//----------------------------------------------------------------------------- // Copyright (C) 2010 iZsh // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Low frequency commands //----------------------------------------------------------------------------- #include "cmdlf.h" bool g_lf_threshold_set = false; static int CmdHelp(const char *Cmd); int usage_lf_cmdread(void) { PrintAndLogEx(NORMAL, "Usage: lf cmdread d z o c "); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h This help"); PrintAndLogEx(NORMAL, " d delay OFF period, (0 for bitbang mode) (decimal)"); PrintAndLogEx(NORMAL, " z time period ZERO, (decimal)"); PrintAndLogEx(NORMAL, " o time period ONE, (decimal)"); PrintAndLogEx(NORMAL, " c Command bytes (in ones and zeros)"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, " ************* All periods in microseconds (ms)"); PrintAndLogEx(NORMAL, " ************* Use lf config to configure options."); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " lf cmdread d 80 z 100 o 200 c 11000"); return 0; } int usage_lf_read(void){ PrintAndLogEx(NORMAL, "Usage: lf read [h] [s] [d numofsamples]"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h This help"); PrintAndLogEx(NORMAL, " s silent run no printout"); PrintAndLogEx(NORMAL, " d #samples # samples to collect (optional)"); PrintAndLogEx(NORMAL, "Use 'lf config' to set parameters."); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " lf read s d 12000 - collects 12000samples silent"); PrintAndLogEx(NORMAL, " lf read s"); return 0; } int usage_lf_snoop(void) { PrintAndLogEx(NORMAL, "Snoop low frequence signal. Use 'lf config' to set parameters."); PrintAndLogEx(NORMAL, "Usage: lf snoop [h]"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h This help"); PrintAndLogEx(NORMAL, "This function takes no arguments. "); PrintAndLogEx(NORMAL, "Use 'lf config' to set parameters."); return 0; } int usage_lf_config(void) { PrintAndLogEx(NORMAL, "Usage: lf config [h] [H|] [b ] [d ] [a 0|1]"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h This help"); PrintAndLogEx(NORMAL, " L Low frequency (125 KHz)"); PrintAndLogEx(NORMAL, " H High frequency (134 KHz)"); PrintAndLogEx(NORMAL, " q Manually set divisor. 88-> 134KHz, 95-> 125 Hz"); PrintAndLogEx(NORMAL, " b Sets resolution of bits per sample. Default (max): 8"); PrintAndLogEx(NORMAL, " d Sets decimation. A value of N saves only 1 in N samples. Default: 1"); PrintAndLogEx(NORMAL, " a [0|1] Averaging - if set, will average the stored sample value when decimating. Default: 1"); PrintAndLogEx(NORMAL, " t Sets trigger threshold. 0 means no threshold (range: 0-128)"); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " lf config b 8 L"); PrintAndLogEx(NORMAL, " Samples at 125KHz, 8bps."); PrintAndLogEx(NORMAL, " lf config H b 4 d 3"); PrintAndLogEx(NORMAL, " Samples at 134KHz, averages three samples into one, stored with "); PrintAndLogEx(NORMAL, " a resolution of 4 bits per sample."); PrintAndLogEx(NORMAL, " lf read"); PrintAndLogEx(NORMAL, " Performs a read (active field)"); PrintAndLogEx(NORMAL, " lf snoop"); PrintAndLogEx(NORMAL, " Performs a snoop (no active field)"); return 0; } int usage_lf_simfsk(void) { PrintAndLogEx(NORMAL, "Usage: lf simfsk [h] [c ] [H ] [L ] [d ]"); PrintAndLogEx(NORMAL, "there are about four FSK modulations to know of."); PrintAndLogEx(NORMAL, "FSK1 - where fc/8 = high and fc/5 = low"); PrintAndLogEx(NORMAL, "FSK1a - is inverted FSK1, ie: fc/5 = high and fc/8 = low"); PrintAndLogEx(NORMAL, "FSK2 - where fc/10 = high and fc/8 = low"); PrintAndLogEx(NORMAL, "FSK2a - is inverted FSK2, ie: fc/10 = high and fc/8 = low"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h This help"); PrintAndLogEx(NORMAL, " c Manually set clock - can autodetect if using DemodBuffer"); PrintAndLogEx(NORMAL, " H Manually set the larger Field Clock"); PrintAndLogEx(NORMAL, " L Manually set the smaller Field Clock"); //PrintAndLogEx(NORMAL, " s TBD- -STT to enable a gap between playback repetitions - default: no gap"); PrintAndLogEx(NORMAL, " d Data to sim as hex - omit to sim from DemodBuffer"); PrintAndLogEx(NORMAL, "\n NOTE: if you set one clock manually set them all manually"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " lf simfsk c 40 H 8 L 5 d 010203 - FSK1 rf/40 data 010203"); PrintAndLogEx(NORMAL, " lf simfsk c 40 H 5 L 8 d 010203 - FSK1a rf/40 data 010203"); PrintAndLogEx(NORMAL, " lf simfsk c 64 H 10 L 8 d 010203 - FSK2 rf/64 data 010203"); PrintAndLogEx(NORMAL, " lf simfsk c 64 H 8 L 10 d 010203 - FSK2a rf/64 data 010203"); PrintAndLogEx(NORMAL, ""); return 0; } int usage_lf_simask(void) { PrintAndLogEx(NORMAL, "Usage: lf simask [c ] [i] [b|m|r] [s] [d ]"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h This help"); PrintAndLogEx(NORMAL, " c Manually set clock - can autodetect if using DemodBuffer"); PrintAndLogEx(NORMAL, " i invert data"); PrintAndLogEx(NORMAL, " b sim ask/biphase"); PrintAndLogEx(NORMAL, " m sim ask/manchester - Default"); PrintAndLogEx(NORMAL, " r sim ask/raw"); PrintAndLogEx(NORMAL, " s add t55xx Sequence Terminator gap - default: no gaps (only manchester)"); PrintAndLogEx(NORMAL, " d Data to sim as hex - omit to sim from DemodBuffer"); return 0; } int usage_lf_simpsk(void) { PrintAndLogEx(NORMAL, "Usage: lf simpsk [1|2|3] [c ] [i] [r ] [d ]"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h This help"); PrintAndLogEx(NORMAL, " c Manually set clock - can autodetect if using DemodBuffer"); PrintAndLogEx(NORMAL, " i invert data"); PrintAndLogEx(NORMAL, " 1 set PSK1 (default)"); PrintAndLogEx(NORMAL, " 2 set PSK2"); PrintAndLogEx(NORMAL, " 3 set PSK3"); PrintAndLogEx(NORMAL, " r 2|4|8 are valid carriers: default = 2"); PrintAndLogEx(NORMAL, " d Data to sim as hex - omit to sim from DemodBuffer"); return 0; } int usage_lf_find(void){ PrintAndLogEx(NORMAL, "Usage: lf search [h] <0|1> [u]"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h This help"); PrintAndLogEx(NORMAL, " <0|1> Use data from Graphbuffer, if not set, try reading data from tag."); PrintAndLogEx(NORMAL, " u Search for Unknown tags, if not set, reads only known tags."); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " lf search = try reading data from tag & search for known tags"); PrintAndLogEx(NORMAL, " lf search 1 = use data from GraphBuffer & search for known tags"); PrintAndLogEx(NORMAL, " lf search u = try reading data from tag & search for known and unknown tags"); PrintAndLogEx(NORMAL, " lf search 1 u = use data from GraphBuffer & search for known and unknown tags"); return 0; } /* send a LF command before reading */ int CmdLFCommandRead(const char *Cmd) { UsbCommand c = {CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K, {0,0,0}}; bool errors = false; uint8_t cmdp = 0; while(param_getchar(Cmd, cmdp) != 0x00 && !errors) { switch(param_getchar(Cmd, cmdp)) { case 'h': case 'H': return usage_lf_cmdread(); case 'c': param_getstr(Cmd, cmdp+1, (char *)&c.d.asBytes, sizeof(c.d.asBytes)); cmdp += 2; break; case 'd': c.arg[0] = param_get32ex(Cmd, cmdp+1, 0, 10); cmdp += 2; break; case 'z': c.arg[1] = param_get32ex(Cmd, cmdp+1, 0, 10) & 0xFFFF; cmdp += 2; break; case 'o': c.arg[2] = param_get32ex(Cmd, cmdp+1, 0, 10) & 0xFFFF; cmdp += 2; break; default: PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } } //Validations if (errors || cmdp == 0) return usage_lf_cmdread(); clearCommandBuffer(); SendCommand(&c); WaitForResponse(CMD_ACK, NULL); getSamples(0, true); return 0; } int CmdFlexdemod(const char *Cmd) { #define LONG_WAIT 100 int i, j, start, bit, sum; int phase = 0; for (i = 0; i < GraphTraceLen; ++i) GraphBuffer[i] = (GraphBuffer[i] < 0) ? -1 : 1; for (start = 0; start < GraphTraceLen - LONG_WAIT; start++) { int first = GraphBuffer[start]; for (i = start; i < start + LONG_WAIT; i++) { if (GraphBuffer[i] != first) { break; } } if (i == (start + LONG_WAIT)) break; } if (start == GraphTraceLen - LONG_WAIT) { PrintAndLogEx(NORMAL, "nothing to wait for"); return 0; } GraphBuffer[start] = 2; GraphBuffer[start+1] = -2; uint8_t bits[64] = {0x00}; i = start; for (bit = 0; bit < 64; bit++) { sum = 0; for (int j = 0; j < 16; j++) { sum += GraphBuffer[i++]; } bits[bit] = (sum > 0) ? 1 : 0; PrintAndLogEx(NORMAL, "bit %d sum %d", bit, sum); } for (bit = 0; bit < 64; bit++) { sum = 0; for (j = 0; j < 16; j++) sum += GraphBuffer[i++]; if (sum > 0 && bits[bit] != 1) PrintAndLogEx(NORMAL, "oops1 at %d", bit); if (sum < 0 && bits[bit] != 0) PrintAndLogEx(NORMAL, "oops2 at %d", bit); } // HACK writing back to graphbuffer. GraphTraceLen = 32*64; i = 0; for (bit = 0; bit < 64; bit++) { phase = (bits[bit] == 0) ? 0 : 1; for (j = 0; j < 32; j++) { GraphBuffer[i++] = phase; phase = !phase; } } RepaintGraphWindow(); return 0; } int CmdLFSetConfig(const char *Cmd) { uint8_t divisor = 0;//Frequency divisor uint8_t bps = 0; // Bits per sample uint8_t decimation = 0; //How many to keep bool averaging = 1; // Defaults to true bool errors = false; int trigger_threshold = -1;//Means no change uint8_t unsigned_trigg = 0; uint8_t cmdp = 0; while(param_getchar(Cmd, cmdp) != 0x00 && !errors) { switch(param_getchar(Cmd, cmdp)) { case 'h': return usage_lf_config(); case 'H': divisor = 88; cmdp++; break; case 'L': divisor = 95; cmdp++; break; case 'q': errors |= param_getdec(Cmd, cmdp+1, &divisor); cmdp+=2; break; case 't': errors |= param_getdec(Cmd, cmdp+1, &unsigned_trigg); cmdp+=2; if(!errors) { trigger_threshold = unsigned_trigg; g_lf_threshold_set = (trigger_threshold > 0); } break; case 'b': errors |= param_getdec(Cmd, cmdp+1, &bps); cmdp+=2; break; case 'd': errors |= param_getdec(Cmd, cmdp+1, &decimation); cmdp+=2; break; case 'a': averaging = param_getchar(Cmd, cmdp+1) == '1'; cmdp+=2; break; default: PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = 1; break; } } //Validations if (errors || cmdp == 0) return usage_lf_config(); //Bps is limited to 8 if (bps >> 4) bps = 8; sample_config config = { decimation, bps, averaging, divisor, trigger_threshold }; UsbCommand c = {CMD_SET_LF_SAMPLING_CONFIG, {0,0,0} }; memcpy(c.d.asBytes, &config, sizeof(sample_config)); clearCommandBuffer(); SendCommand(&c); return 0; } bool lf_read(bool silent, uint32_t samples) { if (offline) return false; UsbCommand c = {CMD_ACQUIRE_RAW_ADC_SAMPLES_125K, {silent, samples, 0}}; clearCommandBuffer(); SendCommand(&c); UsbCommand resp; if (g_lf_threshold_set) { WaitForResponse(CMD_ACK, &resp); } else { if ( !WaitForResponseTimeout(CMD_ACK, &resp, 2500) ) { PrintAndLogEx(WARNING, "command execution time out"); return false; } } // resp.arg[0] is bits read not bytes read. getSamples(resp.arg[0]/8, silent); return true; } int CmdLFRead(const char *Cmd) { if (offline) return 0; bool errors = false; bool silent = false; uint32_t samples = 0; uint8_t cmdp = 0; while(param_getchar(Cmd, cmdp) != 0x00 && !errors) { switch(param_getchar(Cmd, cmdp)) { case 'h': case 'H': return usage_lf_read(); case 's': case 'S': silent = true; cmdp++; break; case 'd': case 'D': samples = param_get32ex(Cmd, cmdp, 0, 10); cmdp +=2; break; default: PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } } //Validations if (errors) return usage_lf_read(); return lf_read(silent, samples); } int CmdLFSnoop(const char *Cmd) { uint8_t cmdp = param_getchar(Cmd, 0); if(cmdp == 'h' || cmdp == 'H') return usage_lf_snoop(); UsbCommand c = {CMD_LF_SNOOP_RAW_ADC_SAMPLES,{0,0,0}}; clearCommandBuffer(); SendCommand(&c); WaitForResponse(CMD_ACK, NULL); getSamples(0, false); return 0; } static void ChkBitstream(const char *str) { // convert to bitstream if necessary for (int i = 0; i < (int)(GraphTraceLen / 2); i++){ if (GraphBuffer[i] > 1 || GraphBuffer[i] < 0) { CmdGetBitStream(""); break; } } } //Attempt to simulate any wave in buffer (one bit per output sample) // converts GraphBuffer to bitstream (based on zero crossings) if needed. int CmdLFSim(const char *Cmd) { #define FPGA_LF 1 #define FPGA_HF 2 int gap = 0; sscanf(Cmd, "%i", &gap); // convert to bitstream if necessary ChkBitstream(Cmd); PrintAndLogEx(DEBUG, "DEBUG: Sending [%d bytes]\n", GraphTraceLen); //can send only 512 bits at a time (1 byte sent per bit...) for (uint16_t i = 0; i < GraphTraceLen; i += USB_CMD_DATA_SIZE) { UsbCommand c = {CMD_UPLOAD_SIM_SAMPLES_125K, {i, FPGA_LF, 0}}; for (uint16_t j = 0; j < USB_CMD_DATA_SIZE; j++) c.d.asBytes[j] = GraphBuffer[i+j]; clearCommandBuffer(); SendCommand(&c); WaitForResponse(CMD_ACK, NULL); printf("."); fflush(stdout); } PrintAndLogEx(NORMAL, "Simulating"); UsbCommand c = {CMD_SIMULATE_TAG_125K, {GraphTraceLen, gap, 0}}; clearCommandBuffer(); SendCommand(&c); return 0; } // by marshmellow - sim fsk data given clock, fcHigh, fcLow, invert // - allow pull data from DemodBuffer int CmdLFfskSim(const char *Cmd) { //might be able to autodetect FCs and clock from Graphbuffer if using demod buffer // otherwise will need FChigh, FClow, Clock, and bitstream uint8_t fcHigh = 0, fcLow = 0, clk = 0; bool errors = false, separator = false; char hexData[64] = {0x00}; // store entered hex data uint8_t data[255] = {0x00}; int dataLen = 0; uint8_t cmdp = 0; while(param_getchar(Cmd, cmdp) != 0x00 && !errors) { switch(param_getchar(Cmd, cmdp)){ case 'h': return usage_lf_simfsk(); case 'c': errors |= param_getdec(Cmd, cmdp+1, &clk); cmdp += 2; break; case 'H': errors |= param_getdec(Cmd, cmdp+1, &fcHigh); cmdp += 2; break; case 'L': errors |= param_getdec(Cmd, cmdp+1, &fcLow); cmdp += 2; break; case 's': separator = 1; cmdp++; break; case 'd': dataLen = param_getstr(Cmd, cmdp+1, hexData, sizeof(hexData)); if (dataLen == 0) errors = true; else dataLen = hextobinarray((char *)data, hexData); if (dataLen == 0) errors = true; if (errors) PrintAndLogEx(WARNING, "Error getting hex data"); cmdp+=2; break; default: PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } } // No args if (cmdp == 0 && DemodBufferLen == 0) return usage_lf_simfsk(); //Validations if (errors) return usage_lf_simfsk(); int firstClockEdge = 0; if (dataLen == 0){ //using DemodBuffer if (clk == 0 || fcHigh == 0 || fcLow == 0){ //manual settings must set them all uint8_t ans = fskClocks(&fcHigh, &fcLow, &clk, &firstClockEdge); if (ans==0){ if (!fcHigh) fcHigh = 10; if (!fcLow) fcLow = 8; if (!clk) clk = 50; } } } else { setDemodBuf(data, dataLen, 0); } //default if not found if (clk == 0) clk = 50; if (fcHigh == 0) fcHigh = 10; if (fcLow == 0) fcLow = 8; uint16_t arg1, arg2; arg1 = fcHigh << 8 | fcLow; arg2 = separator << 8 | clk; size_t size = DemodBufferLen; if (size > USB_CMD_DATA_SIZE) { PrintAndLogEx(NORMAL, "DemodBuffer too long for current implementation - length: %d - max: %d", size, USB_CMD_DATA_SIZE); size = USB_CMD_DATA_SIZE; } UsbCommand c = {CMD_FSK_SIM_TAG, {arg1, arg2, size}}; memcpy(c.d.asBytes, DemodBuffer, size); clearCommandBuffer(); SendCommand(&c); setClockGrid(clk, 0); return 0; } // by marshmellow - sim ask data given clock, invert, manchester or raw, separator // - allow pull data from DemodBuffer int CmdLFaskSim(const char *Cmd) { // autodetect clock from Graphbuffer if using demod buffer // needs clock, invert, manchester/raw as m or r, separator as s, and bitstream uint8_t encoding = 1, separator = 0, clk = 0, invert = 0; bool errors = false; char hexData[64] = {0x00}; uint8_t data[255]= {0x00}; // store entered hex data int dataLen = 0; uint8_t cmdp = 0; while(param_getchar(Cmd, cmdp) != 0x00 && !errors) { switch(param_getchar(Cmd, cmdp)) { case 'H': case 'h': return usage_lf_simask(); case 'i': invert = 1; cmdp++; break; case 'c': errors |= param_getdec(Cmd, cmdp+1, &clk); cmdp += 2; break; case 'b': encoding = 2; //biphase cmdp++; break; case 'm': encoding = 1; //manchester cmdp++; break; case 'r': encoding = 0; //raw cmdp++; break; case 's': separator = 1; cmdp++; break; case 'd': dataLen = param_getstr(Cmd, cmdp+1, hexData, sizeof(hexData)); if (dataLen == 0) errors = true; else dataLen = hextobinarray((char *)data, hexData); if (dataLen == 0) errors = true; if (errors) PrintAndLogEx(WARNING, "Error getting hex data, datalen: %d", dataLen); cmdp += 2; break; default: PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } } // No args if (cmdp == 0 && DemodBufferLen == 0) return usage_lf_simask(); //Validations if (errors) return usage_lf_simask(); if (dataLen == 0){ //using DemodBuffer if (clk == 0) clk = GetAskClock("0", false); } else { setDemodBuf(data, dataLen, 0); } if (clk == 0) clk = 64; if (encoding == 0) clk /= 2; //askraw needs to double the clock speed size_t size = DemodBufferLen; if (size > USB_CMD_DATA_SIZE) { PrintAndLogEx(NORMAL, "DemodBuffer too long for current implementation - length: %d - max: %d", size, USB_CMD_DATA_SIZE); size = USB_CMD_DATA_SIZE; } PrintAndLogEx(NORMAL, "preparing to sim ask data: %d bits", size); uint16_t arg1, arg2; arg1 = clk << 8 | encoding; arg2 = invert << 8 | separator; UsbCommand c = {CMD_ASK_SIM_TAG, {arg1, arg2, size}}; memcpy(c.d.asBytes, DemodBuffer, size); clearCommandBuffer(); SendCommand(&c); return 0; } // by marshmellow - sim psk data given carrier, clock, invert // - allow pull data from DemodBuffer or parameters int CmdLFpskSim(const char *Cmd) { //might be able to autodetect FC and clock from Graphbuffer if using demod buffer //will need carrier, Clock, and bitstream uint8_t carrier=0, clk=0; uint8_t invert=0; bool errors = false; char hexData[64] = {0x00}; // store entered hex data uint8_t data[255] = {0x00}; int dataLen = 0; uint8_t cmdp = 0; uint8_t pskType = 1; while(param_getchar(Cmd, cmdp) != 0x00 && !errors) { switch(param_getchar(Cmd, cmdp)) { case 'h': return usage_lf_simpsk(); case 'i': invert = 1; cmdp++; break; case 'c': errors |= param_getdec(Cmd,cmdp+1,&clk); cmdp +=2; break; case 'r': errors |= param_getdec(Cmd,cmdp+1,&carrier); cmdp += 2; break; case '1': pskType = 1; cmdp++; break; case '2': pskType = 2; cmdp++; break; case '3': pskType = 3; cmdp++; break; case 'd': dataLen = param_getstr(Cmd, cmdp+1, hexData, sizeof(hexData)); if (dataLen == 0) errors = true; else dataLen = hextobinarray((char *)data, hexData); if (dataLen == 0) errors = true; if (errors) PrintAndLogEx(WARNING, "Error getting hex data"); cmdp+=2; break; default: PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } } // No args if (cmdp == 0 && DemodBufferLen == 0) errors = true; //Validations if (errors) return usage_lf_simpsk(); if (dataLen == 0){ //using DemodBuffer PrintAndLogEx(NORMAL, "Getting Clocks"); if (clk==0) clk = GetPskClock("", false); PrintAndLogEx(NORMAL, "clk: %d",clk); if (!carrier) carrier = GetPskCarrier("", false); PrintAndLogEx(NORMAL, "carrier: %d", carrier); } else { setDemodBuf(data, dataLen, 0); } if (clk <= 0) clk = 32; if (carrier != 2 && carrier != 4 && carrier != 8 ) carrier = 2; if (pskType != 1){ if (pskType == 2){ //need to convert psk2 to psk1 data before sim psk2TOpsk1(DemodBuffer, DemodBufferLen); } else { PrintAndLogEx(NORMAL, "Sorry, PSK3 not yet available"); } } uint16_t arg1, arg2; arg1 = clk << 8 | carrier; arg2 = invert; size_t size = DemodBufferLen; if (size > USB_CMD_DATA_SIZE) { PrintAndLogEx(NORMAL, "DemodBuffer too long for current implementation - length: %d - max: %d", size, USB_CMD_DATA_SIZE); size = USB_CMD_DATA_SIZE; } UsbCommand c = {CMD_PSK_SIM_TAG, {arg1, arg2, size}}; PrintAndLogEx(DEBUG, "DEBUG: Sending DemodBuffer Length: %d", size); memcpy(c.d.asBytes, DemodBuffer, size); clearCommandBuffer(); SendCommand(&c); return 0; } int CmdLFSimBidir(const char *Cmd) { // Set ADC to twice the carrier for a slight supersampling // HACK: not implemented in ARMSRC. PrintAndLogEx(INFO, "Not implemented yet."); UsbCommand c = {CMD_LF_SIMULATE_BIDIR, {47, 384, 0}}; SendCommand(&c); return 0; } int CmdVchDemod(const char *Cmd) { // Is this the entire sync pattern, or does this also include some // data bits that happen to be the same everywhere? That would be // lovely to know. static const int SyncPattern[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, }; // So first, we correlate for the sync pattern, and mark that. int bestCorrel = 0, bestPos = 0; int i, j, sum = 0; // It does us no good to find the sync pattern, with fewer than 2048 samples after it. for (i = 0; i < (GraphTraceLen - 2048); i++) { for (j = 0; j < ARRAYLEN(SyncPattern); j++) { sum += GraphBuffer[i+j] * SyncPattern[j]; } if (sum > bestCorrel) { bestCorrel = sum; bestPos = i; } } PrintAndLogEx(NORMAL, "best sync at %d [metric %d]", bestPos, bestCorrel); char bits[257]; bits[256] = '\0'; int worst = INT_MAX, worstPos = 0; for (i = 0; i < 2048; i += 8) { sum = 0; for (j = 0; j < 8; j++) sum += GraphBuffer[bestPos+i+j]; if (sum < 0) bits[i/8] = '.'; else bits[i/8] = '1'; if(abs(sum) < worst) { worst = abs(sum); worstPos = i; } } PrintAndLogEx(NORMAL, "bits:"); PrintAndLogEx(NORMAL, "%s", bits); PrintAndLogEx(NORMAL, "worst metric: %d at pos %d", worst, worstPos); // clone if (strcmp(Cmd, "clone")==0) { GraphTraceLen = 0; char *s; for(s = bits; *s; s++) { for(j = 0; j < 16; j++) { GraphBuffer[GraphTraceLen++] = (*s == '1') ? 1 : 0; } } RepaintGraphWindow(); } return 0; } //by marshmellow int CheckChipType(bool getDeviceData) { if (!getDeviceData) return 0; save_restoreDB(GRAPH_SAVE); //check for em4x05/em4x69 chips first uint32_t word = 0; if (EM4x05IsBlock0(&word)) { PrintAndLogEx(NORMAL, "\nValid EM4x05/EM4x69 Chip Found\nTry lf em 4x05... commands\n"); save_restoreGB(GRAPH_RESTORE); return 1; } //check for t55xx chip... if (tryDetectP1(true)) { PrintAndLogEx(NORMAL, "\nValid T55xx Chip Found\nTry `lf t55xx` commands\n"); save_restoreGB(GRAPH_RESTORE); return 1; } save_restoreDB(GRAPH_RESTORE); return 0; } //by marshmellow int CmdLFfind(const char *Cmd) { int ans = 0; size_t minLength = 2000; char cmdp = param_getchar(Cmd, 0); char testRaw = param_getchar(Cmd, 1); if (strlen(Cmd) > 3 || cmdp == 'h' || cmdp == 'H') return usage_lf_find(); if (cmdp == 'u' || cmdp == 'U') testRaw = 'u'; bool isOnline = (!offline && (cmdp != '1') ); if (isOnline) lf_read(true, 30000); if (GraphTraceLen < minLength) { PrintAndLogEx(FAILED, "Data in Graphbuffer was too small."); return 0; } PrintAndLogEx(NORMAL, "NOTE: some demods output possible binary\n if it finds something that looks like a tag"); PrintAndLogEx(NORMAL, "False Positives ARE possible\n"); PrintAndLogEx(NORMAL, "\nChecking for known tags:\n"); // only run these tests if device is online if (isOnline) { // only run if graphbuffer is just noise as it should be for hitag // The improved noise detection will find Cotag. signal_t *sp = getSignalProperties(); if (sp->isnoise) { PrintAndLogEx(INFO, "Signal looks just like noise. Looking for Hitag signal now."); // 26 === RHT2F_UID_ONLY if (CmdLFHitagReader("26") == 0) { PrintAndLogEx(SUCCESS, "\nValid Hitag Found!"); return 1;} if (CmdCOTAGRead("") > 0) { PrintAndLogEx(SUCCESS, "\nValid COTAG ID Found!"); return 1;} PrintAndLogEx(FAILED, "\nNo Data Found! - maybe not an LF tag?"); return 0; } } if (EM4x50Read("", false)) { PrintAndLogEx(SUCCESS, "\nValid EM4x50 ID Found!"); return 1;} if (CmdAWIDDemod("")) { PrintAndLogEx(SUCCESS, "\nValid AWID ID Found!"); goto out;} if (CmdEM410xDemod("")) { PrintAndLogEx(SUCCESS, "\nValid EM410x ID Found!"); goto out;} if (CmdFdxDemod("")) { PrintAndLogEx(SUCCESS, "\nValid FDX-B ID Found!"); goto out;} if (CmdGuardDemod("")) { PrintAndLogEx(SUCCESS, "\nValid Guardall G-Prox II ID Found!"); goto out; } if (CmdHIDDemod("")) { PrintAndLogEx(SUCCESS, "\nValid HID Prox ID Found!"); goto out;} if (CmdPSKIdteck("")) { PrintAndLogEx(SUCCESS, "\nValid Idteck ID Found!"); goto out;} if (CmdIndalaDemod("")) { PrintAndLogEx(SUCCESS, "\nValid Indala ID Found!"); goto out;} if (CmdIOProxDemod("")) { PrintAndLogEx(SUCCESS, "\nValid IO Prox ID Found!"); goto out;} if (CmdJablotronDemod("")) { PrintAndLogEx(SUCCESS, "\nValid Jablotron ID Found!"); goto out;} if (CmdLFNedapDemod("")) { PrintAndLogEx(SUCCESS, "\nValid NEDAP ID Found!"); goto out;} if (CmdNexWatchDemod("")) { PrintAndLogEx(SUCCESS, "\nValid NexWatch ID Found!"); goto out;} if (CmdNoralsyDemod("")) { PrintAndLogEx(SUCCESS, "\nValid Noralsy ID Found!"); goto out;} if (CmdPacDemod("")) { PrintAndLogEx(SUCCESS, "\nValid PAC/Stanley ID Found!"); goto out;} if (CmdParadoxDemod("")) { PrintAndLogEx(SUCCESS, "\nValid Paradox ID Found!"); goto out;} if (CmdPrescoDemod("")) { PrintAndLogEx(SUCCESS, "\nValid Presco ID Found!"); goto out;} if (CmdPyramidDemod("")) { PrintAndLogEx(SUCCESS, "\nValid Pyramid ID Found!"); goto out;} if (CmdSecurakeyDemod("")) { PrintAndLogEx(SUCCESS, "\nValid Securakey ID Found!"); goto out;} if (CmdVikingDemod("")) { PrintAndLogEx(SUCCESS, "\nValid Viking ID Found!"); goto out;} if (CmdVisa2kDemod("")) { PrintAndLogEx(SUCCESS, "\nValid Visa2000 ID Found!"); goto out;} //if (CmdFermaxDemod("")) { PrintAndLogEx(SUCCESS, "\nValid Fermax ID Found!"); goto out;} // TIdemod? flexdemod? PrintAndLogEx(FAILED, "\nNo known 125/134 KHz tags Found!\n"); if (testRaw=='u' || testRaw=='U'){ //test unknown tag formats (raw mode) PrintAndLogEx(INFO, "\nChecking for Unknown tags:\n"); ans = AutoCorrelate(GraphBuffer, GraphBuffer, GraphTraceLen, 4000, false, false); if (ans > 0) { PrintAndLogEx(INFO, "Possible Auto Correlation of %d repeating samples",ans); if ( ans % 8 == 0) PrintAndLogEx(INFO, "Possible %d bytes", (ans / 8)); } //fsk if ( GetFskClock("", false) ) { if ( FSKrawDemod("", true) ) { PrintAndLogEx(NORMAL, "\nUnknown FSK Modulated Tag Found!"); goto out; } } bool st = true; if ( ASKDemod_ext("0 0 0", true, false, 1, &st) ) { PrintAndLogEx(NORMAL, "\nUnknown ASK Modulated and Manchester encoded Tag Found!"); PrintAndLogEx(NORMAL, "\nif it does not look right it could instead be ASK/Biphase - try 'data rawdemod ab'"); goto out; } if ( CmdPSK1rawDemod("") ) { PrintAndLogEx(NORMAL, "Possible unknown PSK1 Modulated Tag Found above!\n\nCould also be PSK2 - try 'data rawdemod p2'"); PrintAndLogEx(NORMAL, "\nCould also be PSK3 - [currently not supported]"); PrintAndLogEx(NORMAL, "\nCould also be NRZ - try 'data nrzrawdemod"); goto out; } PrintAndLogEx(FAILED, "\nNo Data Found!\n"); } out: // identify chipset CheckChipType(isOnline); return 0; } static command_t CommandTable[] = { {"help", CmdHelp, 1, "This help"}, {"awid", CmdLFAWID, 1, "{ AWID RFIDs... }"}, {"cotag", CmdLFCOTAG, 1, "{ COTAG CHIPs... }"}, {"em", CmdLFEM4X, 1, "{ EM4X CHIPs & RFIDs... }"}, {"fdx", CmdLFFdx, 1, "{ FDX-B RFIDs... }"}, {"gproxii", CmdLFGuard, 1, "{ Guardall Prox II RFIDs... }"}, {"hid", CmdLFHID, 1, "{ HID RFIDs... }"}, {"hitag", CmdLFHitag, 1, "{ Hitag CHIPs... }"}, {"indala", CmdLFINDALA, 1, "{ Indala RFIDs... }"}, {"io", CmdLFIO, 1, "{ ioProx RFIDs... }"}, {"jablotron", CmdLFJablotron, 1, "{ Jablotron RFIDs... }"}, {"nedap", CmdLFNedap, 1, "{ Nedap RFIDs... }"}, {"nexwatch", CmdLFNEXWATCH, 1, "{ NexWatch RFIDs... }"}, {"noralsy", CmdLFNoralsy, 1, "{ Noralsy RFIDs... }"}, {"pac", CmdLFPac, 1, "{ PAC/Stanley RFIDs... }"}, {"paradox", CmdLFParadox, 1, "{ Paradox RFIDs... }"}, {"pcf7931", CmdLFPCF7931, 1, "{ PCF7931 CHIPs... }"}, {"presco", CmdLFPresco, 1, "{ Presco RFIDs... }"}, {"pyramid", CmdLFPyramid, 1, "{ Farpointe/Pyramid RFIDs... }"}, {"securakey", CmdLFSecurakey, 1, "{ Securakey RFIDs... }"}, {"ti", CmdLFTI, 1, "{ TI CHIPs... }"}, {"t55xx", CmdLFT55XX, 1, "{ T55xx CHIPs... }"}, {"viking", CmdLFViking, 1, "{ Viking RFIDs... }"}, {"visa2000", CmdLFVisa2k, 1, "{ Visa2000 RFIDs... }"}, {"config", CmdLFSetConfig, 0, "Set config for LF sampling, bit/sample, decimation, frequency"}, {"cmdread", CmdLFCommandRead, 0, " <'0' period> <'1' period> ['h' 134] \n\t\t-- Modulate LF reader field to send command before read (all periods in microseconds)"}, {"flexdemod", CmdFlexdemod, 1, "Demodulate samples for FlexPass"}, {"read", CmdLFRead, 0, "['s' silent] Read 125/134 kHz LF ID-only tag. Do 'lf read h' for help"}, {"search", CmdLFfind, 1, "[offline] ['u'] Read and Search for valid known tag (in offline mode it you can load first then search) \n\t\t-- 'u' to search for unknown tags"}, {"sim", CmdLFSim, 0, "[GAP] -- Simulate LF tag from buffer with optional GAP (in microseconds)"}, {"simask", CmdLFaskSim, 0, "[clock] [invert <1|0>] [biphase/manchester/raw <'b'|'m'|'r'>] [msg separator 's'] [d ] \n\t\t-- Simulate LF ASK tag from demodbuffer or input"}, {"simfsk", CmdLFfskSim, 0, "[c ] [i] [H ] [L ] [d ] \n\t\t-- Simulate LF FSK tag from demodbuffer or input"}, {"simpsk", CmdLFpskSim, 0, "[1|2|3] [c ] [i] [r ] [d ] \n\t\t-- Simulate LF PSK tag from demodbuffer or input"}, {"simbidir", CmdLFSimBidir, 0, "Simulate LF tag (with bidirectional data transmission between reader and tag)"}, {"snoop", CmdLFSnoop, 0, "Snoop LF"}, {"vchdemod", CmdVchDemod, 1, "['clone'] -- Demodulate samples for VeriChip"}, {NULL, NULL, 0, NULL} }; int CmdLF(const char *Cmd) { clearCommandBuffer(); CmdsParse(CommandTable, Cmd); return 0; } int CmdHelp(const char *Cmd) { CmdsHelp(CommandTable); return 0; }