//----------------------------------------------------------------------------- // Gerhard de Koning Gans - May 2008 // Hagen Fritsch - June 2010 // Gerhard de Koning Gans - May 2011 // Gerhard de Koning Gans - June 2012 - Added iClass card and reader emulation // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Routines to support iClass. //----------------------------------------------------------------------------- // Based on ISO14443a implementation. Still in experimental phase. // Contribution made during a security research at Radboud University Nijmegen // // Please feel free to contribute and extend iClass support!! //----------------------------------------------------------------------------- // // FIX: // ==== // We still have sometimes a demodulation error when snooping iClass communication. // The resulting trace of a read-block-03 command may look something like this: // // + 22279: : 0c 03 e8 01 // // ...with an incorrect answer... // // + 85: 0: TAG ff! ff! ff! ff! ff! ff! ff! ff! bb 33 bb 00 01! 0e! 04! bb !crc // // We still left the error signalling bytes in the traces like 0xbb // // A correct trace should look like this: // // + 21112: : 0c 03 e8 01 // + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5 // //----------------------------------------------------------------------------- #include "proxmark3.h" #include "apps.h" #include "util.h" #include "string.h" #include "common.h" // Needed for CRC in emulation mode; // same construction as in ISO 14443; // different initial value (CRC_ICLASS) #include "iso14443crc.h" static int timeout = 4096; // CARD TO READER // Sequence D: 11110000 modulation with subcarrier during first half // Sequence E: 00001111 modulation with subcarrier during second half // Sequence F: 00000000 no modulation with subcarrier // READER TO CARD // Sequence X: 00001100 drop after half a period // Sequence Y: 00000000 no drop // Sequence Z: 11000000 drop at start #define SEC_X 0x0c #define SEC_Y 0x00 #define SEC_Z 0xc0 static int SendIClassAnswer(uint8_t *resp, int respLen, int delay); //----------------------------------------------------------------------------- // The software UART that receives commands from the reader, and its state // variables. //----------------------------------------------------------------------------- static struct { enum { STATE_UNSYNCD, STATE_START_OF_COMMUNICATION, STATE_RECEIVING } state; uint16_t shiftReg; int bitCnt; int byteCnt; int byteCntMax; int posCnt; int nOutOfCnt; int OutOfCnt; int syncBit; int parityBits; int samples; int highCnt; int swapper; int counter; int bitBuffer; int dropPosition; uint8_t *output; } Uart; static RAMFUNC int OutOfNDecoding(int bit) { //int error = 0; int bitright; if(!Uart.bitBuffer) { Uart.bitBuffer = bit ^ 0xFF0; return FALSE; } else { Uart.bitBuffer <<= 4; Uart.bitBuffer ^= bit; } /*if(Uart.swapper) { Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF; Uart.byteCnt++; Uart.swapper = 0; if(Uart.byteCnt > 15) { return TRUE; } } else { Uart.swapper = 1; }*/ if(Uart.state != STATE_UNSYNCD) { Uart.posCnt++; if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) { bit = 0x00; } else { bit = 0x01; } if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) { bitright = 0x00; } else { bitright = 0x01; } if(bit != bitright) { bit = bitright; } // So, now we only have to deal with *bit*, lets see... if(Uart.posCnt == 1) { // measurement first half bitperiod if(!bit) { // Drop in first half means that we are either seeing // an SOF or an EOF. if(Uart.nOutOfCnt == 1) { // End of Communication Uart.state = STATE_UNSYNCD; Uart.highCnt = 0; if(Uart.byteCnt == 0) { // Its not straightforward to show single EOFs // So just leave it and do not return TRUE Uart.output[Uart.byteCnt] = 0xf0; Uart.byteCnt++; // Calculate the parity bit for the client... Uart.parityBits = 1; } else { return TRUE; } } else if(Uart.state != STATE_START_OF_COMMUNICATION) { // When not part of SOF or EOF, it is an error Uart.state = STATE_UNSYNCD; Uart.highCnt = 0; //error = 4; } } } else { // measurement second half bitperiod // Count the bitslot we are in... (ISO 15693) Uart.nOutOfCnt++; if(!bit) { if(Uart.dropPosition) { if(Uart.state == STATE_START_OF_COMMUNICATION) { //error = 1; } else { //error = 7; } // It is an error if we already have seen a drop in current frame Uart.state = STATE_UNSYNCD; Uart.highCnt = 0; } else { Uart.dropPosition = Uart.nOutOfCnt; } } Uart.posCnt = 0; if(Uart.nOutOfCnt == Uart.OutOfCnt && Uart.OutOfCnt == 4) { Uart.nOutOfCnt = 0; if(Uart.state == STATE_START_OF_COMMUNICATION) { if(Uart.dropPosition == 4) { Uart.state = STATE_RECEIVING; Uart.OutOfCnt = 256; } else if(Uart.dropPosition == 3) { Uart.state = STATE_RECEIVING; Uart.OutOfCnt = 4; //Uart.output[Uart.byteCnt] = 0xdd; //Uart.byteCnt++; } else { Uart.state = STATE_UNSYNCD; Uart.highCnt = 0; } Uart.dropPosition = 0; } else { // RECEIVING DATA // 1 out of 4 if(!Uart.dropPosition) { Uart.state = STATE_UNSYNCD; Uart.highCnt = 0; //error = 9; } else { Uart.shiftReg >>= 2; // Swap bit order Uart.dropPosition--; //if(Uart.dropPosition == 1) { Uart.dropPosition = 2; } //else if(Uart.dropPosition == 2) { Uart.dropPosition = 1; } Uart.shiftReg ^= ((Uart.dropPosition & 0x03) << 6); Uart.bitCnt += 2; Uart.dropPosition = 0; if(Uart.bitCnt == 8) { Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff); Uart.byteCnt++; // Calculate the parity bit for the client... Uart.parityBits <<= 1; Uart.parityBits ^= OddByteParity[(Uart.shiftReg & 0xff)]; Uart.bitCnt = 0; Uart.shiftReg = 0; } } } } else if(Uart.nOutOfCnt == Uart.OutOfCnt) { // RECEIVING DATA // 1 out of 256 if(!Uart.dropPosition) { Uart.state = STATE_UNSYNCD; Uart.highCnt = 0; //error = 3; } else { Uart.dropPosition--; Uart.output[Uart.byteCnt] = (Uart.dropPosition & 0xff); Uart.byteCnt++; // Calculate the parity bit for the client... Uart.parityBits <<= 1; Uart.parityBits ^= OddByteParity[(Uart.dropPosition & 0xff)]; Uart.bitCnt = 0; Uart.shiftReg = 0; Uart.nOutOfCnt = 0; Uart.dropPosition = 0; } } /*if(error) { Uart.output[Uart.byteCnt] = 0xAA; Uart.byteCnt++; Uart.output[Uart.byteCnt] = error & 0xFF; Uart.byteCnt++; Uart.output[Uart.byteCnt] = 0xAA; Uart.byteCnt++; Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF; Uart.byteCnt++; Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF; Uart.byteCnt++; Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF; Uart.byteCnt++; Uart.output[Uart.byteCnt] = 0xAA; Uart.byteCnt++; return TRUE; }*/ } } else { bit = Uart.bitBuffer & 0xf0; bit >>= 4; bit ^= 0x0F; // drops become 1s ;-) if(bit) { // should have been high or at least (4 * 128) / fc // according to ISO this should be at least (9 * 128 + 20) / fc if(Uart.highCnt == 8) { // we went low, so this could be start of communication // it turns out to be safer to choose a less significant // syncbit... so we check whether the neighbour also represents the drop Uart.posCnt = 1; // apparently we are busy with our first half bit period Uart.syncBit = bit & 8; Uart.samples = 3; if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; } else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; } if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; } else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; } if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0; if(Uart.syncBit && (Uart.bitBuffer & 8)) { Uart.syncBit = 8; // the first half bit period is expected in next sample Uart.posCnt = 0; Uart.samples = 3; } } else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; } Uart.syncBit <<= 4; Uart.state = STATE_START_OF_COMMUNICATION; Uart.bitCnt = 0; Uart.byteCnt = 0; Uart.parityBits = 0; Uart.nOutOfCnt = 0; Uart.OutOfCnt = 4; // Start at 1/4, could switch to 1/256 Uart.dropPosition = 0; Uart.shiftReg = 0; //error = 0; } else { Uart.highCnt = 0; } } else { if(Uart.highCnt < 8) { Uart.highCnt++; } } } return FALSE; } //============================================================================= // Manchester //============================================================================= static struct { enum { DEMOD_UNSYNCD, DEMOD_START_OF_COMMUNICATION, DEMOD_START_OF_COMMUNICATION2, DEMOD_START_OF_COMMUNICATION3, DEMOD_SOF_COMPLETE, DEMOD_MANCHESTER_D, DEMOD_MANCHESTER_E, DEMOD_END_OF_COMMUNICATION, DEMOD_END_OF_COMMUNICATION2, DEMOD_MANCHESTER_F, DEMOD_ERROR_WAIT } state; int bitCount; int posCount; int syncBit; int parityBits; uint16_t shiftReg; int buffer; int buffer2; int buffer3; int buff; int samples; int len; enum { SUB_NONE, SUB_FIRST_HALF, SUB_SECOND_HALF, SUB_BOTH } sub; uint8_t *output; } Demod; static RAMFUNC int ManchesterDecoding(int v) { int bit; int modulation; int error = 0; bit = Demod.buffer; Demod.buffer = Demod.buffer2; Demod.buffer2 = Demod.buffer3; Demod.buffer3 = v; if(Demod.buff < 3) { Demod.buff++; return FALSE; } if(Demod.state==DEMOD_UNSYNCD) { Demod.output[Demod.len] = 0xfa; Demod.syncBit = 0; //Demod.samples = 0; Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part if(bit & 0x08) { Demod.syncBit = 0x08; } if(bit & 0x04) { if(Demod.syncBit) { bit <<= 4; } Demod.syncBit = 0x04; } if(bit & 0x02) { if(Demod.syncBit) { bit <<= 2; } Demod.syncBit = 0x02; } if(bit & 0x01 && Demod.syncBit) { Demod.syncBit = 0x01; } if(Demod.syncBit) { Demod.len = 0; Demod.state = DEMOD_START_OF_COMMUNICATION; Demod.sub = SUB_FIRST_HALF; Demod.bitCount = 0; Demod.shiftReg = 0; Demod.parityBits = 0; Demod.samples = 0; if(Demod.posCount) { //if(trigger) LED_A_OFF(); // Not useful in this case... switch(Demod.syncBit) { case 0x08: Demod.samples = 3; break; case 0x04: Demod.samples = 2; break; case 0x02: Demod.samples = 1; break; case 0x01: Demod.samples = 0; break; } // SOF must be long burst... otherwise stay unsynced!!! if(!(Demod.buffer & Demod.syncBit) || !(Demod.buffer2 & Demod.syncBit)) { Demod.state = DEMOD_UNSYNCD; } } else { // SOF must be long burst... otherwise stay unsynced!!! if(!(Demod.buffer2 & Demod.syncBit) || !(Demod.buffer3 & Demod.syncBit)) { Demod.state = DEMOD_UNSYNCD; error = 0x88; } } error = 0; } } else { modulation = bit & Demod.syncBit; modulation |= ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit; //modulation = ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit; Demod.samples += 4; if(Demod.posCount==0) { Demod.posCount = 1; if(modulation) { Demod.sub = SUB_FIRST_HALF; } else { Demod.sub = SUB_NONE; } } else { Demod.posCount = 0; /*(modulation && (Demod.sub == SUB_FIRST_HALF)) { if(Demod.state!=DEMOD_ERROR_WAIT) { Demod.state = DEMOD_ERROR_WAIT; Demod.output[Demod.len] = 0xaa; error = 0x01; } }*/ //else if(modulation) { if(modulation) { if(Demod.sub == SUB_FIRST_HALF) { Demod.sub = SUB_BOTH; } else { Demod.sub = SUB_SECOND_HALF; } } else if(Demod.sub == SUB_NONE) { if(Demod.state == DEMOD_SOF_COMPLETE) { Demod.output[Demod.len] = 0x0f; Demod.len++; Demod.parityBits <<= 1; Demod.parityBits ^= OddByteParity[0x0f]; Demod.state = DEMOD_UNSYNCD; // error = 0x0f; return TRUE; } else { Demod.state = DEMOD_ERROR_WAIT; error = 0x33; } /*if(Demod.state!=DEMOD_ERROR_WAIT) { Demod.state = DEMOD_ERROR_WAIT; Demod.output[Demod.len] = 0xaa; error = 0x01; }*/ } switch(Demod.state) { case DEMOD_START_OF_COMMUNICATION: if(Demod.sub == SUB_BOTH) { //Demod.state = DEMOD_MANCHESTER_D; Demod.state = DEMOD_START_OF_COMMUNICATION2; Demod.posCount = 1; Demod.sub = SUB_NONE; } else { Demod.output[Demod.len] = 0xab; Demod.state = DEMOD_ERROR_WAIT; error = 0xd2; } break; case DEMOD_START_OF_COMMUNICATION2: if(Demod.sub == SUB_SECOND_HALF) { Demod.state = DEMOD_START_OF_COMMUNICATION3; } else { Demod.output[Demod.len] = 0xab; Demod.state = DEMOD_ERROR_WAIT; error = 0xd3; } break; case DEMOD_START_OF_COMMUNICATION3: if(Demod.sub == SUB_SECOND_HALF) { // Demod.state = DEMOD_MANCHESTER_D; Demod.state = DEMOD_SOF_COMPLETE; //Demod.output[Demod.len] = Demod.syncBit & 0xFF; //Demod.len++; } else { Demod.output[Demod.len] = 0xab; Demod.state = DEMOD_ERROR_WAIT; error = 0xd4; } break; case DEMOD_SOF_COMPLETE: case DEMOD_MANCHESTER_D: case DEMOD_MANCHESTER_E: // OPPOSITE FROM ISO14443 - 11110000 = 0 (1 in 14443) // 00001111 = 1 (0 in 14443) if(Demod.sub == SUB_SECOND_HALF) { // SUB_FIRST_HALF Demod.bitCount++; Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100; Demod.state = DEMOD_MANCHESTER_D; } else if(Demod.sub == SUB_FIRST_HALF) { // SUB_SECOND_HALF Demod.bitCount++; Demod.shiftReg >>= 1; Demod.state = DEMOD_MANCHESTER_E; } else if(Demod.sub == SUB_BOTH) { Demod.state = DEMOD_MANCHESTER_F; } else { Demod.state = DEMOD_ERROR_WAIT; error = 0x55; } break; case DEMOD_MANCHESTER_F: // Tag response does not need to be a complete byte! if(Demod.len > 0 || Demod.bitCount > 0) { if(Demod.bitCount > 1) { // was > 0, do not interpret last closing bit, is part of EOF Demod.shiftReg >>= (9 - Demod.bitCount); Demod.output[Demod.len] = Demod.shiftReg & 0xff; Demod.len++; // No parity bit, so just shift a 0 Demod.parityBits <<= 1; } Demod.state = DEMOD_UNSYNCD; return TRUE; } else { Demod.output[Demod.len] = 0xad; Demod.state = DEMOD_ERROR_WAIT; error = 0x03; } break; case DEMOD_ERROR_WAIT: Demod.state = DEMOD_UNSYNCD; break; default: Demod.output[Demod.len] = 0xdd; Demod.state = DEMOD_UNSYNCD; break; } /*if(Demod.bitCount>=9) { Demod.output[Demod.len] = Demod.shiftReg & 0xff; Demod.len++; Demod.parityBits <<= 1; Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01); Demod.bitCount = 0; Demod.shiftReg = 0; }*/ if(Demod.bitCount>=8) { Demod.shiftReg >>= 1; Demod.output[Demod.len] = (Demod.shiftReg & 0xff); Demod.len++; // FOR ISO15639 PARITY NOT SEND OTA, JUST CALCULATE IT FOR THE CLIENT Demod.parityBits <<= 1; Demod.parityBits ^= OddByteParity[(Demod.shiftReg & 0xff)]; Demod.bitCount = 0; Demod.shiftReg = 0; } if(error) { Demod.output[Demod.len] = 0xBB; Demod.len++; Demod.output[Demod.len] = error & 0xFF; Demod.len++; Demod.output[Demod.len] = 0xBB; Demod.len++; Demod.output[Demod.len] = bit & 0xFF; Demod.len++; Demod.output[Demod.len] = Demod.buffer & 0xFF; Demod.len++; // Look harder ;-) Demod.output[Demod.len] = Demod.buffer2 & 0xFF; Demod.len++; Demod.output[Demod.len] = Demod.syncBit & 0xFF; Demod.len++; Demod.output[Demod.len] = 0xBB; Demod.len++; return TRUE; } } } // end (state != UNSYNCED) return FALSE; } //============================================================================= // Finally, a `sniffer' for iClass communication // Both sides of communication! //============================================================================= //----------------------------------------------------------------------------- // Record the sequence of commands sent by the reader to the tag, with // triggering so that we start recording at the point that the tag is moved // near the reader. //----------------------------------------------------------------------------- void RAMFUNC SnoopIClass(void) { // DEFINED ABOVE // #define RECV_CMD_OFFSET 3032 // #define RECV_RES_OFFSET 3096 // #define DMA_BUFFER_OFFSET 3160 // #define DMA_BUFFER_SIZE 4096 // #define TRACE_SIZE 3000 // We won't start recording the frames that we acquire until we trigger; // a good trigger condition to get started is probably when we see a // response from the tag. //int triggered = FALSE; // FALSE to wait first for card // The command (reader -> tag) that we're receiving. // The length of a received command will in most cases be no more than 18 bytes. // So 32 should be enough! uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET); // The response (tag -> reader) that we're receiving. uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET); // As we receive stuff, we copy it from receivedCmd or receivedResponse // into trace, along with its length and other annotations. //uint8_t *trace = (uint8_t *)BigBuf; // reset traceLen to 0 iso14a_set_tracing(TRUE); iso14a_clear_tracelen(); iso14a_set_trigger(FALSE); // The DMA buffer, used to stream samples from the FPGA int8_t *dmaBuf = ((int8_t *)BigBuf) + DMA_BUFFER_OFFSET; int lastRxCounter; int8_t *upTo; int smpl; int maxBehindBy = 0; // Count of samples received so far, so that we can include timing // information in the trace buffer. int samples = 0; rsamples = 0; memset(trace, 0x44, RECV_CMD_OFFSET); // Set up the demodulator for tag -> reader responses. Demod.output = receivedResponse; Demod.len = 0; Demod.state = DEMOD_UNSYNCD; // Setup for the DMA. FpgaSetupSsc(); upTo = dmaBuf; lastRxCounter = DMA_BUFFER_SIZE; FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // And the reader -> tag commands memset(&Uart, 0, sizeof(Uart)); Uart.output = receivedCmd; Uart.byteCntMax = 32; // was 100 (greg)//////////////////////////////////////////////////////////////////////// Uart.state = STATE_UNSYNCD; // And put the FPGA in the appropriate mode // Signal field is off with the appropriate LED LED_D_OFF(); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER); SetAdcMuxFor(GPIO_MUXSEL_HIPKD); int div = 0; //int div2 = 0; int decbyte = 0; int decbyter = 0; // And now we loop, receiving samples. for(;;) { LED_A_ON(); WDT_HIT(); int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & (DMA_BUFFER_SIZE-1); if(behindBy > maxBehindBy) { maxBehindBy = behindBy; if(behindBy > 400) { Dbprintf("blew circular buffer! behindBy=0x%x", behindBy); goto done; } } if(behindBy < 1) continue; LED_A_OFF(); smpl = upTo[0]; upTo++; lastRxCounter -= 1; if(upTo - dmaBuf > DMA_BUFFER_SIZE) { upTo -= DMA_BUFFER_SIZE; lastRxCounter += DMA_BUFFER_SIZE; AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo; AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; } //samples += 4; samples += 1; //div2++; //if(div2 > 3) { //div2 = 0; //decbyte ^= ((smpl & 0x01) << (3 - div)); //decbyte ^= (((smpl & 0x01) | ((smpl & 0x02) >> 1)) << (3 - div)); // better already... //decbyte ^= (((smpl & 0x01) | ((smpl & 0x02) >> 1) | ((smpl & 0x04) >> 2)) << (3 - div)); // even better... if(smpl & 0xF) { decbyte ^= (1 << (3 - div)); } //decbyte ^= (MajorityNibble[(smpl & 0x0F)] << (3 - div)); // FOR READER SIDE COMMUMICATION... //decbyte ^= ((smpl & 0x10) << (3 - div)); decbyter <<= 2; decbyter ^= (smpl & 0x30); div++; if((div + 1) % 2 == 0) { smpl = decbyter; if(OutOfNDecoding((smpl & 0xF0) >> 4)) { rsamples = samples - Uart.samples; LED_C_ON(); //if(triggered) { trace[traceLen++] = ((rsamples >> 0) & 0xff); trace[traceLen++] = ((rsamples >> 8) & 0xff); trace[traceLen++] = ((rsamples >> 16) & 0xff); trace[traceLen++] = ((rsamples >> 24) & 0xff); trace[traceLen++] = ((Uart.parityBits >> 0) & 0xff); trace[traceLen++] = ((Uart.parityBits >> 8) & 0xff); trace[traceLen++] = ((Uart.parityBits >> 16) & 0xff); trace[traceLen++] = ((Uart.parityBits >> 24) & 0xff); trace[traceLen++] = Uart.byteCnt; memcpy(trace+traceLen, receivedCmd, Uart.byteCnt); traceLen += Uart.byteCnt; if(traceLen > TRACE_SIZE) break; //} /* And ready to receive another command. */ Uart.state = STATE_UNSYNCD; /* And also reset the demod code, which might have been */ /* false-triggered by the commands from the reader. */ Demod.state = DEMOD_UNSYNCD; LED_B_OFF(); Uart.byteCnt = 0; } decbyter = 0; } if(div > 3) { smpl = decbyte; if(ManchesterDecoding(smpl & 0x0F)) { rsamples = samples - Demod.samples; LED_B_ON(); // timestamp, as a count of samples trace[traceLen++] = ((rsamples >> 0) & 0xff); trace[traceLen++] = ((rsamples >> 8) & 0xff); trace[traceLen++] = ((rsamples >> 16) & 0xff); trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff); trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff); trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff); trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff); trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff); // length trace[traceLen++] = Demod.len; memcpy(trace+traceLen, receivedResponse, Demod.len); traceLen += Demod.len; if(traceLen > TRACE_SIZE) break; //triggered = TRUE; // And ready to receive another response. memset(&Demod, 0, sizeof(Demod)); Demod.output = receivedResponse; Demod.state = DEMOD_UNSYNCD; LED_C_OFF(); } div = 0; decbyte = 0x00; } //} if(BUTTON_PRESS()) { DbpString("cancelled_a"); goto done; } } DbpString("COMMAND FINISHED"); Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt); Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]); done: AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS; Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt); Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]); LED_A_OFF(); LED_B_OFF(); LED_C_OFF(); LED_D_OFF(); } void rotateCSN(uint8_t* originalCSN, uint8_t* rotatedCSN) { int i; for(i = 0; i < 8; i++) { rotatedCSN[i] = (originalCSN[i] >> 3) | (originalCSN[(i+1)%8] << 5); } } //----------------------------------------------------------------------------- // Wait for commands from reader // Stop when button is pressed // Or return TRUE when command is captured //----------------------------------------------------------------------------- static int GetIClassCommandFromReader(uint8_t *received, int *len, int maxLen) { // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen // only, since we are receiving, not transmitting). // Signal field is off with the appropriate LED LED_D_OFF(); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); // Now run a `software UART' on the stream of incoming samples. Uart.output = received; Uart.byteCntMax = maxLen; Uart.state = STATE_UNSYNCD; for(;;) { WDT_HIT(); if(BUTTON_PRESS()) return FALSE; if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { AT91C_BASE_SSC->SSC_THR = 0x00; } if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; /*if(OutOfNDecoding((b & 0xf0) >> 4)) { *len = Uart.byteCnt; return TRUE; }*/ if(OutOfNDecoding(b & 0x0f)) { *len = Uart.byteCnt; return TRUE; } } } } //----------------------------------------------------------------------------- // Prepare tag messages //----------------------------------------------------------------------------- static void CodeIClassTagAnswer(const uint8_t *cmd, int len) { int i; ToSendReset(); // Send SOF ToSend[++ToSendMax] = 0x00; ToSend[++ToSendMax] = 0x00; ToSend[++ToSendMax] = 0x00; ToSend[++ToSendMax] = 0xff; ToSend[++ToSendMax] = 0xff; ToSend[++ToSendMax] = 0xff; ToSend[++ToSendMax] = 0x00; ToSend[++ToSendMax] = 0xff; for(i = 0; i < len; i++) { int j; uint8_t b = cmd[i]; // Data bits for(j = 0; j < 8; j++) { if(b & 1) { ToSend[++ToSendMax] = 0x00; ToSend[++ToSendMax] = 0xff; } else { ToSend[++ToSendMax] = 0xff; ToSend[++ToSendMax] = 0x00; } b >>= 1; } } // Send EOF ToSend[++ToSendMax] = 0xff; ToSend[++ToSendMax] = 0x00; ToSend[++ToSendMax] = 0xff; ToSend[++ToSendMax] = 0xff; ToSend[++ToSendMax] = 0xff; ToSend[++ToSendMax] = 0x00; ToSend[++ToSendMax] = 0x00; ToSend[++ToSendMax] = 0x00; // Convert from last byte pos to length ToSendMax++; } // Only SOF static void CodeIClassTagSOF() { ToSendReset(); // Send SOF ToSend[++ToSendMax] = 0x00; ToSend[++ToSendMax] = 0x00; ToSend[++ToSendMax] = 0x00; ToSend[++ToSendMax] = 0xff; ToSend[++ToSendMax] = 0xff; ToSend[++ToSendMax] = 0xff; ToSend[++ToSendMax] = 0x00; ToSend[++ToSendMax] = 0xff; // Convert from last byte pos to length ToSendMax++; } //----------------------------------------------------------------------------- // Simulate iClass Card // Only CSN (Card Serial Number) // //----------------------------------------------------------------------------- void SimulateIClass(uint8_t arg0, uint8_t *datain) { uint8_t simType = arg0; // Enable and clear the trace tracing = TRUE; traceLen = 0; memset(trace, 0x44, TRACE_SIZE); // CSN followed by two CRC bytes uint8_t response2[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; uint8_t response3[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 }; // e-Purse uint8_t response4[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; if(simType == 0) { // Use the CSN from commandline memcpy(response3, datain, 8); } // Construct anticollision-CSN rotateCSN(response3,response2); // Compute CRC on both CSNs ComputeCrc14443(CRC_ICLASS, response2, 8, &response2[8], &response2[9]); ComputeCrc14443(CRC_ICLASS, response3, 8, &response3[8], &response3[9]); // Reader 0a // Tag 0f // Reader 0c // Tag anticoll. CSN // Reader 81 anticoll. CSN // Tag CSN uint8_t *resp; int respLen; uint8_t* respdata = NULL; int respsize = 0; uint8_t sof = 0x0f; // Respond SOF -- takes 8 bytes uint8_t *resp1 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET); int resp1Len; // Anticollision CSN (rotated CSN) // 176: Takes 16 bytes for SOF/EOF and 10 * 16 = 160 bytes (2 bytes/bit) uint8_t *resp2 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + 10); int resp2Len; // CSN // 176: Takes 16 bytes for SOF/EOF and 10 * 16 = 160 bytes (2 bytes/bit) uint8_t *resp3 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + 190); int resp3Len; // e-Purse // 144: Takes 16 bytes for SOF/EOF and 8 * 16 = 128 bytes (2 bytes/bit) uint8_t *resp4 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + 370); int resp4Len; // + 1720.. uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET); memset(receivedCmd, 0x44, RECV_CMD_SIZE); int len; // Prepare card messages ToSendMax = 0; // First card answer: SOF CodeIClassTagSOF(); memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax; // Anticollision CSN CodeIClassTagAnswer(response2, sizeof(response2)); memcpy(resp2, ToSend, ToSendMax); resp2Len = ToSendMax; // CSN CodeIClassTagAnswer(response3, sizeof(response3)); memcpy(resp3, ToSend, ToSendMax); resp3Len = ToSendMax; // e-Purse CodeIClassTagAnswer(response4, sizeof(response4)); memcpy(resp4, ToSend, ToSendMax); resp4Len = ToSendMax; // We need to listen to the high-frequency, peak-detected path. SetAdcMuxFor(GPIO_MUXSEL_HIPKD); FpgaSetupSsc(); // To control where we are in the protocol int cmdsRecvd = 0; LED_A_ON(); for(;;) { LED_B_OFF(); if(!GetIClassCommandFromReader(receivedCmd, &len, 100)) { DbpString("button press"); break; } // Okay, look at the command now. if(receivedCmd[0] == 0x0a) { // Reader in anticollission phase resp = resp1; respLen = resp1Len; //order = 1; respdata = &sof; respsize = sizeof(sof); //resp = resp2; respLen = resp2Len; order = 2; //DbpString("Hello request from reader:"); } else if(receivedCmd[0] == 0x0c) { // Reader asks for anticollission CSN resp = resp2; respLen = resp2Len; //order = 2; respdata = response2; respsize = sizeof(response2); //DbpString("Reader requests anticollission CSN:"); } else if(receivedCmd[0] == 0x81) { // Reader selects anticollission CSN. // Tag sends the corresponding real CSN resp = resp3; respLen = resp3Len; //order = 3; respdata = response3; respsize = sizeof(response3); //DbpString("Reader selects anticollission CSN:"); } else if(receivedCmd[0] == 0x88) { // Read e-purse (88 02) resp = resp4; respLen = resp4Len; //order = 4; respdata = response4; respsize = sizeof(response4); LED_B_ON(); } else if(receivedCmd[0] == 0x05) { // Reader random and reader MAC!!! // Lets store this ;-) /* Dbprintf(" CSN: %02x %02x %02x %02x %02x %02x %02x %02x", response3[0], response3[1], response3[2], response3[3], response3[4], response3[5], response3[6], response3[7]); */ Dbprintf("READER AUTH (len=%02d): %02x %02x %02x %02x %02x %02x %02x %02x %02x", len, receivedCmd[0], receivedCmd[1], receivedCmd[2], receivedCmd[3], receivedCmd[4], receivedCmd[5], receivedCmd[6], receivedCmd[7], receivedCmd[8]); // Do not respond // We do not know what to answer, so lets keep quit resp = resp1; respLen = 0; //order = 5; respdata = NULL; respsize = 0; } else if(receivedCmd[0] == 0x00 && len == 1) { // Reader ends the session resp = resp1; respLen = 0; //order = 0; respdata = NULL; respsize = 0; } else { // Never seen this command before Dbprintf("Unknown command received from reader (len=%d): %x %x %x %x %x %x %x %x %x", len, receivedCmd[0], receivedCmd[1], receivedCmd[2], receivedCmd[3], receivedCmd[4], receivedCmd[5], receivedCmd[6], receivedCmd[7], receivedCmd[8]); // Do not respond resp = resp1; respLen = 0; //order = 0; respdata = NULL; respsize = 0; } if(cmdsRecvd > 999) { DbpString("1000 commands later..."); break; } else { cmdsRecvd++; } if(respLen > 0) { SendIClassAnswer(resp, respLen, 21); } if (tracing) { LogTrace(receivedCmd,len, 0, Uart.parityBits, TRUE); if (respdata != NULL) { LogTrace(respdata,respsize, 0, SwapBits(GetParity(respdata,respsize),respsize), FALSE); } if(traceLen > TRACE_SIZE) { DbpString("Trace full"); break; } } memset(receivedCmd, 0x44, RECV_CMD_SIZE); } Dbprintf("%x", cmdsRecvd); LED_A_OFF(); LED_B_OFF(); } static int SendIClassAnswer(uint8_t *resp, int respLen, int delay) { int i = 0, u = 0, d = 0; uint8_t b = 0; // return 0; // Modulate Manchester // FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD424); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD); AT91C_BASE_SSC->SSC_THR = 0x00; FpgaSetupSsc(); // send cycle for(;;) { if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; (void)b; } if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { if(d < delay) { b = 0x00; d++; } else if(i >= respLen) { b = 0x00; u++; } else { b = resp[i]; u++; if(u > 1) { i++; u = 0; } } AT91C_BASE_SSC->SSC_THR = b; if(u > 4) break; } if(BUTTON_PRESS()) { break; } } return 0; } /// THE READER CODE //----------------------------------------------------------------------------- // Transmit the command (to the tag) that was placed in ToSend[]. //----------------------------------------------------------------------------- static void TransmitIClassCommand(const uint8_t *cmd, int len, int *samples, int *wait) { int c; FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); AT91C_BASE_SSC->SSC_THR = 0x00; FpgaSetupSsc(); if (wait) if(*wait < 10) *wait = 10; for(c = 0; c < *wait;) { if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing! c++; } if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; (void)r; } WDT_HIT(); } uint8_t sendbyte; bool firstpart = TRUE; c = 0; for(;;) { if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { // DOUBLE THE SAMPLES! if(firstpart) { sendbyte = (cmd[c] & 0xf0) | (cmd[c] >> 4); } else { sendbyte = (cmd[c] & 0x0f) | (cmd[c] << 4); c++; } if(sendbyte == 0xff) { sendbyte = 0xfe; } AT91C_BASE_SSC->SSC_THR = sendbyte; firstpart = !firstpart; if(c >= len) { break; } } if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; (void)r; } WDT_HIT(); } if (samples) *samples = (c + *wait) << 3; } //----------------------------------------------------------------------------- // Prepare iClass reader command to send to FPGA //----------------------------------------------------------------------------- void CodeIClassCommand(const uint8_t * cmd, int len) { int i, j, k; uint8_t b; ToSendReset(); // Start of Communication: 1 out of 4 ToSend[++ToSendMax] = 0xf0; ToSend[++ToSendMax] = 0x00; ToSend[++ToSendMax] = 0x0f; ToSend[++ToSendMax] = 0x00; // Modulate the bytes for (i = 0; i < len; i++) { b = cmd[i]; for(j = 0; j < 4; j++) { for(k = 0; k < 4; k++) { if(k == (b & 3)) { ToSend[++ToSendMax] = 0x0f; } else { ToSend[++ToSendMax] = 0x00; } } b >>= 2; } } // End of Communication ToSend[++ToSendMax] = 0x00; ToSend[++ToSendMax] = 0x00; ToSend[++ToSendMax] = 0xf0; ToSend[++ToSendMax] = 0x00; // Convert from last character reference to length ToSendMax++; } void ReaderTransmitIClass(uint8_t* frame, int len) { int wait = 0; int samples = 0; int par = 0; // This is tied to other size changes // uint8_t* frame_addr = ((uint8_t*)BigBuf) + 2024; CodeIClassCommand(frame,len); // Select the card TransmitIClassCommand(ToSend, ToSendMax, &samples, &wait); if(trigger) LED_A_ON(); // Store reader command in buffer if (tracing) LogTrace(frame,len,0,par,TRUE); } //----------------------------------------------------------------------------- // Wait a certain time for tag response // If a response is captured return TRUE // If it takes too long return FALSE //----------------------------------------------------------------------------- static int GetIClassAnswer(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) //uint8_t *buffer { // buffer needs to be 512 bytes int c; // Set FPGA mode to "reader listen mode", no modulation (listen // only, since we are receiving, not transmitting). FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN); // Now get the answer from the card Demod.output = receivedResponse; Demod.len = 0; Demod.state = DEMOD_UNSYNCD; uint8_t b; if (elapsed) *elapsed = 0; bool skip = FALSE; c = 0; for(;;) { WDT_HIT(); if(BUTTON_PRESS()) return FALSE; if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!! if (elapsed) (*elapsed)++; } if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { if(c < timeout) { c++; } else { return FALSE; } b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; skip = !skip; if(skip) continue; /*if(ManchesterDecoding((b>>4) & 0xf)) { *samples = ((c - 1) << 3) + 4; return TRUE; }*/ if(ManchesterDecoding(b & 0x0f)) { *samples = c << 3; return TRUE; } } } } int ReaderReceiveIClass(uint8_t* receivedAnswer) { int samples = 0; if (!GetIClassAnswer(receivedAnswer,160,&samples,0)) return FALSE; if (tracing) LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE); if(samples == 0) return FALSE; return Demod.len; } // Reader iClass Anticollission void ReaderIClass(uint8_t arg0) { uint8_t act_all[] = { 0x0a }; uint8_t identify[] = { 0x0c }; uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; uint8_t* resp = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes // Reset trace buffer memset(trace, 0x44, RECV_CMD_OFFSET); traceLen = 0; // Setup SSC FpgaSetupSsc(); // Start from off (no field generated) // Signal field is off with the appropriate LED LED_D_OFF(); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); SpinDelay(200); SetAdcMuxFor(GPIO_MUXSEL_HIPKD); // Now give it time to spin up. // Signal field is on with the appropriate LED FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); SpinDelay(200); LED_A_ON(); for(;;) { if(traceLen > TRACE_SIZE) { DbpString("Trace full"); break; } if (BUTTON_PRESS()) break; // Send act_all ReaderTransmitIClass(act_all, 1); // Card present? if(ReaderReceiveIClass(resp)) { ReaderTransmitIClass(identify, 1); if(ReaderReceiveIClass(resp) == 10) { // Select card memcpy(&select[1],resp,8); ReaderTransmitIClass(select, sizeof(select)); if(ReaderReceiveIClass(resp) == 10) { Dbprintf(" Selected CSN: %02x %02x %02x %02x %02x %02x %02x %02x", resp[0], resp[1], resp[2], resp[3], resp[4], resp[5], resp[6], resp[7]); } // Card selected, whats next... ;-) } } WDT_HIT(); } LED_A_OFF(); }