/* crypto1.c This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, US Copyright (C) 2008-2008 bla */ #include "crapto1.h" #include #include "parity.h" #define SWAPENDIAN(x)\ (x = (x >> 8 & 0xff00ff) | (x & 0xff00ff) << 8, x = x >> 16 | x << 16) #if defined(__arm__) && !defined(__linux__) && !defined(_WIN32) && !defined(__APPLE__) // bare metal ARM Proxmark lacks malloc()/free() void crypto1_create(struct Crypto1State *s, uint64_t key) { int i; for(i = 47;s && i > 0; i -= 2) { s->odd = s->odd << 1 | BIT(key, (i - 1) ^ 7); s->even = s->even << 1 | BIT(key, i ^ 7); } return; } void crypto1_destroy(struct Crypto1State *state) { state->odd = 0; state->even = 0; } #else struct Crypto1State * crypto1_create(uint64_t key) { struct Crypto1State *s = malloc(sizeof(*s)); if ( !s ) return NULL; s->odd = s->even = 0; int i; //for(i = 47;s && i > 0; i -= 2) { for(i = 47; i > 0; i -= 2) { s->odd = s->odd << 1 | BIT(key, (i - 1) ^ 7); s->even = s->even << 1 | BIT(key, i ^ 7); } return s; } void crypto1_destroy(struct Crypto1State *state) { free(state); } #endif void crypto1_get_lfsr(struct Crypto1State *state, uint64_t *lfsr) { int i; for(*lfsr = 0, i = 23; i >= 0; --i) { *lfsr = *lfsr << 1 | BIT(state->odd, i ^ 3); *lfsr = *lfsr << 1 | BIT(state->even, i ^ 3); } } uint8_t crypto1_bit(struct Crypto1State *s, uint8_t in, int is_encrypted) { uint32_t feedin, t; uint8_t ret = filter(s->odd); feedin = ret & !!is_encrypted; feedin ^= !!in; feedin ^= LF_POLY_ODD & s->odd; feedin ^= LF_POLY_EVEN & s->even; s->even = s->even << 1 | evenparity32(feedin); t = s->odd; s->odd = s->even; s->even = t; return ret; } uint8_t crypto1_byte(struct Crypto1State *s, uint8_t in, int is_encrypted) { /* uint8_t i, ret = 0; for (i = 0; i < 8; ++i) ret |= crypto1_bit(s, BIT(in, i), is_encrypted) << i; */ // unfold loop 20161012 uint8_t ret = 0; ret |= crypto1_bit(s, BIT(in, 0), is_encrypted) << 0; ret |= crypto1_bit(s, BIT(in, 1), is_encrypted) << 1; ret |= crypto1_bit(s, BIT(in, 2), is_encrypted) << 2; ret |= crypto1_bit(s, BIT(in, 3), is_encrypted) << 3; ret |= crypto1_bit(s, BIT(in, 4), is_encrypted) << 4; ret |= crypto1_bit(s, BIT(in, 5), is_encrypted) << 5; ret |= crypto1_bit(s, BIT(in, 6), is_encrypted) << 6; ret |= crypto1_bit(s, BIT(in, 7), is_encrypted) << 7; return ret; } uint32_t crypto1_word(struct Crypto1State *s, uint32_t in, int is_encrypted) { /* uint32_t i, ret = 0; for (i = 0; i < 32; ++i) ret |= crypto1_bit(s, BEBIT(in, i), is_encrypted) << (i ^ 24); */ //unfold loop 2016012 uint32_t ret = 0; ret |= crypto1_bit(s, BEBIT(in, 0), is_encrypted) << (0 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 1), is_encrypted) << (1 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 2), is_encrypted) << (2 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 3), is_encrypted) << (3 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 4), is_encrypted) << (4 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 5), is_encrypted) << (5 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 6), is_encrypted) << (6 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 7), is_encrypted) << (7 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 8), is_encrypted) << (8 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 9), is_encrypted) << (9 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 10), is_encrypted) << (10 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 11), is_encrypted) << (11 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 12), is_encrypted) << (12 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 13), is_encrypted) << (13 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 14), is_encrypted) << (14 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 15), is_encrypted) << (15 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 16), is_encrypted) << (16 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 17), is_encrypted) << (17 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 18), is_encrypted) << (18 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 19), is_encrypted) << (19 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 20), is_encrypted) << (20 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 21), is_encrypted) << (21 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 22), is_encrypted) << (22 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 23), is_encrypted) << (23 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 24), is_encrypted) << (24 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 25), is_encrypted) << (25 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 26), is_encrypted) << (26 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 27), is_encrypted) << (27 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 28), is_encrypted) << (28 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 29), is_encrypted) << (29 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 30), is_encrypted) << (30 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 31), is_encrypted) << (31 ^ 24); return ret; } /* prng_successor * helper used to obscure the keystream during authentication */ uint32_t prng_successor(uint32_t x, uint32_t n) { SWAPENDIAN(x); while(n--) x = x >> 1 | (x >> 16 ^ x >> 18 ^ x >> 19 ^ x >> 21) << 31; return SWAPENDIAN(x); }