//----------------------------------------------------------------------------- // (c) 2009 Henryk Plötz // 2016 Iceman // 2018 AntiCat // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // LEGIC RF simulation code //----------------------------------------------------------------------------- #include "legicrf.h" #include "ticks.h" /* timers */ #include "crc.h" /* legic crc-4 */ #include "legic_prng.h" /* legic PRNG impl */ #include "legic.h" /* legic_card_select_t struct */ static uint8_t *legic_mem; /* card memory, used for sim */ static legic_card_select_t card;/* metadata of currently selected card */ static crc_t legic_crc; //----------------------------------------------------------------------------- // Frame timing and pseudorandom number generator // // The Prng is forwarded every 99.1us (TAG_BIT_PERIOD), except when the reader is // transmitting. In that case the prng has to be forwarded every bit transmitted: // - 31.3us for a 0 (RWD_TIME_0) // - 99.1us for a 1 (RWD_TIME_1) // // The data dependent timing makes writing comprehensible code significantly // harder. The current aproach forwards the prng data based if there is data on // air and time based, using GetCountSspClk(), during computational and wait // periodes. SSP Clock is clocked by the FPGA at 212 kHz (subcarrier frequency). // // To not have the necessity to calculate/guess exection time dependend timeouts // tx_frame and rx_frame use a shared timestamp to coordinate tx and rx timeslots. //----------------------------------------------------------------------------- static uint32_t last_frame_end; /* ts of last bit of previews rx or tx frame */ #define TAG_FRAME_WAIT 70 /* 330us from READER frame end to TAG frame start */ #define TAG_ACK_WAIT 758 /* 3.57ms from READER frame end to TAG write ACK */ #define TAG_BIT_PERIOD 21 /* 99.1us */ #define RWD_TIME_PAUSE 4 /* 18.9us */ #define RWD_TIME_1 21 /* RWD_TIME_PAUSE 18.9us off + 80.2us on = 99.1us */ #define RWD_TIME_0 13 /* RWD_TIME_PAUSE 18.9us off + 42.4us on = 61.3us */ #define RWD_CMD_TIMEOUT 120 /* 120 * 99.1us (arbitrary value) */ #define RWD_MIN_FRAME_LEN 6 /* Shortest frame is 6 bits */ #define RWD_MAX_FRAME_LEN 23 /* Longest frame is 23 bits */ #define RWD_PULSE 1 /* Pulse is signaled with GPIO_SSC_DIN high */ #define RWD_PAUSE 0 /* Pause is signaled with GPIO_SSC_DIN low */ //----------------------------------------------------------------------------- // Demodulation //----------------------------------------------------------------------------- // Returns true if a pulse/pause is received within timeout static inline bool wait_for(bool value, const uint32_t timeout) { while ((bool)(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN) != value) { if (GetCountSspClk() > timeout) { return false; } } return true; } // Returns a demedulated bit or -1 on code violation // // rx_bit decodes bits using a thresholds. rx_bit has to be called by as soon as // a frame starts (first pause is received). rx_bit checks for a pause up to // 18.9us followed by a pulse of 80.2us or 42.4us: // - A bit length <18.9us is a code violation // - A bit length >80.2us is a 1 // - A bit length <80.2us is a 0 // - A bit length >148.6us is a code violation static inline int8_t rx_bit() { // backup ts for threshold calculation uint32_t bit_start = last_frame_end; // wait for pause to end if (!wait_for(RWD_PULSE, bit_start + RWD_TIME_1 * 3 / 2)) { return -1; } // wait for next pause if (!wait_for(RWD_PAUSE, bit_start + RWD_TIME_1 * 3 / 2)) { return -1; } // update bit and frame end last_frame_end = GetCountSspClk(); // check for code violation (bit to short) if (last_frame_end - bit_start < RWD_TIME_PAUSE) { return -1; } // apply threshold (average of RWD_TIME_0 and ) return (last_frame_end - bit_start > (RWD_TIME_0 + RWD_TIME_1) / 2); } //----------------------------------------------------------------------------- // Modulation // // LEGIC RF uses a very basic load modulation from card to reader: // - Subcarrier on for a 1 // - Subcarrier off for for a 0 // // The 212kHz subcarrier is generated by the FPGA as well as a mathcing ssp clk. // Each bit is transfered in a 99.1us slot and the first timeslot starts 330us // after the final 20us pause generated by the reader. //----------------------------------------------------------------------------- // Transmits a bit // // Note: The Subcarrier is not disabled during bits to prevent glitches. This is // not mandatory but results in a cleaner signal. tx_frame will disable // the subcarrier when the frame is done. static inline void tx_bit(bool bit) { LED_C_ON(); if (bit) { // modulate subcarrier HIGH(GPIO_SSC_DOUT); } else { // do not modulate subcarrier LOW(GPIO_SSC_DOUT); } // wait for tx timeslot to end last_frame_end += TAG_BIT_PERIOD; while (GetCountSspClk() < last_frame_end) { }; LED_C_OFF(); } //----------------------------------------------------------------------------- // Frame Handling // // The LEGIC RF protocol from reader to card does not include explicit frame // start/stop information or length information. The tag detects end of frame // trough an extended pulse (>99.1us) without a pause. // In reverse direction (card to reader) the number of bites is well known // and depends only the command received (IV, ACK, READ or WRITE). //----------------------------------------------------------------------------- static void tx_frame(uint32_t frame, uint8_t len) { // wait for next tx timeslot last_frame_end += TAG_FRAME_WAIT; legic_prng_forward(TAG_FRAME_WAIT / TAG_BIT_PERIOD - 1); while (GetCountSspClk() < last_frame_end) { }; // backup ts for trace log uint32_t last_frame_start = last_frame_end; // transmit frame, MSB first for (uint8_t i = 0; i < len; ++i) { bool bit = (frame >> i) & 0x01; tx_bit(bit ^ legic_prng_get_bit()); legic_prng_forward(1); }; // disable subcarrier LOW(GPIO_SSC_DOUT); // log uint8_t cmdbytes[] = {len, BYTEx(frame, 0), BYTEx(frame, 1)}; LogTrace(cmdbytes, sizeof(cmdbytes), last_frame_start, last_frame_end, NULL, false); } static void tx_ack() { // wait for ack timeslot last_frame_end += TAG_ACK_WAIT; legic_prng_forward(TAG_ACK_WAIT / TAG_BIT_PERIOD - 1); while (GetCountSspClk() < last_frame_end) { }; // backup ts for trace log uint32_t last_frame_start = last_frame_end; // transmit ack (ack is not encrypted) tx_bit(true); legic_prng_forward(1); // disable subcarrier LOW(GPIO_SSC_DOUT); // log uint8_t cmdbytes[] = {1, 1}; LogTrace(cmdbytes, sizeof(cmdbytes), last_frame_start, last_frame_end, NULL, false); } // Returns a demedulated frame or -1 on code violation // // Since TX to RX delay is arbitrary rx_frame has to: // - detect start of frame (first pause) // - forward prng based on ts/TAG_BIT_PERIOD // - receive the frame // - detect end of frame (last pause) static int32_t rx_frame(uint8_t *len) { int32_t frame = 0; // add 2 SSP clock cycles (1 for tx and 1 for rx pipeline delay) // those will be substracted at the end of the rx phase last_frame_end -= 2; // wait for first pause (start of frame) for (uint8_t i = 0; true; ++i) { // increment prng every TAG_BIT_PERIOD last_frame_end += TAG_BIT_PERIOD; legic_prng_forward(1); // if start of frame was received exit delay loop if (wait_for(RWD_PAUSE, last_frame_end)) { last_frame_end = GetCountSspClk(); break; } // check for code violation if (i > RWD_CMD_TIMEOUT) { return -1; } } // backup ts for trace log uint32_t last_frame_start = last_frame_end; // receive frame for (*len = 0; true; ++(*len)) { // receive next bit LED_B_ON(); int8_t bit = rx_bit(); LED_B_OFF(); // check for code violation and to short / long frame if ((bit < 0) && ((*len < RWD_MIN_FRAME_LEN) || (*len > RWD_MAX_FRAME_LEN))) { return -1; } // check for code violation caused by end of frame if (bit < 0) { break; } // append bit frame |= (bit ^ legic_prng_get_bit()) << (*len); legic_prng_forward(1); } // rx_bit sets coordination timestamp to start of pause, append pause duration // and substract 2 SSP clock cycles (1 for rx and 1 for tx pipeline delay) to // obtain exact end of frame. last_frame_end += RWD_TIME_PAUSE - 2; // log uint8_t cmdbytes[] = {*len, BYTEx(frame, 0), BYTEx(frame, 1), BYTEx(frame, 2)}; LogTrace(cmdbytes, sizeof(cmdbytes), last_frame_start, last_frame_end, NULL, true); return frame; } //----------------------------------------------------------------------------- // Legic Simulator //----------------------------------------------------------------------------- static int32_t init_card(uint8_t cardtype, legic_card_select_t *p_card) { p_card->tagtype = cardtype; switch (p_card->tagtype) { case 0: p_card->cmdsize = 6; p_card->addrsize = 5; p_card->cardsize = 22; break; case 1: p_card->cmdsize = 9; p_card->addrsize = 8; p_card->cardsize = 256; break; case 2: p_card->cmdsize = 11; p_card->addrsize = 10; p_card->cardsize = 1024; break; default: p_card->cmdsize = 0; p_card->addrsize = 0; p_card->cardsize = 0; return 2; } return 0; } static void init_tag() { // configure FPGA FpgaDownloadAndGo(FPGA_BITSTREAM_HF); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_212K); SetAdcMuxFor(GPIO_MUXSEL_HIPKD); // configure SSC with defaults FpgaSetupSsc(); // first pull output to low to prevent glitches then re-claim GPIO_SSC_DOUT LOW(GPIO_SSC_DOUT); AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; // reserve a cardmem, meaning we can use the tracelog function in bigbuff easier. legic_mem = BigBuf_get_EM_addr(); // start trace clear_trace(); set_tracing(true); // init crc calculator crc_init(&legic_crc, 4, 0x19 >> 1, 0x05, 0); // start 212kHz timer (running from SSP Clock) StartCountSspClk(); } // Setup reader to card connection // // The setup consists of a three way handshake: // - Receive initialisation vector 7 bits // - Transmit card type 6 bits // - Receive Acknowledge 6 bits static int32_t setup_phase(legic_card_select_t *p_card) { uint8_t len = 0; // init coordination timestamp last_frame_end = GetCountSspClk(); // reset prng legic_prng_init(0); // wait for iv int32_t iv = rx_frame(&len); if ((len != 7) || (iv < 0)) { return -1; } // configure prng legic_prng_init(iv); // reply with card type switch (p_card->tagtype) { case 0: tx_frame(0x0D, 6); break; case 1: tx_frame(0x1D, 6); break; case 2: tx_frame(0x3D, 6); break; } // wait for ack int32_t ack = rx_frame(&len); if ((len != 6) || (ack < 0)) { return -1; } // validate data switch (p_card->tagtype) { case 0: if (ack != 0x19) return -1; break; case 1: if (ack != 0x39) return -1; break; case 2: if (ack != 0x39) return -1; break; } // During rx the prng is clocked using the variable reader period. // Since rx_frame detects end of frame by detecting a code violation, // the prng is off by one bit period after each rx phase. Hence, tx // code advances the prng by (TAG_FRAME_WAIT/TAG_BIT_PERIOD - 1). // This is not possible for back to back rx, so this quirk reduces // the gap by one period. last_frame_end += TAG_BIT_PERIOD; return 0; } static uint8_t calc_crc4(uint16_t cmd, uint8_t cmd_sz, uint8_t value) { crc_clear(&legic_crc); crc_update(&legic_crc, (value << cmd_sz) | cmd, 8 + cmd_sz); return crc_finish(&legic_crc); } static int32_t connected_phase(legic_card_select_t *p_card) { uint8_t len = 0; // wait for command int32_t cmd = rx_frame(&len); if (cmd < 0) { return -1; } // check if command is LEGIC_READ if (len == p_card->cmdsize) { // prepare data uint8_t byte = legic_mem[cmd >> 1]; uint8_t crc = calc_crc4(cmd, p_card->cmdsize, byte); // transmit data tx_frame((crc << 8) | byte, 12); return 0; } // check if command is LEGIC_WRITE if (len == p_card->cmdsize + 8 + 4) { // decode data uint16_t mask = (1 << p_card->addrsize) - 1; uint16_t addr = (cmd >> 1) & mask; uint8_t byte = (cmd >> p_card->cmdsize) & 0xff; uint8_t crc = (cmd >> (p_card->cmdsize + 8)) & 0xf; // check received against calculated crc uint8_t calc_crc = calc_crc4(addr << 1, p_card->cmdsize, byte); if (calc_crc != crc) { Dbprintf("!!! crc mismatch: %x != %x !!!", calc_crc, crc); return -1; } // store data legic_mem[addr] = byte; // transmit ack tx_ack(); return 0; } return -1; } //----------------------------------------------------------------------------- // Command Line Interface // // Only this function is public / called from appmain.c //----------------------------------------------------------------------------- void LegicRfSimulate(uint8_t cardtype) { // configure ARM and FPGA init_tag(); // verify command line input if (init_card(cardtype, &card) != 0) { DbpString("Unknown tagtype."); goto OUT; } LED_A_ON(); DbpString("Starting Legic emulator, press button to end"); while (!BUTTON_PRESS() && !usb_poll_validate_length()) { WDT_HIT(); // wait for carrier, restart after timeout if (!wait_for(RWD_PULSE, GetCountSspClk() + TAG_BIT_PERIOD)) { continue; } // wait for connection, restart on error if (setup_phase(&card)) { continue; } // conection is established, process commands until one fails while (!connected_phase(&card)) { WDT_HIT(); } } OUT: DbpString("Stopped"); switch_off(); StopTicks(); }