//----------------------------------------------------------------------------- // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Miscellaneous routines for low frequency tag operations. // Tags supported here so far are Texas Instruments (TI), HID // Also routines for raw mode reading/simulating of LF waveform //----------------------------------------------------------------------------- #include "proxmark3.h" #include "apps.h" #include "util.h" #include "hitag2.h" #include "crc16.h" #include "string.h" void AcquireRawAdcSamples125k(int at134khz) { if (at134khz) FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz else FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); // Connect the A/D to the peak-detected low-frequency path. SetAdcMuxFor(GPIO_MUXSEL_LOPKD); // Give it a bit of time for the resonant antenna to settle. SpinDelay(50); // Now set up the SSC to get the ADC samples that are now streaming at us. FpgaSetupSsc(); // Now call the acquisition routine DoAcquisition125k(); } // split into two routines so we can avoid timing issues after sending commands // void DoAcquisition125k(void) { uint8_t *dest = (uint8_t *)BigBuf; int n = sizeof(BigBuf); int i; memset(dest, 0, n); i = 0; for(;;) { if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { AT91C_BASE_SSC->SSC_THR = 0x43; LED_D_ON(); } if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; i++; LED_D_OFF(); if (i >= n) break; } } Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...", dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]); } void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command) { int at134khz; /* Make sure the tag is reset */ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); SpinDelay(2500); // see if 'h' was specified if (command[strlen((char *) command) - 1] == 'h') at134khz = TRUE; else at134khz = FALSE; if (at134khz) FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz else FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); // Give it a bit of time for the resonant antenna to settle. SpinDelay(50); // And a little more time for the tag to fully power up SpinDelay(2000); // Now set up the SSC to get the ADC samples that are now streaming at us. FpgaSetupSsc(); // now modulate the reader field while(*command != '\0' && *command != ' ') { FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LED_D_OFF(); SpinDelayUs(delay_off); if (at134khz) FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz else FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); LED_D_ON(); if(*(command++) == '0') SpinDelayUs(period_0); else SpinDelayUs(period_1); } FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LED_D_OFF(); SpinDelayUs(delay_off); if (at134khz) FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz else FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); // now do the read DoAcquisition125k(); } /* blank r/w tag data stream ...0000000000000000 01111111 1010101010101010101010101010101010101010101010101010101010101010 0011010010100001 01111111 101010101010101[0]000... [5555fe852c5555555555555555fe0000] */ void ReadTItag(void) { // some hardcoded initial params // when we read a TI tag we sample the zerocross line at 2Mhz // TI tags modulate a 1 as 16 cycles of 123.2Khz // TI tags modulate a 0 as 16 cycles of 134.2Khz #define FSAMPLE 2000000 #define FREQLO 123200 #define FREQHI 134200 signed char *dest = (signed char *)BigBuf; int n = sizeof(BigBuf); // int *dest = GraphBuffer; // int n = GraphTraceLen; // 128 bit shift register [shift3:shift2:shift1:shift0] uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0; int i, cycles=0, samples=0; // how many sample points fit in 16 cycles of each frequency uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI; // when to tell if we're close enough to one freq or another uint32_t threshold = (sampleslo - sampleshi + 1)>>1; // TI tags charge at 134.2Khz FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz // Place FPGA in passthrough mode, in this mode the CROSS_LO line // connects to SSP_DIN and the SSP_DOUT logic level controls // whether we're modulating the antenna (high) // or listening to the antenna (low) FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); // get TI tag data into the buffer AcquireTiType(); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); for (i=0; i0) ) { cycles++; // after 16 cycles, measure the frequency if (cycles>15) { cycles=0; samples=i-samples; // number of samples in these 16 cycles // TI bits are coming to us lsb first so shift them // right through our 128 bit right shift register shift0 = (shift0>>1) | (shift1 << 31); shift1 = (shift1>>1) | (shift2 << 31); shift2 = (shift2>>1) | (shift3 << 31); shift3 >>= 1; // check if the cycles fall close to the number // expected for either the low or high frequency if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) { // low frequency represents a 1 shift3 |= (1<<31); } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) { // high frequency represents a 0 } else { // probably detected a gay waveform or noise // use this as gaydar or discard shift register and start again shift3 = shift2 = shift1 = shift0 = 0; } samples = i; // for each bit we receive, test if we've detected a valid tag // if we see 17 zeroes followed by 6 ones, we might have a tag // remember the bits are backwards if ( ((shift0 & 0x7fffff) == 0x7e0000) ) { // if start and end bytes match, we have a tag so break out of the loop if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) { cycles = 0xF0B; //use this as a flag (ugly but whatever) break; } } } } } // if flag is set we have a tag if (cycles!=0xF0B) { DbpString("Info: No valid tag detected."); } else { // put 64 bit data into shift1 and shift0 shift0 = (shift0>>24) | (shift1 << 8); shift1 = (shift1>>24) | (shift2 << 8); // align 16 bit crc into lower half of shift2 shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff; // if r/w tag, check ident match if ( shift3&(1<<15) ) { DbpString("Info: TI tag is rewriteable"); // only 15 bits compare, last bit of ident is not valid if ( ((shift3>>16)^shift0)&0x7fff ) { DbpString("Error: Ident mismatch!"); } else { DbpString("Info: TI tag ident is valid"); } } else { DbpString("Info: TI tag is readonly"); } // WARNING the order of the bytes in which we calc crc below needs checking // i'm 99% sure the crc algorithm is correct, but it may need to eat the // bytes in reverse or something // calculate CRC uint32_t crc=0; crc = update_crc16(crc, (shift0)&0xff); crc = update_crc16(crc, (shift0>>8)&0xff); crc = update_crc16(crc, (shift0>>16)&0xff); crc = update_crc16(crc, (shift0>>24)&0xff); crc = update_crc16(crc, (shift1)&0xff); crc = update_crc16(crc, (shift1>>8)&0xff); crc = update_crc16(crc, (shift1>>16)&0xff); crc = update_crc16(crc, (shift1>>24)&0xff); Dbprintf("Info: Tag data: %x%08x, crc=%x", (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF); if (crc != (shift2&0xffff)) { Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc); } else { DbpString("Info: CRC is good"); } } } void WriteTIbyte(uint8_t b) { int i = 0; // modulate 8 bits out to the antenna for (i=0; i<8; i++) { if (b&(1<PIO_PDR = GPIO_SSC_DIN; AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN; // steal this pin from the SSP and use it to control the modulation AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST; AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN; // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long // 48/2 = 24 MHz clock must be divided by 12 AT91C_BASE_SSC->SSC_CMR = 12; AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0); AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF; AT91C_BASE_SSC->SSC_TCMR = 0; AT91C_BASE_SSC->SSC_TFMR = 0; LED_D_ON(); // modulate antenna HIGH(GPIO_SSC_DOUT); // Charge TI tag for 50ms. SpinDelay(50); // stop modulating antenna and listen LOW(GPIO_SSC_DOUT); LED_D_OFF(); i = 0; for(;;) { if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer i++; if(i >= TIBUFLEN) break; } WDT_HIT(); } // return stolen pin to SSP AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT; AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT; char *dest = (char *)BigBuf; n = TIBUFLEN*32; // unpack buffer for (i=TIBUFLEN-1; i>=0; i--) { for (j=0; j<32; j++) { if(BigBuf[i] & (1 << j)) { dest[--n] = 1; } else { dest[--n] = -1; } } } } // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc // if crc provided, it will be written with the data verbatim (even if bogus) // if not provided a valid crc will be computed from the data and written. void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc) { if(crc == 0) { crc = update_crc16(crc, (idlo)&0xff); crc = update_crc16(crc, (idlo>>8)&0xff); crc = update_crc16(crc, (idlo>>16)&0xff); crc = update_crc16(crc, (idlo>>24)&0xff); crc = update_crc16(crc, (idhi)&0xff); crc = update_crc16(crc, (idhi>>8)&0xff); crc = update_crc16(crc, (idhi>>16)&0xff); crc = update_crc16(crc, (idhi>>24)&0xff); } Dbprintf("Writing to tag: %x%08x, crc=%x", (unsigned int) idhi, (unsigned int) idlo, crc); // TI tags charge at 134.2Khz FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz // Place FPGA in passthrough mode, in this mode the CROSS_LO line // connects to SSP_DIN and the SSP_DOUT logic level controls // whether we're modulating the antenna (high) // or listening to the antenna (low) FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); LED_A_ON(); // steal this pin from the SSP and use it to control the modulation AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; // writing algorithm: // a high bit consists of a field off for 1ms and field on for 1ms // a low bit consists of a field off for 0.3ms and field on for 1.7ms // initiate a charge time of 50ms (field on) then immediately start writing bits // start by writing 0xBB (keyword) and 0xEB (password) // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer) // finally end with 0x0300 (write frame) // all data is sent lsb firts // finish with 15ms programming time // modulate antenna HIGH(GPIO_SSC_DOUT); SpinDelay(50); // charge time WriteTIbyte(0xbb); // keyword WriteTIbyte(0xeb); // password WriteTIbyte( (idlo )&0xff ); WriteTIbyte( (idlo>>8 )&0xff ); WriteTIbyte( (idlo>>16)&0xff ); WriteTIbyte( (idlo>>24)&0xff ); WriteTIbyte( (idhi )&0xff ); WriteTIbyte( (idhi>>8 )&0xff ); WriteTIbyte( (idhi>>16)&0xff ); WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo WriteTIbyte( (crc )&0xff ); // crc lo WriteTIbyte( (crc>>8 )&0xff ); // crc hi WriteTIbyte(0x00); // write frame lo WriteTIbyte(0x03); // write frame hi HIGH(GPIO_SSC_DOUT); SpinDelay(50); // programming time LED_A_OFF(); // get TI tag data into the buffer AcquireTiType(); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); DbpString("Now use tiread to check"); } void SimulateTagLowFrequency(int period, int gap, int ledcontrol) { int i; uint8_t *tab = (uint8_t *)BigBuf; FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR); AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK; AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK; #define SHORT_COIL() LOW(GPIO_SSC_DOUT) #define OPEN_COIL() HIGH(GPIO_SSC_DOUT) i = 0; for(;;) { while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) { if(BUTTON_PRESS()) { DbpString("Stopped"); return; } WDT_HIT(); } if (ledcontrol) LED_D_ON(); if(tab[i]) OPEN_COIL(); else SHORT_COIL(); if (ledcontrol) LED_D_OFF(); while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) { if(BUTTON_PRESS()) { DbpString("Stopped"); return; } WDT_HIT(); } i++; if(i == period) { i = 0; if (gap) { SHORT_COIL(); SpinDelayUs(gap); } } } } /* Provides a framework for bidirectional LF tag communication * Encoding is currently Hitag2, but the general idea can probably * be transferred to other encodings. * * The new FPGA code will, for the LF simulator mode, give on SSC_FRAME * (PA15) a thresholded version of the signal from the ADC. Setting the * ADC path to the low frequency peak detection signal, will enable a * somewhat reasonable receiver for modulation on the carrier signal * that is generated by the reader. The signal is low when the reader * field is switched off, and high when the reader field is active. Due * to the way that the signal looks like, mostly only the rising edge is * useful, your mileage may vary. * * Neat perk: PA15 can not only be used as a bit-banging GPIO, but is also * TIOA1, which can be used as the capture input for timer 1. This should * make it possible to measure the exact edge-to-edge time, without processor * intervention. * * Arguments: divisor is the divisor to be sent to the FPGA (e.g. 95 for 125kHz) * t0 is the carrier frequency cycle duration in terms of MCK (384 for 125kHz) * * The following defines are in carrier periods: */ #define HITAG_T_0_MIN 15 /* T[0] should be 18..22 */ #define HITAG_T_1_MIN 24 /* T[1] should be 26..30 */ #define HITAG_T_EOF 40 /* T_EOF should be > 36 */ #define HITAG_T_WRESP 208 /* T_wresp should be 204..212 */ static void hitag_handle_frame(int t0, int frame_len, char *frame); //#define DEBUG_RA_VALUES 1 #define DEBUG_FRAME_CONTENTS 1 void SimulateTagLowFrequencyBidir(int divisor, int t0) { #if DEBUG_RA_VALUES || DEBUG_FRAME_CONTENTS int i = 0; #endif char frame[10]; int frame_pos=0; DbpString("Starting Hitag2 emulator, press button to end"); hitag2_init(); /* Set up simulator mode, frequency divisor which will drive the FPGA * and analog mux selection. */ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR); FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor); SetAdcMuxFor(GPIO_MUXSEL_LOPKD); RELAY_OFF(); /* Set up Timer 1: * Capture mode, timer source MCK/2 (TIMER_CLOCK1), TIOA is external trigger, * external trigger rising edge, load RA on rising edge of TIOA, load RB on rising * edge of TIOA. Assign PA15 to TIOA1 (peripheral B) */ AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1); AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME; AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK | AT91C_TC_ETRGEDG_RISING | AT91C_TC_ABETRG | AT91C_TC_LDRA_RISING | AT91C_TC_LDRB_RISING; AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; /* calculate the new value for the carrier period in terms of TC1 values */ t0 = t0/2; int overflow = 0; while(!BUTTON_PRESS()) { WDT_HIT(); if(AT91C_BASE_TC1->TC_SR & AT91C_TC_LDRAS) { int ra = AT91C_BASE_TC1->TC_RA; if((ra > t0*HITAG_T_EOF) | overflow) ra = t0*HITAG_T_EOF+1; #if DEBUG_RA_VALUES if(ra > 255 || overflow) ra = 255; ((char*)BigBuf)[i] = ra; i = (i+1) % 8000; #endif if(overflow || (ra > t0*HITAG_T_EOF) || (ra < t0*HITAG_T_0_MIN)) { /* Ignore */ } else if(ra >= t0*HITAG_T_1_MIN ) { /* '1' bit */ if(frame_pos < 8*sizeof(frame)) { frame[frame_pos / 8] |= 1<<( 7-(frame_pos%8) ); frame_pos++; } } else if(ra >= t0*HITAG_T_0_MIN) { /* '0' bit */ if(frame_pos < 8*sizeof(frame)) { frame[frame_pos / 8] |= 0<<( 7-(frame_pos%8) ); frame_pos++; } } overflow = 0; LED_D_ON(); } else { if(AT91C_BASE_TC1->TC_CV > t0*HITAG_T_EOF) { /* Minor nuisance: In Capture mode, the timer can not be * stopped by a Compare C. There's no way to stop the clock * in software, so we'll just have to note the fact that an * overflow happened and the next loaded timer value might * have wrapped. Also, this marks the end of frame, and the * still running counter can be used to determine the correct * time for the start of the reply. */ overflow = 1; if(frame_pos > 0) { /* Have a frame, do something with it */ #if DEBUG_FRAME_CONTENTS ((char*)BigBuf)[i++] = frame_pos; memcpy( ((char*)BigBuf)+i, frame, 7); i+=7; i = i % sizeof(BigBuf); #endif hitag_handle_frame(t0, frame_pos, frame); memset(frame, 0, sizeof(frame)); } frame_pos = 0; } LED_D_OFF(); } } DbpString("All done"); } static void hitag_send_bit(int t0, int bit) { if(bit == 1) { /* Manchester: Loaded, then unloaded */ LED_A_ON(); SHORT_COIL(); while(AT91C_BASE_TC1->TC_CV < t0*15); OPEN_COIL(); while(AT91C_BASE_TC1->TC_CV < t0*31); LED_A_OFF(); } else if(bit == 0) { /* Manchester: Unloaded, then loaded */ LED_B_ON(); OPEN_COIL(); while(AT91C_BASE_TC1->TC_CV < t0*15); SHORT_COIL(); while(AT91C_BASE_TC1->TC_CV < t0*31); LED_B_OFF(); } AT91C_BASE_TC1->TC_CCR = AT91C_TC_SWTRG; /* Reset clock for the next bit */ } static void hitag_send_frame(int t0, int frame_len, const char const * frame, int fdt) { OPEN_COIL(); AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; /* Wait for HITAG_T_WRESP carrier periods after the last reader bit, * not that since the clock counts since the rising edge, but T_wresp is * with respect to the falling edge, we need to wait actually (T_wresp - T_g) * periods. The gap time T_g varies (4..10). */ while(AT91C_BASE_TC1->TC_CV < t0*(fdt-8)); int saved_cmr = AT91C_BASE_TC1->TC_CMR; AT91C_BASE_TC1->TC_CMR &= ~AT91C_TC_ETRGEDG; /* Disable external trigger for the clock */ AT91C_BASE_TC1->TC_CCR = AT91C_TC_SWTRG; /* Reset the clock and use it for response timing */ int i; for(i=0; i<5; i++) hitag_send_bit(t0, 1); /* Start of frame */ for(i=0; iTC_CMR = saved_cmr; } /* Callback structure to cleanly separate tag emulation code from the radio layer. */ static int hitag_cb(const char* response_data, const int response_length, const int fdt, void *cb_cookie) { hitag_send_frame(*(int*)cb_cookie, response_length, response_data, fdt); return 0; } /* Frame length in bits, frame contents in MSBit first format */ static void hitag_handle_frame(int t0, int frame_len, char *frame) { hitag2_handle_command(frame, frame_len, hitag_cb, &t0); } // compose fc/8 fc/10 waveform static void fc(int c, int *n) { uint8_t *dest = (uint8_t *)BigBuf; int idx; // for when we want an fc8 pattern every 4 logical bits if(c==0) { dest[((*n)++)]=1; dest[((*n)++)]=1; dest[((*n)++)]=0; dest[((*n)++)]=0; dest[((*n)++)]=0; dest[((*n)++)]=0; dest[((*n)++)]=0; dest[((*n)++)]=0; } // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples if(c==8) { for (idx=0; idx<6; idx++) { dest[((*n)++)]=1; dest[((*n)++)]=1; dest[((*n)++)]=0; dest[((*n)++)]=0; dest[((*n)++)]=0; dest[((*n)++)]=0; dest[((*n)++)]=0; dest[((*n)++)]=0; } } // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples if(c==10) { for (idx=0; idx<5; idx++) { dest[((*n)++)]=1; dest[((*n)++)]=1; dest[((*n)++)]=1; dest[((*n)++)]=0; dest[((*n)++)]=0; dest[((*n)++)]=0; dest[((*n)++)]=0; dest[((*n)++)]=0; dest[((*n)++)]=0; dest[((*n)++)]=0; } } } // prepare a waveform pattern in the buffer based on the ID given then // simulate a HID tag until the button is pressed void CmdHIDsimTAG(int hi, int lo, int ledcontrol) { int n=0, i=0; /* HID tag bitstream format The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits A 1 bit is represented as 6 fc8 and 5 fc10 patterns A 0 bit is represented as 5 fc10 and 6 fc8 patterns A fc8 is inserted before every 4 bits A special start of frame pattern is used consisting a0b0 where a and b are neither 0 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10) */ if (hi>0xFFF) { DbpString("Tags can only have 44 bits."); return; } fc(0,&n); // special start of frame marker containing invalid bit sequences fc(8, &n); fc(8, &n); // invalid fc(8, &n); fc(10, &n); // logical 0 fc(10, &n); fc(10, &n); // invalid fc(8, &n); fc(10, &n); // logical 0 WDT_HIT(); // manchester encode bits 43 to 32 for (i=11; i>=0; i--) { if ((i%4)==3) fc(0,&n); if ((hi>>i)&1) { fc(10, &n); fc(8, &n); // low-high transition } else { fc(8, &n); fc(10, &n); // high-low transition } } WDT_HIT(); // manchester encode bits 31 to 0 for (i=31; i>=0; i--) { if ((i%4)==3) fc(0,&n); if ((lo>>i)&1) { fc(10, &n); fc(8, &n); // low-high transition } else { fc(8, &n); fc(10, &n); // high-low transition } } if (ledcontrol) LED_A_ON(); SimulateTagLowFrequency(n, 0, ledcontrol); if (ledcontrol) LED_A_OFF(); } // loop to capture raw HID waveform then FSK demodulate the TAG ID from it void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol) { uint8_t *dest = (uint8_t *)BigBuf; int m=0, n=0, i=0, idx=0, found=0, lastval=0; uint32_t hi=0, lo=0; FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); // Connect the A/D to the peak-detected low-frequency path. SetAdcMuxFor(GPIO_MUXSEL_LOPKD); // Give it a bit of time for the resonant antenna to settle. SpinDelay(50); // Now set up the SSC to get the ADC samples that are now streaming at us. FpgaSetupSsc(); for(;;) { WDT_HIT(); if (ledcontrol) LED_A_ON(); if(BUTTON_PRESS()) { DbpString("Stopped"); if (ledcontrol) LED_A_OFF(); return; } i = 0; m = sizeof(BigBuf); memset(dest,128,m); for(;;) { if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { AT91C_BASE_SSC->SSC_THR = 0x43; if (ledcontrol) LED_D_ON(); } if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; // we don't care about actual value, only if it's more or less than a // threshold essentially we capture zero crossings for later analysis if(dest[i] < 127) dest[i] = 0; else dest[i] = 1; i++; if (ledcontrol) LED_D_OFF(); if(i >= m) { break; } } } // FSK demodulator // sync to first lo-hi transition for( idx=1; idx>1) & 0xFFFF); /* if we're only looking for one tag */ if (findone) { *high = hi; *low = lo; return; } hi=0; lo=0; found=0; } } if (found) { if (dest[idx] && (!dest[idx+1]) ) { hi=(hi<<1)|(lo>>31); lo=(lo<<1)|0; } else if ( (!dest[idx]) && dest[idx+1]) { hi=(hi<<1)|(lo>>31); lo=(lo<<1)|1; } else { found=0; hi=0; lo=0; } idx++; } if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) ) { found=1; idx+=6; if (found && (hi|lo)) { Dbprintf("TAG ID: %x%08x (%d)", (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); /* if we're only looking for one tag */ if (findone) { *high = hi; *low = lo; return; } hi=0; lo=0; found=0; } } } WDT_HIT(); } } /*------------------------------ * T5555/T5557/T5567 routines *------------------------------ */ /* T55x7 configuration register definitions */ #define T55x7_POR_DELAY 0x00000001 #define T55x7_ST_TERMINATOR 0x00000008 #define T55x7_PWD 0x00000010 #define T55x7_MAXBLOCK_SHIFT 5 #define T55x7_AOR 0x00000200 #define T55x7_PSKCF_RF_2 0 #define T55x7_PSKCF_RF_4 0x00000400 #define T55x7_PSKCF_RF_8 0x00000800 #define T55x7_MODULATION_DIRECT 0 #define T55x7_MODULATION_PSK1 0x00001000 #define T55x7_MODULATION_PSK2 0x00002000 #define T55x7_MODULATION_PSK3 0x00003000 #define T55x7_MODULATION_FSK1 0x00004000 #define T55x7_MODULATION_FSK2 0x00005000 #define T55x7_MODULATION_FSK1a 0x00006000 #define T55x7_MODULATION_FSK2a 0x00007000 #define T55x7_MODULATION_MANCHESTER 0x00008000 #define T55x7_MODULATION_BIPHASE 0x00010000 #define T55x7_BITRATE_RF_8 0 #define T55x7_BITRATE_RF_16 0x00040000 #define T55x7_BITRATE_RF_32 0x00080000 #define T55x7_BITRATE_RF_40 0x000C0000 #define T55x7_BITRATE_RF_50 0x00100000 #define T55x7_BITRATE_RF_64 0x00140000 #define T55x7_BITRATE_RF_100 0x00180000 #define T55x7_BITRATE_RF_128 0x001C0000 /* T5555 (Q5) configuration register definitions */ #define T5555_ST_TERMINATOR 0x00000001 #define T5555_MAXBLOCK_SHIFT 0x00000001 #define T5555_MODULATION_MANCHESTER 0 #define T5555_MODULATION_PSK1 0x00000010 #define T5555_MODULATION_PSK2 0x00000020 #define T5555_MODULATION_PSK3 0x00000030 #define T5555_MODULATION_FSK1 0x00000040 #define T5555_MODULATION_FSK2 0x00000050 #define T5555_MODULATION_BIPHASE 0x00000060 #define T5555_MODULATION_DIRECT 0x00000070 #define T5555_INVERT_OUTPUT 0x00000080 #define T5555_PSK_RF_2 0 #define T5555_PSK_RF_4 0x00000100 #define T5555_PSK_RF_8 0x00000200 #define T5555_USE_PWD 0x00000400 #define T5555_USE_AOR 0x00000800 #define T5555_BITRATE_SHIFT 12 #define T5555_FAST_WRITE 0x00004000 #define T5555_PAGE_SELECT 0x00008000 /* * Relevant times in microsecond * To compensate antenna falling times shorten the write times * and enlarge the gap ones. */ #define START_GAP 250 #define WRITE_GAP 160 #define WRITE_0 144 // 192 #define WRITE_1 400 // 432 for T55x7; 448 for E5550 // Write one bit to card void T55xxWriteBit(int bit) { FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); if (bit == 0) SpinDelayUs(WRITE_0); else SpinDelayUs(WRITE_1); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); SpinDelayUs(WRITE_GAP); } // Write one card block in page 0, no lock void T55xxWriteBlock(int Data, int Block) { unsigned int i; FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); // Give it a bit of time for the resonant antenna to settle. // And for the tag to fully power up SpinDelay(150); // Now start writting FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); SpinDelayUs(START_GAP); // Opcode T55xxWriteBit(1); T55xxWriteBit(0); //Page 0 // Lock bit T55xxWriteBit(0); // Data for (i = 0x80000000; i != 0; i >>= 1) T55xxWriteBit(Data & i); // Page for (i = 0x04; i != 0; i >>= 1) T55xxWriteBit(Block & i); // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550, // so wait a little more) FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); SpinDelay(20); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); } // Copy HID id to card and setup block 0 config void CopyHIDtoT55x7(int hi, int lo) { int data1, data2, data3; // Ensure no more than 44 bits supplied if (hi>0xFFF) { DbpString("Tags can only have 44 bits."); return; } // Build the 3 data blocks for supplied 44bit ID data1 = 0x1D000000; // load preamble for (int i=0;i<12;i++) { if (hi & (1<<(11-i))) data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10 else data1 |= (1<<((11-i)*2)); // 0 -> 01 } data2 = 0; for (int i=0;i<16;i++) { if (lo & (1<<(31-i))) data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10 else data2 |= (1<<((15-i)*2)); // 0 -> 01 } data3 = 0; for (int i=0;i<16;i++) { if (lo & (1<<(15-i))) data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10 else data3 |= (1<<((15-i)*2)); // 0 -> 01 } // Program the 3 data blocks for supplied 44bit ID // and the block 0 for HID format T55xxWriteBlock(data1,1); T55xxWriteBlock(data2,2); T55xxWriteBlock(data3,3); // Config for HID (RF/50, FSK2a, Maxblock=3) T55xxWriteBlock(T55x7_BITRATE_RF_50 | T55x7_MODULATION_FSK2a | 3 << T55x7_MAXBLOCK_SHIFT, 0); DbpString("DONE!"); } // Define 9bit header for EM410x tags #define EM410X_HEADER 0x1FF #define EM410X_ID_LENGTH 40 void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) { int i, id_bit; uint64_t id = EM410X_HEADER; uint64_t rev_id = 0; // reversed ID int c_parity[4]; // column parity int r_parity = 0; // row parity // Reverse ID bits given as parameter (for simpler operations) for (i = 0; i < EM410X_ID_LENGTH; ++i) { if (i < 32) { rev_id = (rev_id << 1) | (id_lo & 1); id_lo >>= 1; } else { rev_id = (rev_id << 1) | (id_hi & 1); id_hi >>= 1; } } for (i = 0; i < EM410X_ID_LENGTH; ++i) { id_bit = rev_id & 1; if (i % 4 == 0) { // Don't write row parity bit at start of parsing if (i) id = (id << 1) | r_parity; // Start counting parity for new row r_parity = id_bit; } else { // Count row parity r_parity ^= id_bit; } // First elements in column? if (i < 4) // Fill out first elements c_parity[i] = id_bit; else // Count column parity c_parity[i % 4] ^= id_bit; // Insert ID bit id = (id << 1) | id_bit; rev_id >>= 1; } // Insert parity bit of last row id = (id << 1) | r_parity; // Fill out column parity at the end of tag for (i = 0; i < 4; ++i) id = (id << 1) | c_parity[i]; // Add stop bit id <<= 1; Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555"); LED_D_ON(); // Write EM410x ID T55xxWriteBlock((uint32_t)(id >> 32), 1); T55xxWriteBlock((uint32_t)id, 2); // Config for EM410x (RF/64, Manchester, Maxblock=2) if (card) // Writing configuration for T55x7 tag T55xxWriteBlock(T55x7_BITRATE_RF_64 | T55x7_MODULATION_MANCHESTER | 2 << T55x7_MAXBLOCK_SHIFT, 0); else // Writing configuration for T5555(Q5) tag T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT | T5555_MODULATION_MANCHESTER | 2 << T5555_MAXBLOCK_SHIFT, 0); LED_D_OFF(); Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555", (uint32_t)(id >> 32), (uint32_t)id); } // Clone Indala 64-bit tag by UID to T55x7 void CopyIndala64toT55x7(int hi, int lo) { //Program the 2 data blocks for supplied 64bit UID // and the block 0 for Indala64 format T55xxWriteBlock(hi,1); T55xxWriteBlock(lo,2); //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2) T55xxWriteBlock(T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | 2 << T55x7_MAXBLOCK_SHIFT, 0); //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data) // T5567WriteBlock(0x603E1042,0); DbpString("DONE!"); } void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7) { //Program the 7 data blocks for supplied 224bit UID // and the block 0 for Indala224 format T55xxWriteBlock(uid1,1); T55xxWriteBlock(uid2,2); T55xxWriteBlock(uid3,3); T55xxWriteBlock(uid4,4); T55xxWriteBlock(uid5,5); T55xxWriteBlock(uid6,6); T55xxWriteBlock(uid7,7); //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7) T55xxWriteBlock(T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | 7 << T55x7_MAXBLOCK_SHIFT, 0); //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data) // T5567WriteBlock(0x603E10E2,0); DbpString("DONE!"); }