_READBLOCK, 0x00, 0x02, 0xa8}; uint8_t gen4gdm[4] = {MIFARE_MAGIC_GDM_AUTH_KEY, 0x00, 0x6C, 0x92}; uint8_t gen4GetConf[8] = {GEN_4GTU_CMD, 0x00, 0x00, 0x00, 0x00, GEN_4GTU_GETCNF, 0, 0}; uint8_t superGen1[9] = {0x0A, 0x00, 0x00, 0xA6, 0xB0, 0x00, 0x10, 0x14, 0x1D}; uint8_t *par = BigBuf_malloc(MAX_PARITY_SIZE); uint8_t *buf = BigBuf_malloc(PM3_CMD_DATA_SIZE); uint8_t *uid = BigBuf_malloc(10); memset(par, 0x00, MAX_PARITY_SIZE); memset(buf, 0x00, PM3_CMD_DATA_SIZE); memset(uid, 0x00, 10); uint32_t cuid = 0; uint8_t data[1] = {0x00}; iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); // Generation 1 test ReaderTransmitBitsPar(wupC1, 7, NULL, NULL); if (ReaderReceive(rec, recpar) && (rec[0] == 0x0a)) { ReaderTransmit(wupC2, sizeof(wupC2), NULL); if (!ReaderReceive(rec, recpar) || (rec[0] != 0x0a)) { isGen = MAGIC_GEN_1B; goto OUT; }; isGen = MAGIC_GEN_1A; goto OUT; } // reset card FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); SpinDelay(40); iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); int res = iso14443a_select_card(uid, NULL, &cuid, true, 0, true); if (res == 2) { // Check for Magic Gen4 GTU with default password: // Get config should return 30 or 32 bytes AddCrc14A(gen4GetConf, sizeof(gen4GetConf) - 2); ReaderTransmit(gen4GetConf, sizeof(gen4GetConf), NULL); res = ReaderReceive(buf, par); if (res == 32 || res == 34) { isGen = MAGIC_GEN_4GTU; goto OUT; } } // reset card FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); SpinDelay(40); iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); res = iso14443a_select_card(uid, NULL, &cuid, true, 0, true); if (res == 2) { if (cuid == 0xAA55C396) { isGen = MAGIC_GEN_UNFUSED; goto OUT; } ReaderTransmit(rats, sizeof(rats), NULL); res = ReaderReceive(buf, par); if (res) { // test for super card ReaderTransmit(superGen1, sizeof(superGen1), NULL); res = ReaderReceive(buf, par); if (res == 22) { isGen = MAGIC_SUPER_GEN1; // check for super card gen2 // not available after RATS, reset card before executing FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); SpinDelay(40); iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); iso14443a_select_card(uid, NULL, &cuid, true, 0, true); ReaderTransmit(rdbl00, sizeof(rdbl00), NULL); res = ReaderReceive(buf, par); if (res == 18) { isGen = MAGIC_SUPER_GEN2; } goto OUT; } // test for some MFC gen2 if (memcmp(buf, "\x09\x78\x00\x91\x02\xDA\xBC\x19\x10\xF0\x05", 11) == 0) { isGen = MAGIC_GEN_2; goto OUT; } // test for some MFC 7b gen2 if (memcmp(buf, "\x0D\x78\x00\x71\x02\x88\x49\xA1\x30\x20\x15\x06\x08\x56\x3D", 15) == 0) { isGen = MAGIC_GEN_2; goto OUT; } // test for Ultralight magic gen2 if (memcmp(buf, "\x0A\x78\x00\x81\x02\xDB\xA0\xC1\x19\x40\x2A\xB5", 12) == 0) { isGen = MAGIC_GEN_2; goto OUT; } // test for Ultralight EV1 magic gen2 if (memcmp(buf, "\x85\x00\x00\xA0\x00\x00\x0A\xC3\x00\x04\x03\x01\x01\x00\x0B\x03\x41\xDF", 18) == 0) { isGen = MAGIC_GEN_2; goto OUT; } // test for some other Ultralight EV1 magic gen2 if (memcmp(buf, "\x85\x00\x00\xA0\x0A\x00\x0A\xC3\x00\x04\x03\x01\x01\x00\x0B\x03\x16\xD7", 18) == 0) { isGen = MAGIC_GEN_2; goto OUT; } // test for some other Ultralight magic gen2 if (memcmp(buf, "\x85\x00\x00\xA0\x0A\x00\x0A\xB0\x00\x00\x00\x00\x00\x00\x00\x00\x18\x4D", 18) == 0) { isGen = MAGIC_GEN_2; goto OUT; } // test for NTAG213 magic gen2 if (memcmp(buf, "\x85\x00\x00\xA0\x00\x00\x0A\xA5\x00\x04\x04\x02\x01\x00\x0F\x03\x79\x0C", 18) == 0) { isGen = MAGIC_GEN_2; goto OUT; } } if (is_mfc == false) { // magic ntag test FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); SpinDelay(40); iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); res = iso14443a_select_card(uid, NULL, &cuid, true, 0, true); if (res == 2) { ReaderTransmit(rdblf0, sizeof(rdblf0), NULL); res = ReaderReceive(buf, par); if (res == 18) { isGen = MAGIC_NTAG21X; } } } else { // magic MFC Gen3 test 1 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); SpinDelay(40); iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); res = iso14443a_select_card(uid, NULL, &cuid, true, 0, true); if (res == 2) { ReaderTransmit(rdbl00, sizeof(rdbl00), NULL); res = ReaderReceive(buf, par); if (res == 18) { isGen = MAGIC_GEN_3; } } // magic MFC Gen4 GDM test if (isGen != MAGIC_GEN_3) { FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); SpinDelay(40); iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); res = iso14443a_select_card(uid, NULL, &cuid, true, 0, true); if (res == 2) { ReaderTransmit(gen4gdm, sizeof(gen4gdm), NULL); res = ReaderReceive(buf, par); if (res == 4) { isGen = MAGIC_GEN_4GDM; } } if (isGen != MAGIC_GEN_4GDM) { FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); SpinDelay(40); iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); res = iso14443a_select_card(uid, NULL, &cuid, true, 0, true); if (res == 2) { struct Crypto1State mpcs = {0, 0}; struct Crypto1State *pcs; pcs = &mpcs; if (mifare_classic_authex(pcs, cuid, 68, MF_KEY_B, 0x707B11FC1481, AUTH_FIRST, NULL, NULL) == 0) { isGen = MAGIC_QL88; } crypto1_deinit(pcs); } } } } }; OUT: data[0] = isGen; reply_ng(CMD_HF_MIFARE_CIDENT, PM3_SUCCESS, data, sizeof(data)); // turns off OnSuccessMagic(); BigBuf_free(); } void MifareHasStaticNonce(void) { FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // variables int retval = PM3_SUCCESS; uint32_t nt = 0; uint8_t *uid = BigBuf_malloc(10); memset(uid, 0x00, 10); uint8_t data[1] = { NONCE_FAIL }; struct Crypto1State mpcs = {0, 0}; struct Crypto1State *pcs; pcs = &mpcs; iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); uint8_t counter = 0; for (uint8_t i = 0; i < 3; i++) { iso14a_card_select_t card_info; if (!iso14443a_select_card(uid, &card_info, NULL, true, 0, true)) { retval = PM3_ESOFT; goto OUT; } uint8_t rec[4] = {0x00}; uint8_t recpar[1] = {0x00}; // Transmit MIFARE_CLASSIC_AUTH 0x60, block 0 int len = mifare_sendcmd_short(pcs, false, MIFARE_AUTH_KEYA, 0, rec, recpar, NULL); if (len != 4) { retval = PM3_ESOFT; goto OUT; } // Save the tag nonce (nt) if (nt == bytes_to_num(rec, 4)) { counter++; } nt = bytes_to_num(rec, 4); // some cards with static nonce need to be reset before next query FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); CHK_TIMEOUT(); memset(rec, 0x00, sizeof(rec)); } if (counter) { Dbprintf("%u static nonce %08x", data[0], nt); data[0] = NONCE_STATIC; } else { data[0] = NONCE_NORMAL; } OUT: reply_ng(CMD_HF_MIFARE_STATIC_NONCE, retval, data, sizeof(data)); // turns off OnSuccessMagic(); BigBuf_free(); crypto1_deinit(pcs); } // FUDAN card w static encrypted nonces // 2B F9 1C 1B D5 08 48 48 03 A4 B1 B1 75 FF 2D 90 // ^^ ^^ void OnSuccessMagic(void) { FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); set_tracing(false); } void OnErrorMagic(uint8_t reason) { // ACK, ISOK, reason,0,0,0 reply_mix(CMD_ACK, 0, reason, 0, 0, 0); OnSuccessMagic(); } int DoGen3Cmd(uint8_t *cmd, uint8_t cmd_len) { int retval = PM3_SUCCESS; uint8_t *par = BigBuf_malloc(MAX_PARITY_SIZE); uint8_t *buf = BigBuf_malloc(PM3_CMD_DATA_SIZE); LED_B_ON(); uint32_t save_iso14a_timeout = iso14a_get_timeout(); iso14a_set_timeout(13560000 / 1000 / (8 * 16) * 2000); // 2 seconds timeout ReaderTransmit(cmd, cmd_len, NULL); int res = ReaderReceive(buf, par); if (res == 4 && memcmp(buf, "\x90\x00\xfd\x07", 4) == 0) { // timeout for card memory reset SpinDelay(1000); } else { if (g_dbglevel >= DBG_ERROR) Dbprintf("Card operation not completed"); retval = PM3_ESOFT; } iso14a_set_timeout(save_iso14a_timeout); LED_B_OFF(); return retval; } void MifareGen3UID(uint8_t uidlen, uint8_t *uid) { int retval = PM3_SUCCESS; uint8_t uid_cmd[5] = { 0x90, 0xfb, 0xcc, 0xcc, 0x07 }; uint8_t *old_uid = BigBuf_malloc(10); uint8_t *cmd = BigBuf_malloc(sizeof(uid_cmd) + uidlen + 2); iso14a_card_select_t *card_info = (iso14a_card_select_t *) BigBuf_malloc(sizeof(iso14a_card_select_t)); iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); clear_trace(); set_tracing(true); if (iso14443a_select_card(old_uid, card_info, NULL, true, 0, true) == false) { retval = PM3_ESOFT; goto OUT; } if (card_info->uidlen != uidlen) { if (g_dbglevel >= DBG_ERROR) Dbprintf("Wrong UID length"); retval = PM3_ESOFT; goto OUT; } memcpy(cmd, uid_cmd, sizeof(uid_cmd)); memcpy(&cmd[sizeof(uid_cmd)], uid, uidlen); AddCrc14A(cmd, sizeof(uid_cmd) + uidlen); retval = DoGen3Cmd(cmd, sizeof(uid_cmd) + uidlen + 2); OUT: reply_ng(CMD_HF_MIFARE_GEN3UID, retval, old_uid, uidlen); // turns off OnSuccessMagic(); BigBuf_free(); } void MifareGen3Blk(uint8_t block_len, uint8_t *block) { #define MIFARE_BLOCK_SIZE (MAX_MIFARE_FRAME_SIZE - 2) int retval = PM3_SUCCESS; uint8_t block_cmd[5] = { 0x90, 0xf0, 0xcc, 0xcc, 0x10 }; uint8_t *uid = BigBuf_malloc(10); uint8_t *cmd = BigBuf_malloc(sizeof(block_cmd) + MAX_MIFARE_FRAME_SIZE); iso14a_card_select_t *card_info = (iso14a_card_select_t *) BigBuf_malloc(sizeof(iso14a_card_select_t)); iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); clear_trace(); set_tracing(true); if (iso14443a_select_card(uid, card_info, NULL, true, 0, true) == false) { retval = PM3_ESOFT; goto OUT; } bool doReselect = false; if (block_len < MIFARE_BLOCK_SIZE) { if ((mifare_sendcmd_short(NULL, CRYPT_NONE, ISO14443A_CMD_READBLOCK, 0, &cmd[sizeof(block_cmd)], NULL, NULL) != MAX_MIFARE_FRAME_SIZE)) { if (g_dbglevel >= DBG_ERROR) Dbprintf("Read manufacturer block failed"); retval = PM3_ESOFT; goto OUT; } doReselect = true; } if (block_len > 0) { memcpy(cmd, block_cmd, sizeof(block_cmd)); memcpy(&cmd[sizeof(block_cmd)], block, block_len); int ofs = sizeof(block_cmd); if (card_info->uidlen == 4) { cmd[ofs + 4] = cmd[ofs + 0] ^ cmd[ofs + 1] ^ cmd[ofs + 2] ^ cmd[ofs + 3]; ofs += 5; } else if (card_info->uidlen == 7) { ofs += 7; } else { if (g_dbglevel >= DBG_ERROR) Dbprintf("Wrong Card UID length"); retval = PM3_ESOFT; goto OUT; } cmd[ofs++] = card_info->sak; cmd[ofs++] = card_info->atqa[0]; cmd[ofs++] = card_info->atqa[1]; AddCrc14A(cmd, sizeof(block_cmd) + MIFARE_BLOCK_SIZE); if (doReselect) { if (!iso14443a_select_card(uid, NULL, NULL, true, 0, true)) { retval = PM3_ESOFT; goto OUT; } } retval = DoGen3Cmd(cmd, sizeof(block_cmd) + MAX_MIFARE_FRAME_SIZE); } OUT: reply_ng(CMD_HF_MIFARE_GEN3BLK, retval, &cmd[sizeof(block_cmd)], MIFARE_BLOCK_SIZE); // turns off OnSuccessMagic(); BigBuf_free(); } void MifareGen3Freez(void) { iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); clear_trace(); set_tracing(true); int retval = PM3_SUCCESS; uint8_t freeze_cmd[7] = { 0x90, 0xfd, 0x11, 0x11, 0x00, 0xe7, 0x91 }; uint8_t *uid = BigBuf_malloc(10); if (iso14443a_select_card(uid, NULL, NULL, true, 0, true) == false) { retval = PM3_ESOFT; goto OUT; } retval = DoGen3Cmd(freeze_cmd, sizeof(freeze_cmd)); OUT: reply_ng(CMD_HF_MIFARE_GEN3FREEZ, retval, NULL, 0); // turns off OnSuccessMagic(); BigBuf_free(); } void MifareG4ReadBlk(uint8_t blockno, uint8_t *pwd, uint8_t workFlags) { bool setup = ((workFlags & MAGIC_INIT) == MAGIC_INIT) ; bool done = ((workFlags & MAGIC_OFF) == MAGIC_OFF) ; int res = 0; int retval = PM3_SUCCESS; uint8_t *buf = BigBuf_malloc(PM3_CMD_DATA_SIZE); if (buf == NULL) { retval = PM3_EMALLOC; goto OUT; } uint8_t *par = BigBuf_malloc(MAX_PARITY_SIZE); if (par == NULL) { retval = PM3_EMALLOC; goto OUT; } if (setup) { uint8_t *uid = BigBuf_malloc(10); if (uid == NULL) { retval = PM3_EMALLOC; goto OUT; } iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); clear_trace(); set_tracing(true); if (iso14443a_select_card(uid, NULL, NULL, true, 0, true) == false) { retval = PM3_ESOFT; goto OUT; } } LED_B_ON(); static uint32_t save_iso14a_timeout; if (setup) { save_iso14a_timeout = iso14a_get_timeout(); iso14a_set_timeout(13560000 / 1000 / (8 * 16) * 1000); // 2 seconds timeout } uint8_t cmd[] = { GEN_4GTU_CMD, 0x00, 0x00, 0x00, 0x00, GEN_4GTU_READ, blockno, 0x00, 0x00 }; memcpy(cmd + 1, pwd, 4); AddCrc14A(cmd, sizeof(cmd) - 2); ReaderTransmit(cmd, sizeof(cmd), NULL); res = ReaderReceive(buf, par); if (res != 18) { retval = PM3_ESOFT; } if (done || retval != 0) iso14a_set_timeout(save_iso14a_timeout); LED_B_OFF(); OUT: reply_ng(CMD_HF_MIFARE_G4_RDBL, retval, buf, res); // turns off if (done || retval != 0) FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); if (done || retval != 0) set_tracing(false); BigBuf_free(); } void MifareG4WriteBlk(uint8_t blockno, uint8_t *pwd, uint8_t *data, uint8_t workFlags) { bool setup = ((workFlags & MAGIC_INIT) == MAGIC_INIT) ; bool done = ((workFlags & MAGIC_OFF) == MAGIC_OFF) ; int res = 0; int retval = PM3_SUCCESS; uint8_t *buf = BigBuf_malloc(PM3_CMD_DATA_SIZE); if (buf == NULL) { retval = PM3_EMALLOC; goto OUT; } // check args if (data == NULL) { retval = PM3_EINVARG; goto OUT; } uint8_t *par = BigBuf_malloc(MAX_PARITY_SIZE); if (par == NULL) { retval = PM3_EMALLOC; goto OUT; } if (setup) { uint8_t *uid = BigBuf_malloc(10); if (uid == NULL) { retval = PM3_EMALLOC; goto OUT; } iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); clear_trace(); set_tracing(true); if (iso14443a_select_card(uid, NULL, NULL, true, 0, true) == false) { retval = PM3_ESOFT; goto OUT; } } LED_B_ON(); static uint32_t save_iso14a_timeout; if (setup) { save_iso14a_timeout = iso14a_get_timeout(); iso14a_set_timeout(13560000 / 1000 / (8 * 16) * 1000); // 2 seconds timeout } uint8_t cmd[] = { GEN_4GTU_CMD, 0x00, 0x00, 0x00, 0x00, GEN_4GTU_WRITE, blockno, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; memcpy(cmd + 1, pwd, 4); memcpy(cmd + 7, data, 16); AddCrc14A(cmd, sizeof(cmd) - 2); ReaderTransmit(cmd, sizeof(cmd), NULL); res = ReaderReceive(buf, par); if ((res != 4) || (memcmp(buf, "\x90\x00\xfd\x07", 4) != 0)) { retval = PM3_ESOFT; } if (done || retval != 0) iso14a_set_timeout(save_iso14a_timeout); LED_B_OFF(); OUT: reply_ng(CMD_HF_MIFARE_G4_WRBL, retval, buf, res); // turns off if (done || retval != 0) FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); if (done || retval != 0) set_tracing(false); BigBuf_free(); } void MifareSetMod(uint8_t *datain) { uint8_t mod = datain[0]; uint64_t ui64Key = bytes_to_num(datain + 1, 6); // variables uint16_t isOK = PM3_EUNDEF; uint8_t uid[10] = {0}; uint32_t cuid = 0; struct Crypto1State mpcs = {0, 0}; struct Crypto1State *pcs = &mpcs; uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = {0}; uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE] = {0}; iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); clear_trace(); set_tracing(true); LED_A_ON(); LED_B_OFF(); LED_C_OFF(); while (true) { if (!iso14443a_select_card(uid, NULL, &cuid, true, 0, true)) { if (g_dbglevel >= DBG_ERROR) Dbprintf("Can't select card"); break; } if (mifare_classic_auth(pcs, cuid, 0, 0, ui64Key, AUTH_FIRST)) { if (g_dbglevel >= DBG_ERROR) Dbprintf("Auth error"); break; } int respLen; if (((respLen = mifare_sendcmd_short(pcs, CRYPT_ALL, MIFARE_EV1_SETMOD, mod, receivedAnswer, receivedAnswerPar, NULL)) != 1) || (receivedAnswer[0] != 0x0a)) { if (g_dbglevel >= DBG_ERROR) Dbprintf("SetMod error; response[0]: %hhX, len: %d", receivedAnswer[0], respLen); break; } if (mifare_classic_halt(pcs)) { if (g_dbglevel >= DBG_ERROR) Dbprintf("Halt error"); break; } isOK = PM3_SUCCESS; break; } crypto1_deinit(pcs); LED_B_ON(); reply_ng(CMD_HF_MIFARE_SETMOD, isOK, NULL, 0); LED_B_OFF(); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); } // // DESFIRE // void Mifare_DES_Auth1(uint8_t arg0, uint8_t *datain) { uint8_t dataout[12] = {0x00}; uint8_t uid[10] = {0x00}; uint32_t cuid = 0; iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); clear_trace(); set_tracing(true); int len = iso14443a_select_card(uid, NULL, &cuid, true, 0, false); if (!len) { if (g_dbglevel >= DBG_ERROR) Dbprintf("Can't select card"); OnError(1); return; }; if (mifare_desfire_des_auth1(cuid, dataout) != PM3_SUCCESS) { if (g_dbglevel >= DBG_ERROR) Dbprintf("Authentication part1: Fail."); OnError(4); return; } if (g_dbglevel >= DBG_EXTENDED) DbpString("AUTH 1 FINISHED"); reply_mix(CMD_ACK, 1, cuid, 0, dataout, sizeof(dataout)); } void Mifare_DES_Auth2(uint32_t arg0, uint8_t *datain) { uint32_t cuid = arg0; uint8_t key[16] = {0x00}; uint8_t dataout[12] = {0x00}; uint8_t isOK = 0; memcpy(key, datain, 16); isOK = mifare_desfire_des_auth2(cuid, key, dataout); if (isOK != PM3_SUCCESS) { if (g_dbglevel >= DBG_EXTENDED) Dbprintf("Authentication part2: Failed"); OnError(4); return; } if (g_dbglevel >= DBG_EXTENDED) DbpString("AUTH 2 FINISHED"); reply_old(CMD_ACK, isOK, 0, 0, dataout, sizeof(dataout)); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); set_tracing(false); } // // Tear-off attack against MFU. // - Moebius et al void MifareU_Otp_Tearoff(uint8_t blno, uint32_t tearoff_time, uint8_t *data_testwrite) { uint8_t blockNo = blno; if (g_dbglevel >= DBG_DEBUG) DbpString("Preparing OTP tear-off"); if (tearoff_time > 43000) tearoff_time = 43000; g_tearoff_delay_us = tearoff_time; g_tearoff_enabled = true; LEDsoff(); iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); clear_trace(); set_tracing(true); // write cmd to send, include CRC // 1b write, 1b block, 4b data, 2 crc uint8_t cmd[] = { MIFARE_ULC_WRITE, blockNo, data_testwrite[0], data_testwrite[1], data_testwrite[2], data_testwrite[3], 0, 0 }; AddCrc14A(cmd, sizeof(cmd) - 2); // anticollision / select card if (!iso14443a_select_card(NULL, NULL, NULL, true, 0, true)) { if (g_dbglevel >= DBG_ERROR) Dbprintf("Can't select card"); OnError(1); reply_ng(CMD_HF_MFU_OTP_TEAROFF, PM3_EFAILED, NULL, 0); return; }; // send LED_D_ON(); ReaderTransmit(cmd, sizeof(cmd), NULL); tearoff_hook(); reply_ng(CMD_HF_MFU_OTP_TEAROFF, PM3_SUCCESS, NULL, 0); } // // Tear-off attack against MFU counter void MifareU_Counter_Tearoff(uint8_t counter, uint32_t tearoff_time, uint8_t *datain) { if (tearoff_time > 43000) tearoff_time = 43000; LEDsoff(); iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); clear_trace(); set_tracing(true); // Send MFU counter increase cmd uint8_t cmd[] = { MIFARE_ULEV1_INCR_CNT, counter, datain[0], // lsb datain[1], datain[2], // msb datain[3], // rfu 0, 0, }; AddCrc14A(cmd, sizeof(cmd) - 2); // anticollision / select card if (!iso14443a_select_card(NULL, NULL, NULL, true, 0, true)) { if (g_dbglevel >= DBG_ERROR) Dbprintf("Can't select card"); OnError(1); switch_off(); LEDsoff(); return; }; // send ReaderTransmit(cmd, sizeof(cmd), NULL); LED_D_ON(); SpinDelayUsPrecision(tearoff_time); switch_off(); LEDsoff(); reply_ng(CMD_HF_MFU_COUNTER_TEAROFF, PM3_SUCCESS, NULL, 0); }