//----------------------------------------------------------------------------- // Merlok - June 2011, 2012 // Gerhard de Koning Gans - May 2008 // Hagen Fritsch - June 2010 // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Mifare Classic Card Simulation //----------------------------------------------------------------------------- #include "iso14443a.h" #include "mifaresim.h" #include "iso14443crc.h" #include "crapto1/crapto1.h" #include "BigBuf.h" #include "string.h" #include "mifareutil.h" #include "fpgaloader.h" #include "proxmark3.h" #include "usb_cdc.h" #include "cmd.h" #include "protocols.h" #include "apps.h" static tUart Uart; uint8_t MifareCardType; static bool IsTrailerAccessAllowed(uint8_t blockNo, uint8_t keytype, uint8_t action) { uint8_t sector_trailer[16]; emlGetMem(sector_trailer, blockNo, 1); uint8_t AC = ((sector_trailer[7] >> 5) & 0x04) | ((sector_trailer[8] >> 2) & 0x02) | ((sector_trailer[8] >> 7) & 0x01); switch (action) { case AC_KEYA_READ: { if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("IsTrailerAccessAllowed: AC_KEYA_READ"); return false; } case AC_KEYA_WRITE: { if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("IsTrailerAccessAllowed: AC_KEYA_WRITE"); return ((keytype == AUTHKEYA && (AC == 0x00 || AC == 0x01)) || (keytype == AUTHKEYB && (AC == 0x04 || AC == 0x03))); } case AC_KEYB_READ: { if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("IsTrailerAccessAllowed: AC_KEYB_READ"); return (keytype == AUTHKEYA && (AC == 0x00 || AC == 0x02 || AC == 0x01)); } case AC_KEYB_WRITE: { if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("IsTrailerAccessAllowed: AC_KEYB_WRITE"); return ((keytype == AUTHKEYA && (AC == 0x00 || AC == 0x04)) || (keytype == AUTHKEYB && (AC == 0x04 || AC == 0x03))); } case AC_AC_READ: { if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("IsTrailerAccessAllowed: AC_AC_READ"); return ((keytype == AUTHKEYA) || (keytype == AUTHKEYB && !(AC == 0x00 || AC == 0x02 || AC == 0x01))); } case AC_AC_WRITE: { if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("IsTrailerAccessAllowed: AC_AC_WRITE"); return ((keytype == AUTHKEYA && (AC == 0x01)) || (keytype == AUTHKEYB && (AC == 0x03 || AC == 0x05))); } default: return false; } } static bool IsDataAccessAllowed(uint8_t blockNo, uint8_t keytype, uint8_t action) { uint8_t sector_trailer[16]; emlGetMem(sector_trailer, SectorTrailer(blockNo), 1); uint8_t sector_block; if (blockNo <= MIFARE_2K_MAXBLOCK) { sector_block = blockNo & 0x03; } else { sector_block = (blockNo & 0x0f) / 5; } uint8_t AC; switch (sector_block) { case 0x00: { AC = ((sector_trailer[7] >> 2) & 0x04) | ((sector_trailer[8] << 1) & 0x02) | ((sector_trailer[8] >> 4) & 0x01); if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("IsDataAccessAllowed: case 0x00 - %02x", AC); break; } case 0x01: { AC = ((sector_trailer[7] >> 3) & 0x04) | ((sector_trailer[8] >> 0) & 0x02) | ((sector_trailer[8] >> 5) & 0x01); if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("IsDataAccessAllowed: case 0x01 - %02x", AC); break; } case 0x02: { AC = ((sector_trailer[7] >> 4) & 0x04) | ((sector_trailer[8] >> 1) & 0x02) | ((sector_trailer[8] >> 6) & 0x01); if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("IsDataAccessAllowed: case 0x02 - %02x", AC); break; } default: if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("IsDataAccessAllowed: Error"); return false; } switch (action) { case AC_DATA_READ: { if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("IsDataAccessAllowed - AC_DATA_READ: OK"); return ((keytype == AUTHKEYA && !(AC == 0x03 || AC == 0x05 || AC == 0x07)) || (keytype == AUTHKEYB && !(AC == 0x07))); } case AC_DATA_WRITE: { if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("IsDataAccessAllowed - AC_DATA_WRITE: OK"); return ((keytype == AUTHKEYA && (AC == 0x00)) || (keytype == AUTHKEYB && (AC == 0x00 || AC == 0x04 || AC == 0x06 || AC == 0x03))); } case AC_DATA_INC: { if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("IsDataAccessAllowed - AC_DATA_INC: OK"); return ((keytype == AUTHKEYA && (AC == 0x00)) || (keytype == AUTHKEYB && (AC == 0x00 || AC == 0x06))); } case AC_DATA_DEC_TRANS_REST: { if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("AC_DATA_DEC_TRANS_REST: OK"); return ((keytype == AUTHKEYA && (AC == 0x00 || AC == 0x06 || AC == 0x01)) || (keytype == AUTHKEYB && (AC == 0x00 || AC == 0x06 || AC == 0x01))); } } return false; } static bool IsAccessAllowed(uint8_t blockNo, uint8_t keytype, uint8_t action) { if (IsSectorTrailer(blockNo)) { return IsTrailerAccessAllowed(blockNo, keytype, action); } else { return IsDataAccessAllowed(blockNo, keytype, action); } } static void MifareSimInit(uint16_t flags, uint8_t *datain, tag_response_info_t **responses, uint32_t *cuid, uint8_t *uid_len) { // SPEC: https://www.nxp.com/docs/en/application-note/AN10833.pdf // ATQA static uint8_t rATQA_Mini_4B[] = {0x44, 0x00}; // indicate Mifare classic Mini 4Byte UID //static uint8_t rATQA_Mini_7B[] = {0x44, 0x00}; // indicate Mifare classic Mini 7Byte UID //static uint8_t rATQA_Mini_10B[] = {0x44, 0x00}; // indicate Mifare classic Mini 10Byte UID static uint8_t rATQA_1k_4B[] = {0x04, 0x00}; // indicate Mifare classic 1k 4Byte UID static uint8_t rATQA_1k_7B[] = {0x44, 0x00}; // indicate Mifare classic 1k 7Byte UID static uint8_t rATQA_1k_10B[] = {0x42, 0x00}; // indicate Mifare classic 4k 10Byte UID static uint8_t rATQA_2k_4B[] = {0x04, 0x00}; // indicate Mifare classic 2k 4Byte UID static uint8_t rATQA_2k_7B[] = {0x44, 0x00}; // indicate Mifare classic 2k 7Byte UID static uint8_t rATQA_2k_10B[] = {0x42, 0x00}; // indicate Mifare classic 4k 10Byte UID static uint8_t rATQA_4k_4B[] = {0x02, 0x00}; // indicate Mifare classic 4k 4Byte UID static uint8_t rATQA_4k_7B[] = {0x42, 0x00}; // indicate Mifare classic 4k 7Byte UID static uint8_t rATQA_4k_10B[] = {0x42, 0x00}; // indicate Mifare classic 4k 10Byte UID static uint8_t rATQA[] = {0x00, 0x00}; // SAK + CRC static uint8_t rSAK_mini[] = {0x09, 0x3f, 0xcc}; // mifare Mini static uint8_t rSAK_1[] = {0x08, 0xb6, 0xdd}; // mifare 1k static uint8_t rSAK_2[] = {0x08, 0xb6, 0xdd}; // mifare 2k static uint8_t rSAK_4[] = {0x18, 0x37, 0xcd}; // mifare 4k static uint8_t rUIDBCC1[] = {0x00, 0x00, 0x00, 0x00, 0x00}; // UID 1st cascade level static uint8_t rUIDBCC2[] = {0x00, 0x00, 0x00, 0x00, 0x00}; // UID 2nd cascade level static uint8_t rUIDBCC3[] = {0x00, 0x00, 0x00, 0x00, 0x00}; // UID 3nd cascade level static uint8_t rSAK1[] = {0x04, 0xda, 0x17}; // Acknowledge but indicate UID is not finished. Used for any MIFARE Classic CL1 with double UID size *uid_len = 0; // -- Determine the UID // Can be set from emulator memory or incoming data // Length: 4,7,or 10 bytes if ((flags & FLAG_UID_IN_EMUL) == FLAG_UID_IN_EMUL) { emlGetMemBt(datain, 0, 10); // load 10bytes from EMUL to the datain pointer. to be used below. } if ((flags & FLAG_4B_UID_IN_DATA) == FLAG_4B_UID_IN_DATA) { // get UID from datain memcpy(rUIDBCC1, datain, 4); *uid_len = 4; if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("MifareSimInit - FLAG_4B_UID_IN_DATA => Get UID from datain: %02X - Flag: %02X - UIDBCC1: %02X", FLAG_4B_UID_IN_DATA, flags, rUIDBCC1); } else if ((flags & FLAG_7B_UID_IN_DATA) == FLAG_7B_UID_IN_DATA) { memcpy(&rUIDBCC1[1], datain, 3); memcpy(rUIDBCC2, datain + 3, 4); *uid_len = 7; if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("MifareSimInit - FLAG_7B_UID_IN_DATA => Get UID from datain: %02X - Flag: %02X - UIDBCC1: %02X", FLAG_7B_UID_IN_DATA, flags, rUIDBCC1); } else if ((flags & FLAG_10B_UID_IN_DATA) == FLAG_10B_UID_IN_DATA) { memcpy(&rUIDBCC1[1], datain, 3); memcpy(&rUIDBCC2[1], datain + 3, 3); memcpy(rUIDBCC3, datain + 6, 4); *uid_len = 10; } switch (*uid_len) { // UID 4B case 4: switch (MifareCardType) { case 0: // Mifare Mini memcpy(rATQA, rATQA_Mini_4B, sizeof rATQA_Mini_4B); if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("=> Using rATQA_Mini_4B"); break; case 1: // Mifare 1K memcpy(rATQA, rATQA_1k_4B, sizeof rATQA_1k_4B); if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("=> Using rATQA_1k_4B"); break; case 2: // Mifare 2L memcpy(rATQA, rATQA_2k_4B, sizeof rATQA_2k_4B); if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("=> Using rATQA_2k_4B"); break; case 4: // Mifare 4K memcpy(rATQA, rATQA_4k_4B, sizeof rATQA_4k_4B); if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("=> Using rATQA_4k_4B"); break; } // save CUID *cuid = bytes_to_num(rUIDBCC1, 4); // BCC rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; if (MF_DBGLEVEL >= 1) { Dbprintf("4B UID: %02x%02x%02x%02x", rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3]); } break; // UID 7B case 7: switch (MifareCardType) { case 1: memcpy(rATQA, rATQA_1k_7B, sizeof rATQA_1k_7B); if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("=> Using rATQA_1k_7B"); break; case 2: memcpy(rATQA, rATQA_2k_7B, sizeof rATQA_2k_7B); if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("=> Using rATQA_2k_7B"); break; case 4: memcpy(rATQA, rATQA_4k_7B, sizeof rATQA_4k_7B); if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("=> Using rATQA_4k_4B"); break; } // save CUID *cuid = bytes_to_num(rUIDBCC2, 4); // CascadeTag, CT rUIDBCC1[0] = MIFARE_SELECT_CT; // BCC rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3]; if (MF_DBGLEVEL >= 1) { Dbprintf("7B UID: %02x %02x %02x %02x %02x %02x %02x", rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3], rUIDBCC2[0], rUIDBCC2[1], rUIDBCC2[2], rUIDBCC2[3]); } break; // UID 10B case 10: switch (MifareCardType) { case 1: memcpy(rATQA, rATQA_1k_10B, sizeof rATQA_1k_10B); if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("=> Using rATQA_1k_10B"); break; case 2: memcpy(rATQA, rATQA_2k_10B, sizeof rATQA_2k_10B); if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("=> Using rATQA_2k_10B"); break; case 4: memcpy(rATQA, rATQA_4k_10B, sizeof rATQA_4k_10B); if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("=> Using rATQA_4k_10B"); break; } // save CUID *cuid = bytes_to_num(rUIDBCC3, 4); // CascadeTag, CT rUIDBCC1[0] = MIFARE_SELECT_CT; rUIDBCC2[0] = MIFARE_SELECT_CT; // BCC rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3]; rUIDBCC3[4] = rUIDBCC3[0] ^ rUIDBCC3[1] ^ rUIDBCC3[2] ^ rUIDBCC3[3]; if (MF_DBGLEVEL >= 1) { Dbprintf("10B UID: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x", rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3], rUIDBCC2[1], rUIDBCC2[2], rUIDBCC2[3], rUIDBCC3[0], rUIDBCC3[1], rUIDBCC3[2], rUIDBCC3[3] ); } break; default: break; } static tag_response_info_t responses_init[TAG_RESPONSE_COUNT] = { { .response = rATQA, .response_n = sizeof(rATQA) }, // Answer to request - respond with card type { .response = rUIDBCC1, .response_n = sizeof(rUIDBCC1) }, // Anticollision cascade1 - respond with first part of uid { .response = rUIDBCC2, .response_n = sizeof(rUIDBCC2) }, // Anticollision cascade2 - respond with 2nd part of uid { .response = rUIDBCC3, .response_n = sizeof(rUIDBCC3) }, // Anticollision cascade3 - respond with 3th part of uid { .response = rSAK_mini, .response_n = sizeof(rSAK_mini) }, // { .response = rSAK_1, .response_n = sizeof(rSAK_1) }, // { .response = rSAK_2, .response_n = sizeof(rSAK_2) }, // { .response = rSAK_4, .response_n = sizeof(rSAK_4) }, // { .response = rSAK1, .response_n = sizeof(rSAK1) } // Acknowledge select - New another cascades }; // Prepare ("precompile") the responses of the anticollision phase. There will be not enough time to do this at the moment the reader sends its REQA or SELECT // There are 7 predefined responses with a total of 18 bytes data to transmit. Coded responses need one byte per bit to transfer (data, parity, start, stop, correction) // 18 * 8 data bits, 18 * 1 parity bits, 5 start bits, 5 stop bits, 5 correction bits -> need 177 bytes buffer uint8_t *free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE); size_t free_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE; for (size_t i = 0; i < TAG_RESPONSE_COUNT; i++) { prepare_allocated_tag_modulation(&responses_init[i], &free_buffer_pointer, &free_buffer_size); } *responses = responses_init; // indices into responses array: #define ATQA 0 #define UIDBCC1 1 #define UIDBCC2 2 #define UIDBCC3 3 #define SAK_MINI 4 #define SAK_1 5 #define SAK_2 6 #define SAK_4 7 #define SAK1 8 } static bool HasValidCRC(uint8_t *receivedCmd, uint16_t receivedCmd_len) { uint8_t CRC_byte_1, CRC_byte_2; compute_crc(CRC_14443_A, receivedCmd, receivedCmd_len - 2, &CRC_byte_1, &CRC_byte_2); return (receivedCmd[receivedCmd_len - 2] == CRC_byte_1 && receivedCmd[receivedCmd_len - 1] == CRC_byte_2); } /** *MIFARE 1K simulate. * *@param flags : * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK * FLAG_4B_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that * FLAG_7B_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that * FLAG_10B_UID_IN_DATA - use 10-byte UID in the data-section not finished * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later * FLAG_RANDOM_NONCE - means we should generate some pseudo-random nonce data (only allows moebius attack) *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is infinite ... * (unless reader attack mode enabled then it runs util it gets enough nonces to recover all keys attmpted) */ void Mifare1ksim(uint16_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain) { tag_response_info_t *responses; uint8_t cardSTATE = MFEMUL_NOFIELD; uint8_t uid_len = 0; // 4,7, 10 uint32_t cuid = 0; int vHf = 0; // in mV uint32_t selTimer = 0; uint32_t authTimer = 0; uint8_t blockNo; uint8_t cardWRBL = 0; uint8_t cardAUTHSC = 0; uint8_t cardAUTHKEY = AUTHKEYNONE; // no authentication uint32_t cardRr = 0; uint32_t ans = 0; uint32_t cardINTREG = 0; uint8_t cardINTBLOCK = 0; struct Crypto1State mpcs = {0, 0}; struct Crypto1State *pcs; pcs = &mpcs; uint32_t numReads = 0; //Counts numer of times reader reads a block uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE] = {0x00}; uint8_t receivedCmd_dec[MAX_MIFARE_FRAME_SIZE] = {0x00}; uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE] = {0x00}; uint16_t receivedCmd_len; uint8_t response[MAX_MIFARE_FRAME_SIZE] = {0x00}; uint8_t response_par[MAX_MIFARE_PARITY_SIZE] = {0x00}; uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04}; uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00}; //Here, we collect UID,sector,keytype,NT,AR,NR,NT2,AR2,NR2 // This will be used in the reader-only attack. //allow collecting up to 7 sets of nonces to allow recovery of up to 7 keys #define ATTACK_KEY_COUNT 7 // keep same as define in cmdhfmf.c -> readerAttack() (Cannot be more than 7) nonces_t ar_nr_resp[ATTACK_KEY_COUNT * 2]; //*2 for 2 separate attack types (nml, moebius) 36 * 7 * 2 bytes = 504 bytes memset(ar_nr_resp, 0x00, sizeof(ar_nr_resp)); uint8_t ar_nr_collected[ATTACK_KEY_COUNT * 2]; //*2 for 2nd attack type (moebius) memset(ar_nr_collected, 0x00, sizeof(ar_nr_collected)); uint8_t nonce1_count = 0; uint8_t nonce2_count = 0; uint8_t moebius_n_count = 0; bool gettingMoebius = false; uint8_t mM = 0; //moebius_modifier for collection storage // Authenticate response - nonce uint32_t nonce; if ((flags & FLAG_RANDOM_NONCE) == FLAG_RANDOM_NONCE) { nonce = prand(); } else { nonce = bytes_to_num(rAUTH_NT, 4); } if ((flags & FLAG_MF_MINI) == FLAG_MF_MINI) { MifareCardType = 0; Dbprintf("Mifare Mini"); } if ((flags & FLAG_MF_1K) == FLAG_MF_1K) { MifareCardType = 1; Dbprintf("Mifare 1K"); } if ((flags & FLAG_MF_2K) == FLAG_MF_2K) { MifareCardType = 2; Dbprintf("Mifare 2K"); } if ((flags & FLAG_MF_4K) == FLAG_MF_4K) { MifareCardType = 4; Dbprintf("Mifare 4K"); } MifareSimInit(flags, datain, &responses, &cuid, &uid_len); // We need to listen to the high-frequency, peak-detected path. iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN); // free eventually allocated BigBuf memory but keep Emulator Memory BigBuf_free_keep_EM(); // clear trace clear_trace(); set_tracing(true); LED_D_ON(); ResetSspClk(); bool finished = false; bool button_pushed = BUTTON_PRESS(); while (!button_pushed && !finished && !usb_poll_validate_length()) { WDT_HIT(); // find reader field if (cardSTATE == MFEMUL_NOFIELD) { vHf = (MAX_ADC_HF_VOLTAGE_RDV40 * AvgAdc(ADC_CHAN_HF)) >> 10; if (vHf > MF_MINFIELDV) { cardSTATE_TO_IDLE(); LED_A_ON(); } button_pushed = BUTTON_PRESS(); continue; } //Now, get data int res = EmGetCmd(receivedCmd, &receivedCmd_len, receivedCmd_par); if (res == 2) { //Field is off! LEDsoff(); cardSTATE = MFEMUL_NOFIELD; if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("cardSTATE = MFEMUL_NOFIELD"); continue; } else if (res == 1) { // button pressed button_pushed = true; if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("Button pressed"); break; } // WUPA in HALTED state or REQA or WUPA in any other state if (receivedCmd_len == 1 && ((receivedCmd[0] == ISO14443A_CMD_REQA && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == ISO14443A_CMD_WUPA)) { selTimer = GetTickCount(); if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("EmSendPrecompiledCmd(&responses[ATQA]);"); EmSendPrecompiledCmd(&responses[ATQA]); // init crypto block crypto1_destroy(pcs); cardAUTHKEY = AUTHKEYNONE; //nonce = prng_successor(selTimer, 32) // RRG Repo, same as prand() ??? if (( flags & FLAG_RANDOM_NONCE) == FLAG_RANDOM_NONCE ) { nonce = prand(); } LED_B_OFF(); LED_C_OFF(); cardSTATE = MFEMUL_SELECT1; continue; } switch (cardSTATE) { case MFEMUL_NOFIELD: if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("MFEMUL_NOFIELD"); case MFEMUL_HALTED: if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("MFEMUL_HALTED"); case MFEMUL_IDLE: { // LogTrace(Uart.output, Uart.len, Uart.startTime * 16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime * 16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true); Need to be convert ? if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("MFEMUL_IDLE"); break; } // The anti-collision sequence, which is a mandatory part of the card activation sequence. // It auto with 4-byte UID (= Single Size UID), // 7 -byte UID (= Double Size UID) or 10-byte UID (= Triple Size UID). // Cascade Level 1 // // In the Cascade Level 1, the card send the anti-collision command CL1 (0x93) and the PICC returns // either the 4-byte UID (UID0...UID4) and one-byte BCC // or a Cascade Tag (CT) followed by the first 3 byte of the UID (UID0...UID2) and onebyte BCC. // // The CT (0x88) indicates that the UID is not yet complete, and another Cascade Level is needed // // The UID0 byte of a 4-byte UID must not be 0x88. // The CL1 then must be selected, using the Select command CL1 (0x93). The PICC returns its SAK CL1, which indicates // whether the UID is complete or not, and (if so), // the type of card and whether the card supports T=CL. case MFEMUL_SELECT1: { // select all - 0x93 0x20 (Anti Collision CL1) if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("cardSTATE = MFEMUL_SELECT1 - receivedCmd_len: %d - receivedCmd[0]: %02x - receivedCmd[1]: %02x", receivedCmd_len, receivedCmd[0], receivedCmd[1]); if (receivedCmd_len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT && receivedCmd[1] == 0x20)) { if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("SELECT ALL CL1 received - EmSendPrecompiledCmd(%02x)", &responses[UIDBCC1]); EmSendPrecompiledCmd(&responses[UIDBCC1]); break; } // select card - 0x93 0x70 (Select CL1) if (receivedCmd_len == 9 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], responses[UIDBCC1].response, 4) == 0)) { if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("SELECT CL1 %02x%02x%02x%02x received", receivedCmd[2], receivedCmd[3], receivedCmd[4], receivedCmd[5]); switch (uid_len) { case 4: switch (MifareCardType) { case 0: EmSendPrecompiledCmd(&responses[SAK_MINI]); break; case 1: EmSendPrecompiledCmd(&responses[SAK_1]); break; case 2: EmSendPrecompiledCmd(&responses[SAK_2]); break; case 4: EmSendPrecompiledCmd(&responses[SAK_4]); break; } LED_B_ON(); cardSTATE = MFEMUL_WORK; if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("cardSTATE = MFEMUL_WORK"); continue; case 7: // SAK => Need another select round EmSendPrecompiledCmd(&responses[SAK1]); cardSTATE = MFEMUL_SELECT2; if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("cardSTATE = MFEMUL_SELECT2"); continue; case 10: // SAK => Need another select round EmSendPrecompiledCmd(&responses[SAK1]); cardSTATE = MFEMUL_SELECT2; if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("cardSTATE = MFEMUL_SELECT2"); continue; default: break; } } // IDLE cardSTATE_TO_IDLE(); break; } // Cascade Level 2 // // If the UID is not yet complete, the PCD continues with an anti-collision CL2 command (0x95), // and the PICC returns // • either the last 4 bytes of the Double Size UID (UID3...UID6) and one-byte BCC, // • or a Cascade Tag (CT) followed by the next 3 bytes of the Triple Size UID (UID3...UID5) and one-byte BCC. // The CT (0x88) indicates that the UID is not yet complete, and another Cascade Level has to follow. // // The UID3 byte of a 7 byte or 10-byte UID must not be 0x88 // The CL2 then must be selected, using the Select command CL2 (0x95). // The PICC returns its SAK CL2, which indicates // whether the UID is complete or not, and (if so), // the type of card and whether the card supports T=CL. // select all cl2 - 0x95 0x20 case MFEMUL_SELECT2: { if (receivedCmd_len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2 && receivedCmd[1] == 0x20)) { if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("SELECT ALL CL2 received"); EmSendPrecompiledCmd(&responses[UIDBCC2]); continue; } // select cl2 card - 0x95 0x70 xxxxxxxxxxxx if (receivedCmd_len == 9 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], responses[UIDBCC2].response, 4) == 0)) { switch (uid_len) { case 7: if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("SELECT CL2 %02x%02x%02x%02x received", receivedCmd[2], receivedCmd[3], receivedCmd[4], receivedCmd[5]); switch (MifareCardType) { case 0: EmSendPrecompiledCmd(&responses[SAK_MINI]); break; case 1: EmSendPrecompiledCmd(&responses[SAK_1]); break; case 2: EmSendPrecompiledCmd(&responses[SAK_2]); break; case 4: EmSendPrecompiledCmd(&responses[SAK_4]); break; } cardSTATE = MFEMUL_WORK; LED_B_ON(); continue; case 10: // SAK => Need another select round EmSendPrecompiledCmd(&responses[SAK1]); cardSTATE = MFEMUL_SELECT3; continue; default: break; } } cardSTATE_TO_IDLE(); break; } // Cascade Level 3 // Select command CL3 (0x97) // // If the UID is not yet complete, the PCD continues with an anti-collision CL3 command (0x97) // and the PICC returns the last 4 bytes of the Triple Size UID (UID6...UID9) and one-byte BCC. // The PICC returns its SAK CL3, which indicates the type of card and whether the card supports T=CL case MFEMUL_SELECT3: { if (!uid_len) { LogTrace(Uart.output, Uart.len, Uart.startTime * 16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime * 16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true); break; } if (receivedCmd_len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_3 && receivedCmd[1] == 0x20)) { EmSendPrecompiledCmd(&responses[UIDBCC3]); break; } if (receivedCmd_len == 9 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_3 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], responses[UIDBCC3].response, 4) == 0)) { switch (MifareCardType) { case 0: EmSendPrecompiledCmd(&responses[SAK_MINI]); break; case 1: EmSendPrecompiledCmd(&responses[SAK_1]); break; case 2: EmSendPrecompiledCmd(&responses[SAK_2]); break; case 4: EmSendPrecompiledCmd(&responses[SAK_4]); break; } cardSTATE = MFEMUL_WORK; LED_B_ON(); if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("--> WORK. anticol3 time: %d", GetTickCount() - selTimer); break; } cardSTATE_TO_IDLE(); break; } case MFEMUL_WORK: { if (receivedCmd_len == 0) { LogTrace(Uart.output, Uart.len, Uart.startTime * 16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime * 16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true); if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("All commands must have exactly 4 bytes: receivedCmd_len=%d", receivedCmd_len); break; } bool encrypted_data = (cardAUTHKEY != AUTHKEYNONE) ; if (encrypted_data) { // decrypt seqence mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, receivedCmd_dec); if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("decrypt seqence"); } else { memcpy(receivedCmd_dec, receivedCmd, receivedCmd_len); } if (!HasValidCRC(receivedCmd_dec, receivedCmd_len)) { // all commands must have a valid CRC EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("All commands must have a valid CRC %d", receivedCmd_dec); break; } if (receivedCmd_len == 4 && (receivedCmd_dec[0] == MIFARE_AUTH_KEYA || receivedCmd_dec[0] == MIFARE_AUTH_KEYB)) { // if authenticating to a block that shouldn't exist - as long as we are not doing the reader attack if (receivedCmd_dec[1] > MIFARE_4K_MAXBLOCK && !((flags & FLAG_NR_AR_ATTACK) == FLAG_NR_AR_ATTACK)) { EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("Reader tried to operate (0x%02x) on out of range block: %d (0x%02x), nacking", receivedCmd_dec[0], receivedCmd_dec[1], receivedCmd_dec[1]); break; } cardAUTHSC = receivedCmd_dec[1] / 4; // received block num, Need to check if ok for 4k card ??? cardAUTHKEY = receivedCmd_dec[0] & 0x01; crypto1_destroy(pcs); crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY)); // first authentication if (!encrypted_data) { if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d", receivedCmd_dec[1], receivedCmd_dec[1], cardAUTHKEY); crypto1_word(pcs, cuid ^ nonce, 0); //Update crypto state num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce } else { // nested authentication if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d", receivedCmd_dec[1], receivedCmd_dec[1], cardAUTHKEY); ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0); num_to_bytes(ans, 4, rAUTH_AT); } EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT)); cardSTATE = MFEMUL_AUTH1; if (MF_DBGLEVEL >= MF_DBG_EXTENDED) { Dbprintf("cardSTATE = MFEMUL_AUTH1"); } break; } if (!encrypted_data) { // all other commands must be encrypted (authenticated) if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("Commands must be encrypted (authenticated)"); break; } // if Cmd is Read, Write, Inc, Dec, Restore, Transfert if (receivedCmd_dec[0] == ISO14443A_CMD_READBLOCK || receivedCmd_dec[0] == ISO14443A_CMD_WRITEBLOCK || receivedCmd_dec[0] == MIFARE_CMD_INC || receivedCmd_dec[0] == MIFARE_CMD_DEC || receivedCmd_dec[0] == MIFARE_CMD_RESTORE || receivedCmd_dec[0] == MIFARE_CMD_TRANSFER) { // Check if Block num is not too far if (receivedCmd_dec[1] > MIFARE_4K_MAXBLOCK) { EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("Reader tried to operate (0x%02x) on out of range block: %d (0x%02x), nacking", receivedCmd_dec[0], receivedCmd_dec[1], receivedCmd_dec[1]); break; } if (receivedCmd_dec[1] / 4 != cardAUTHSC) { EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("Reader tried to operate (0x%02x) on block (0x%02x) not authenticated for (0x%02x), nacking", receivedCmd_dec[0], receivedCmd_dec[1], cardAUTHSC); break; } } // CMD READ block if (receivedCmd_dec[0] == ISO14443A_CMD_READBLOCK) { blockNo = receivedCmd_dec[1]; if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("Reader reading block %d (0x%02x)", blockNo, blockNo); emlGetMem(response, blockNo, 1); if (MF_DBGLEVEL >= MF_DBG_EXTENDED) { Dbprintf("[ISO14443A_CMD_READBLOCK] Data Block[%d]: %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x", blockNo, response[0], response[1], response[2], response[3], response[4], response[5], response[6], response[7], response[8], response[9], response[10], response[11], response[12], response[13], response[14],response[15]); } if (IsSectorTrailer(blockNo)) { if (!IsAccessAllowed(blockNo, cardAUTHKEY, AC_KEYA_READ)) { memset(response, 0x00, 6); // keyA can never be read, Why ??? Need source ? // a0a1a2a3a4a561e789c1b0b1b2b3b4b5 => 00000000000061e789c1b0b1b2b3b4b5 if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("[IsSectorTrailer] keyA can never be read - block %d (0x%02x)", blockNo, blockNo); } if (!IsAccessAllowed(blockNo, cardAUTHKEY, AC_KEYB_READ)) { memset(response + 10, 0x00, 6); // keyB cannot be read if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("[IsSectorTrailer] keyB cannot be read - block %d (0x%02x)", blockNo, blockNo); } if (!IsAccessAllowed(blockNo, cardAUTHKEY, AC_AC_READ)) { memset(response + 6, 0x00, 4); // AC bits cannot be read if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("[IsAccessAllowed] AC bits cannot be read - block %d (0x%02x)", blockNo, blockNo); } } else { if (!IsAccessAllowed(blockNo, cardAUTHKEY, AC_DATA_READ)) { memset(response, 0x00, 16); // datablock cannot be read if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("[IsAccessAllowed] Data block %d (0x%02x) cannot be read", blockNo, blockNo); } } AppendCrc14443a(response, 16); mf_crypto1_encrypt(pcs, response, MAX_MIFARE_FRAME_SIZE, response_par); EmSendCmdPar(response, MAX_MIFARE_FRAME_SIZE, response_par); if (MF_DBGLEVEL >= 2) { Dbprintf("[EmSendCmdPar] Data Block[%d]: %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x", blockNo, response[0], response[1], response[2], response[3], response[4], response[5], response[6], response[7], response[8], response[9], response[10], response[11], response[12], response[13], response[14],response[15]); } numReads++; if (exitAfterNReads > 0 && numReads == exitAfterNReads) { Dbprintf("%d reads done, exiting", numReads); finished = true; } if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("[ISO14443A_CMD_READBLOCK] Finish"); break; } // CMD WRITEBLOCK if (receivedCmd_dec[0] == ISO14443A_CMD_WRITEBLOCK) { blockNo = receivedCmd_dec[1]; if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("RECV 0xA0 write block %d (%02x)", blockNo, blockNo); EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); cardWRBL = blockNo; cardSTATE = MFEMUL_WRITEBL2; break; } // CMD INC/DEC/RES if (receivedCmd_dec[0] == MIFARE_CMD_INC || receivedCmd_dec[0] == MIFARE_CMD_DEC || receivedCmd_dec[0] == MIFARE_CMD_RESTORE) { blockNo = receivedCmd_dec[1]; if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)", receivedCmd_dec[0], blockNo, blockNo); if (emlCheckValBl(blockNo)) { if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking"); EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); break; } EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); cardWRBL = blockNo; // INC if (receivedCmd_dec[0] == MIFARE_CMD_INC) { cardSTATE = MFEMUL_INTREG_INC; if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("cardSTATE = MFEMUL_INTREG_INC"); } // DEC if (receivedCmd_dec[0] == MIFARE_CMD_DEC) { cardSTATE = MFEMUL_INTREG_DEC; if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("cardSTATE = MFEMUL_INTREG_DEC"); } // REST if (receivedCmd_dec[0] == MIFARE_CMD_RESTORE) { cardSTATE = MFEMUL_INTREG_REST; if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("cardSTATE = MFEMUL_INTREG_REST"); break; } } // TRANSFER if (receivedCmd_dec[0] == MIFARE_CMD_TRANSFER) { blockNo = receivedCmd_dec[1]; if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("RECV 0x%02x transfer block %d (%02x)", receivedCmd_dec[0], blockNo, blockNo); if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd_dec[1])) EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); else EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); break; } // HALT if (receivedCmd_dec[0] == ISO14443A_CMD_HALT && receivedCmd[1] == 0x00) { LogTrace(Uart.output, Uart.len, Uart.startTime * 16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime * 16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true); LED_B_OFF(); LED_C_OFF(); cardSTATE = MFEMUL_HALTED; if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("cardSTATE = MFEMUL_HALTED;"); break; } // RATS if (receivedCmd[0] == ISO14443A_CMD_RATS) { EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); break; } // command not allowed if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("Received command not allowed, nacking"); EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); break; } case MFEMUL_AUTH1: { if (receivedCmd_len != 8) { cardSTATE_TO_IDLE(); //LogTrace(Uart.output, Uart.len, Uart.startTime * 16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime * 16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true); if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("MFEMUL_AUTH1: receivedCmd_len != 8 => cardSTATE_TO_IDLE())"); break; } uint32_t nr = bytes_to_num(receivedCmd, 4); uint32_t ar = bytes_to_num(&receivedCmd[4], 4); // Collect AR/NR per keytype & sector if ((flags & FLAG_NR_AR_ATTACK) == FLAG_NR_AR_ATTACK) { for (uint8_t i = 0; i < ATTACK_KEY_COUNT; i++) { if (ar_nr_collected[i + mM] == 0 || ((cardAUTHSC == ar_nr_resp[i + mM].sector) && (cardAUTHKEY == ar_nr_resp[i + mM].keytype) && (ar_nr_collected[i + mM] > 0))) { // if first auth for sector, or matches sector and keytype of previous auth if (ar_nr_collected[i + mM] < 2) { // if we haven't already collected 2 nonces for this sector if (ar_nr_resp[ar_nr_collected[i + mM]].ar != ar) { // Avoid duplicates... probably not necessary, ar should vary. if (ar_nr_collected[i + mM] == 0) { // first nonce collect ar_nr_resp[i + mM].cuid = cuid; ar_nr_resp[i + mM].sector = cardAUTHSC; ar_nr_resp[i + mM].keytype = cardAUTHKEY; ar_nr_resp[i + mM].nonce = nonce; ar_nr_resp[i + mM].nr = nr; ar_nr_resp[i + mM].ar = ar; nonce1_count++; // add this nonce to first moebius nonce ar_nr_resp[i + ATTACK_KEY_COUNT].cuid = cuid; ar_nr_resp[i + ATTACK_KEY_COUNT].sector = cardAUTHSC; ar_nr_resp[i + ATTACK_KEY_COUNT].keytype = cardAUTHKEY; ar_nr_resp[i + ATTACK_KEY_COUNT].nonce = nonce; ar_nr_resp[i + ATTACK_KEY_COUNT].nr = nr; ar_nr_resp[i + ATTACK_KEY_COUNT].ar = ar; ar_nr_collected[i + ATTACK_KEY_COUNT]++; } else { // second nonce collect (std and moebius) ar_nr_resp[i + mM].nonce2 = nonce; ar_nr_resp[i + mM].nr2 = nr; ar_nr_resp[i + mM].ar2 = ar; if (!gettingMoebius) { nonce2_count++; // check if this was the last second nonce we need for std attack if (nonce2_count == nonce1_count) { // done collecting std test switch to moebius // first finish incrementing last sample ar_nr_collected[i + mM]++; // switch to moebius collection gettingMoebius = true; mM = ATTACK_KEY_COUNT; if ((flags & FLAG_RANDOM_NONCE) == FLAG_RANDOM_NONCE) { nonce = prand(); } else { nonce = nonce * 7; } break; } } else { moebius_n_count++; // if we've collected all the nonces we need - finish. if (nonce1_count == moebius_n_count) finished = true; } } ar_nr_collected[i + mM]++; } } // we found right spot for this nonce stop looking break; } } } // --- crypto crypto1_word(pcs, nr, 1); cardRr = ar ^ crypto1_word(pcs, 0, 0); // test if auth OK if (cardRr != prng_successor(nonce, 64)) { if (MF_DBGLEVEL >= MF_DBG_EXTENDED) { Dbprintf("AUTH FAILED for sector %d with key %c. [nr=%08x cardRr=%08x] [nt=%08x succ=%08x]" , cardAUTHSC , (cardAUTHKEY == 0) ? 'A' : 'B' , nr , cardRr , nonce // nt , prng_successor(nonce, 64) ); } cardAUTHKEY = AUTHKEYNONE; // not authenticated LogTrace(Uart.output, Uart.len, Uart.startTime * 16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime * 16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true); cardSTATE_TO_IDLE(); break; } ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0); num_to_bytes(ans, 4, rAUTH_AT); EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT)); if (MF_DBGLEVEL >= MF_DBG_EXTENDED) { Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d", cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B', GetTickCount() - authTimer ); } LED_C_ON(); cardSTATE = MFEMUL_WORK; if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("cardSTATE = MFEMUL_WORK"); break; } // WRITE BL2 case MFEMUL_WRITEBL2: { if (receivedCmd_len == MAX_MIFARE_FRAME_SIZE) { mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, receivedCmd_dec); if (HasValidCRC(receivedCmd_dec, receivedCmd_len)) { if (IsSectorTrailer(cardWRBL)) { emlGetMem(response, cardWRBL, 1); if (!IsAccessAllowed(cardWRBL, cardAUTHKEY, AC_KEYA_WRITE)) { memcpy(receivedCmd_dec, response, 6); // don't change KeyA } if (!IsAccessAllowed(cardWRBL, cardAUTHKEY, AC_KEYB_WRITE)) { memcpy(receivedCmd_dec + 10, response + 10, 6); // don't change KeyA } if (!IsAccessAllowed(cardWRBL, cardAUTHKEY, AC_AC_WRITE)) { memcpy(receivedCmd_dec + 6, response + 6, 4); // don't change AC bits } } else { if (!IsAccessAllowed(cardWRBL, cardAUTHKEY, AC_DATA_WRITE)) { memcpy(receivedCmd_dec, response, 16); // don't change anything } } emlSetMem(receivedCmd_dec, cardWRBL, 1); EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); // always ACK? cardSTATE = MFEMUL_WORK; break; } } else { cardSTATE_TO_IDLE(); // LogTrace(Uart.output, Uart.len, Uart.startTime * 16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime * 16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true); } break; } // INC case MFEMUL_INTREG_INC: { if (receivedCmd_len == 6) { mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, (uint8_t *)&ans); if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) { EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); cardSTATE_TO_IDLE(); break; } LogTrace(Uart.output, Uart.len, Uart.startTime * 16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime * 16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true); cardINTREG = cardINTREG + ans; cardSTATE = MFEMUL_WORK; break; } } // DEC case MFEMUL_INTREG_DEC: { if (receivedCmd_len == 6) { mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, (uint8_t *)&ans); if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) { EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); cardSTATE_TO_IDLE(); break; } } LogTrace(Uart.output, Uart.len, Uart.startTime * 16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime * 16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true); cardINTREG = cardINTREG - ans; cardSTATE = MFEMUL_WORK; break; } // REST case MFEMUL_INTREG_REST: { mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, (uint8_t *)&ans); if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) { EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); cardSTATE_TO_IDLE(); break; } LogTrace(Uart.output, Uart.len, Uart.startTime * 16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime * 16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true); cardSTATE = MFEMUL_WORK; break; } } // End Switch Loop button_pushed = BUTTON_PRESS(); } // End While Loop // NR AR ATTACK if (((flags & FLAG_NR_AR_ATTACK) == FLAG_NR_AR_ATTACK) && (MF_DBGLEVEL >= 1)) { for (uint8_t i = 0; i < ATTACK_KEY_COUNT; i++) { if (ar_nr_collected[i] == 2) { Dbprintf("Collected two pairs of AR/NR which can be used to extract %s from reader for sector %d:", (i < ATTACK_KEY_COUNT / 2) ? "keyA" : "keyB", ar_nr_resp[i].sector); Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x", ar_nr_resp[i].cuid, //UID ar_nr_resp[i].nonce, //NT ar_nr_resp[i].nr, //NR1 ar_nr_resp[i].ar, //AR1 ar_nr_resp[i].nr2, //NR2 ar_nr_resp[i].ar2 //AR2 ); } } } for (uint8_t i = ATTACK_KEY_COUNT; i < ATTACK_KEY_COUNT * 2; i++) { if (ar_nr_collected[i] == 2) { Dbprintf("Collected two pairs of AR/NR which can be used to extract %s from reader for sector %d:", (i < ATTACK_KEY_COUNT / 2) ? "keyA" : "keyB", ar_nr_resp[i].sector); Dbprintf("../tools/mfkey/mfkey32v2 %08x %08x %08x %08x %08x %08x %08x", ar_nr_resp[i].cuid, //UID ar_nr_resp[i].nonce, //NT ar_nr_resp[i].nr, //NR1 ar_nr_resp[i].ar, //AR1 ar_nr_resp[i].nonce2,//NT2 ar_nr_resp[i].nr2, //NR2 ar_nr_resp[i].ar2 //AR2 ); } } if (MF_DBGLEVEL >= 1) { Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", get_tracing(), BigBuf_get_traceLen()); } // Need to be debug - Card not recognize by my phone if uncommented //if ((flags &FLAG_INTERACTIVE) == FLAG_INTERACTIVE) { // Interactive mode flag, means we need to send ACK //Send the collected ar_nr in the response // cmd_send(CMD_ACK, CMD_SIMULATE_MIFARE_CARD, button_pushed, 0, &ar_nr_resp, sizeof(ar_nr_resp)); //} FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); set_tracing(false); }