/*  crypto1.c

    This program is free software; you can redistribute it and/or
    modify it under the terms of the GNU General Public License
    as published by the Free Software Foundation; either version 2
    of the License, or (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
    MA  02110-1301, US

    Copyright (C) 2008-2008 bla <blapost@gmail.com>
*/
#include "crapto1.h"
#include <stdlib.h>

struct Crypto1State *crypto1_create(uint64_t key) {
    struct Crypto1State *s = malloc(sizeof(*s));
    if (!s) return NULL;

    s->odd = s->even = 0;

    int i;
    //for(i = 47;s && i > 0; i -= 2) {
    for (i = 47; i > 0; i -= 2) {
        s->odd  = s->odd  << 1 | BIT(key, (i - 1) ^ 7);
        s->even = s->even << 1 | BIT(key, i ^ 7);
    }
    return s;
}
void crypto1_destroy(struct Crypto1State *state) {
    free(state);
}
void crypto1_get_lfsr(struct Crypto1State *state, uint64_t *lfsr) {
    int i;
    for (*lfsr = 0, i = 23; i >= 0; --i) {
        *lfsr = *lfsr << 1 | BIT(state->odd, i ^ 3);
        *lfsr = *lfsr << 1 | BIT(state->even, i ^ 3);
    }
}
uint8_t crypto1_bit(struct Crypto1State *s, uint8_t in, int is_encrypted) {
    uint32_t feedin;
    uint32_t tmp;
    uint8_t ret = filter(s->odd);

    feedin  = ret & (!!is_encrypted);
    feedin ^= !!in;
    feedin ^= LF_POLY_ODD & s->odd;
    feedin ^= LF_POLY_EVEN & s->even;
    s->even = s->even << 1 | parity(feedin);

    tmp = s->odd;
    s->odd = s->even;
    s->even = tmp;

    return ret;
}
uint8_t crypto1_byte(struct Crypto1State *s, uint8_t in, int is_encrypted) {
    uint8_t ret = 0;
    ret |= crypto1_bit(s, BIT(in, 0), is_encrypted) << 0;
    ret |= crypto1_bit(s, BIT(in, 1), is_encrypted) << 1;
    ret |= crypto1_bit(s, BIT(in, 2), is_encrypted) << 2;
    ret |= crypto1_bit(s, BIT(in, 3), is_encrypted) << 3;
    ret |= crypto1_bit(s, BIT(in, 4), is_encrypted) << 4;
    ret |= crypto1_bit(s, BIT(in, 5), is_encrypted) << 5;
    ret |= crypto1_bit(s, BIT(in, 6), is_encrypted) << 6;
    ret |= crypto1_bit(s, BIT(in, 7), is_encrypted) << 7;
    return ret;
}
uint32_t crypto1_word(struct Crypto1State *s, uint32_t in, int is_encrypted) {
    uint32_t ret = 0;
    ret |= crypto1_bit(s, BEBIT(in, 0), is_encrypted) << (0 ^ 24);
    ret |= crypto1_bit(s, BEBIT(in, 1), is_encrypted) << (1 ^ 24);
    ret |= crypto1_bit(s, BEBIT(in, 2), is_encrypted) << (2 ^ 24);
    ret |= crypto1_bit(s, BEBIT(in, 3), is_encrypted) << (3 ^ 24);
    ret |= crypto1_bit(s, BEBIT(in, 4), is_encrypted) << (4 ^ 24);
    ret |= crypto1_bit(s, BEBIT(in, 5), is_encrypted) << (5 ^ 24);
    ret |= crypto1_bit(s, BEBIT(in, 6), is_encrypted) << (6 ^ 24);
    ret |= crypto1_bit(s, BEBIT(in, 7), is_encrypted) << (7 ^ 24);

    ret |= crypto1_bit(s, BEBIT(in, 8), is_encrypted) << (8 ^ 24);
    ret |= crypto1_bit(s, BEBIT(in, 9), is_encrypted) << (9 ^ 24);
    ret |= crypto1_bit(s, BEBIT(in, 10), is_encrypted) << (10 ^ 24);
    ret |= crypto1_bit(s, BEBIT(in, 11), is_encrypted) << (11 ^ 24);
    ret |= crypto1_bit(s, BEBIT(in, 12), is_encrypted) << (12 ^ 24);
    ret |= crypto1_bit(s, BEBIT(in, 13), is_encrypted) << (13 ^ 24);
    ret |= crypto1_bit(s, BEBIT(in, 14), is_encrypted) << (14 ^ 24);
    ret |= crypto1_bit(s, BEBIT(in, 15), is_encrypted) << (15 ^ 24);

    ret |= crypto1_bit(s, BEBIT(in, 16), is_encrypted) << (16 ^ 24);
    ret |= crypto1_bit(s, BEBIT(in, 17), is_encrypted) << (17 ^ 24);
    ret |= crypto1_bit(s, BEBIT(in, 18), is_encrypted) << (18 ^ 24);
    ret |= crypto1_bit(s, BEBIT(in, 19), is_encrypted) << (19 ^ 24);
    ret |= crypto1_bit(s, BEBIT(in, 20), is_encrypted) << (20 ^ 24);
    ret |= crypto1_bit(s, BEBIT(in, 21), is_encrypted) << (21 ^ 24);
    ret |= crypto1_bit(s, BEBIT(in, 22), is_encrypted) << (22 ^ 24);
    ret |= crypto1_bit(s, BEBIT(in, 23), is_encrypted) << (23 ^ 24);

    ret |= crypto1_bit(s, BEBIT(in, 24), is_encrypted) << (24 ^ 24);
    ret |= crypto1_bit(s, BEBIT(in, 25), is_encrypted) << (25 ^ 24);
    ret |= crypto1_bit(s, BEBIT(in, 26), is_encrypted) << (26 ^ 24);
    ret |= crypto1_bit(s, BEBIT(in, 27), is_encrypted) << (27 ^ 24);
    ret |= crypto1_bit(s, BEBIT(in, 28), is_encrypted) << (28 ^ 24);
    ret |= crypto1_bit(s, BEBIT(in, 29), is_encrypted) << (29 ^ 24);
    ret |= crypto1_bit(s, BEBIT(in, 30), is_encrypted) << (30 ^ 24);
    ret |= crypto1_bit(s, BEBIT(in, 31), is_encrypted) << (31 ^ 24);
    return ret;
}

/* prng_successor
 * helper used to obscure the keystream during authentication
 */
uint32_t prng_successor(uint32_t x, uint32_t n) {
    SWAPENDIAN(x);
    while (n--)
        x = x >> 1 | (x >> 16 ^ x >> 18 ^ x >> 19 ^ x >> 21) << 31;

    return SWAPENDIAN(x);
}