//----------------------------------------------------------------------------- // Copyright (C) 2010 iZsh , Hagen Fritsch // Copyright (C) 2011 Gerhard de Koning Gans // Copyright (C) 2014 Midnitesnake & Andy Davies & Martin Holst Swende // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // High frequency iClass commands //----------------------------------------------------------------------------- #include #include #include #include #include "iso14443crc.h" // Can also be used for iClass, using 0xE012 as CRC-type #include "data.h" #include "proxmark3.h" #include "ui.h" #include "cmdparser.h" #include "cmdhficlass.h" #include "../include/common.h" #include "util.h" #include "cmdmain.h" #include "loclass/des.h" #include "loclass/cipherutils.h" #include "loclass/cipher.h" #include "loclass/ikeys.h" #include "loclass/elite_crack.h" #include "loclass/fileutils.h" static int CmdHelp(const char *Cmd); int xorbits_8(uint8_t val) { uint8_t res = val ^ (val >> 1); //1st pass res = res ^ (res >> 1); // 2nd pass res = res ^ (res >> 2); // 3rd pass res = res ^ (res >> 4); // 4th pass return res & 1; } int CmdHFiClassList(const char *Cmd) { bool ShowWaitCycles = false; char param = param_getchar(Cmd, 0); if (param != 0) { PrintAndLog("List data in trace buffer."); PrintAndLog("Usage: hf iclass list"); PrintAndLog("h - help"); PrintAndLog("sample: hf iclass list"); return 0; } // for the time being. Need better Bigbuf handling. #define TRACE_SIZE 3000 uint8_t trace[TRACE_SIZE]; GetFromBigBuf(trace, TRACE_SIZE, 0); WaitForResponse(CMD_ACK,NULL); PrintAndLog("Recorded Activity"); PrintAndLog(""); PrintAndLog("Start = Start of Start Bit, End = End of last modulation. Src = Source of Transfer"); PrintAndLog("All times are in carrier periods (1/13.56Mhz)"); PrintAndLog(""); PrintAndLog(" Start | End | Src | Data (! denotes parity error) | CRC "); PrintAndLog("-----------|-----------|-----|-----------------------------------------------------------------------"); uint16_t tracepos = 0; uint16_t duration; uint16_t data_len; uint16_t parity_len; bool isResponse; uint32_t timestamp; uint32_t first_timestamp; uint32_t EndOfTransmissionTimestamp; for (;;) { if(tracepos >= TRACE_SIZE) { break; } timestamp = *((uint32_t *)(trace + tracepos)); if(tracepos == 0) { first_timestamp = timestamp; } // Break and stick with current result if buffer was not completely full if (timestamp == 0x44444444) break; tracepos += 4; duration = *((uint16_t *)(trace + tracepos)); tracepos += 2; data_len = *((uint16_t *)(trace + tracepos)); tracepos += 2; if (data_len & 0x8000) { data_len &= 0x7fff; isResponse = true; } else { isResponse = false; } parity_len = (data_len-1)/8 + 1; if (tracepos + data_len + parity_len >= TRACE_SIZE) { break; } uint8_t *frame = trace + tracepos; tracepos += data_len; uint8_t *parityBytes = trace + tracepos; tracepos += parity_len; char line[16][110]; for (int j = 0; j < data_len; j++) { int oddparity = 0x01; int k; for (k=0;k<8;k++) { oddparity ^= (((frame[j] & 0xFF) >> k) & 0x01); } uint8_t parityBits = parityBytes[j>>3]; if (isResponse && (oddparity != ((parityBits >> (7-(j&0x0007))) & 0x01))) { sprintf(line[j/16]+((j%16)*4), "%02x! ", frame[j]); } else { sprintf(line[j/16]+((j%16)*4), "%02x ", frame[j]); } } char *crc = ""; if (data_len > 2) { uint8_t b1, b2; if(!isResponse && data_len == 4 ) { // Rough guess that this is a command from the reader // For iClass the command byte is not part of the CRC ComputeCrc14443(CRC_ICLASS, &frame[1], data_len-3, &b1, &b2); if (b1 != frame[data_len-2] || b2 != frame[data_len-1]) { crc = "!crc"; } } else { // For other data.. CRC might not be applicable (UPDATE commands etc.) ComputeCrc14443(CRC_ICLASS, frame, data_len-2, &b1, &b2); if (b1 != frame[data_len-2] || b2 != frame[data_len-1]) { crc = "!crc"; } } } EndOfTransmissionTimestamp = timestamp + duration; int num_lines = (data_len - 1)/16 + 1; for (int j = 0; j < num_lines; j++) { if (j == 0) { PrintAndLog(" %9d | %9d | %s | %-64s| %s", (timestamp - first_timestamp), (EndOfTransmissionTimestamp - first_timestamp), (isResponse ? "Tag" : "Rdr"), line[j], (j == num_lines-1)?crc:""); } else { PrintAndLog(" | | | %-64s| %s", line[j], (j == num_lines-1)?crc:""); } } bool next_isResponse = *((uint16_t *)(trace + tracepos + 6)) & 0x8000; if (ShowWaitCycles && !isResponse && next_isResponse) { uint32_t next_timestamp = *((uint32_t *)(trace + tracepos)); if (next_timestamp != 0x44444444) { PrintAndLog(" %9d | %9d | %s | fdt (Frame Delay Time): %d", (EndOfTransmissionTimestamp - first_timestamp), (next_timestamp - first_timestamp), " ", (next_timestamp - EndOfTransmissionTimestamp)); } } } return 0; } int CmdHFiClassSnoop(const char *Cmd) { UsbCommand c = {CMD_SNOOP_ICLASS}; SendCommand(&c); return 0; } #define NUM_CSNS 15 int CmdHFiClassSim(const char *Cmd) { uint8_t simType = 0; uint8_t CSN[8] = {0, 0, 0, 0, 0, 0, 0, 0}; if (strlen(Cmd)<1) { PrintAndLog("Usage: hf iclass sim [0 ] | x"); PrintAndLog(" options"); PrintAndLog(" 0 simulate the given CSN"); PrintAndLog(" 1 simulate default CSN"); PrintAndLog(" 2 iterate CSNs, gather MACs"); PrintAndLog(" sample: hf iclass sim 0 031FEC8AF7FF12E0"); PrintAndLog(" sample: hf iclass sim 2"); return 0; } simType = param_get8(Cmd, 0); if(simType == 0) { if (param_gethex(Cmd, 1, CSN, 16)) { PrintAndLog("A CSN should consist of 16 HEX symbols"); return 1; } PrintAndLog("--simtype:%02x csn:%s", simType, sprint_hex(CSN, 8)); } if(simType > 2) { PrintAndLog("Undefined simptype %d", simType); return 1; } uint8_t numberOfCSNs=0; if(simType == 2) { UsbCommand c = {CMD_SIMULATE_TAG_ICLASS, {simType,NUM_CSNS}}; UsbCommand resp = {0}; /*uint8_t csns[8 * NUM_CSNS] = { 0x00,0x0B,0x0F,0xFF,0xF7,0xFF,0x12,0xE0 , 0x00,0x13,0x94,0x7e,0x76,0xff,0x12,0xe0 , 0x2a,0x99,0xac,0x79,0xec,0xff,0x12,0xe0 , 0x17,0x12,0x01,0xfd,0xf7,0xff,0x12,0xe0 , 0xcd,0x56,0x01,0x7c,0x6f,0xff,0x12,0xe0 , 0x4b,0x5e,0x0b,0x72,0xef,0xff,0x12,0xe0 , 0x00,0x73,0xd8,0x75,0x58,0xff,0x12,0xe0 , 0x0c,0x90,0x32,0xf3,0x5d,0xff,0x12,0xe0 }; */ uint8_t csns[8*NUM_CSNS] = { 0x00, 0x0B, 0x0F, 0xFF, 0xF7, 0xFF, 0x12, 0xE0, 0x00, 0x04, 0x0E, 0x08, 0xF7, 0xFF, 0x12, 0xE0, 0x00, 0x09, 0x0D, 0x05, 0xF7, 0xFF, 0x12, 0xE0, 0x00, 0x0A, 0x0C, 0x06, 0xF7, 0xFF, 0x12, 0xE0, 0x00, 0x0F, 0x0B, 0x03, 0xF7, 0xFF, 0x12, 0xE0, 0x00, 0x08, 0x0A, 0x0C, 0xF7, 0xFF, 0x12, 0xE0, 0x00, 0x0D, 0x09, 0x09, 0xF7, 0xFF, 0x12, 0xE0, 0x00, 0x0E, 0x08, 0x0A, 0xF7, 0xFF, 0x12, 0xE0, 0x00, 0x03, 0x07, 0x17, 0xF7, 0xFF, 0x12, 0xE0, 0x00, 0x3C, 0x06, 0xE0, 0xF7, 0xFF, 0x12, 0xE0, 0x00, 0x01, 0x05, 0x1D, 0xF7, 0xFF, 0x12, 0xE0, 0x00, 0x02, 0x04, 0x1E, 0xF7, 0xFF, 0x12, 0xE0, 0x00, 0x07, 0x03, 0x1B, 0xF7, 0xFF, 0x12, 0xE0, 0x00, 0x00, 0x02, 0x24, 0xF7, 0xFF, 0x12, 0xE0, 0x00, 0x05, 0x01, 0x21, 0xF7, 0xFF, 0x12, 0xE0 }; memcpy(c.d.asBytes, csns, 8*NUM_CSNS); SendCommand(&c); if (!WaitForResponseTimeout(CMD_ACK, &resp, -1)) { PrintAndLog("Command timed out"); return 0; } uint8_t num_mac_responses = resp.arg[1]; PrintAndLog("Mac responses: %d MACs obtained (should be %d)", num_mac_responses, NUM_CSNS); size_t datalen = NUM_CSNS*24; /* * Now, time to dump to file. We'll use this format: * <8-byte CSN><8-byte CC><4 byte NR><4 byte MAC>.... * So, it should wind up as * 8 * 24 bytes. * * The returndata from the pm3 is on the following format * <4 byte NR><4 byte MAC> * CC are all zeroes, CSN is the same as was sent in **/ void* dump = malloc(datalen); memset(dump,0,datalen);//<-- Need zeroes for the CC-field uint8_t i = 0; for(i = 0 ; i < NUM_CSNS ; i++) { memcpy(dump+i*24, csns+i*8,8); //CSN //8 zero bytes here... //Then comes NR_MAC (eight bytes from the response) memcpy(dump+i*24+16,resp.d.asBytes+i*8,8); } /** Now, save to dumpfile **/ saveFile("iclass_mac_attack", "bin", dump,datalen); free(dump); }else { UsbCommand c = {CMD_SIMULATE_TAG_ICLASS, {simType,numberOfCSNs}}; memcpy(c.d.asBytes, CSN, 8); SendCommand(&c); } return 0; } int CmdHFiClassReader(const char *Cmd) { UsbCommand c = {CMD_READER_ICLASS, {0}}; SendCommand(&c); UsbCommand resp; while(!ukbhit()){ if (WaitForResponseTimeout(CMD_ACK,&resp,4500)) { uint8_t isOK = resp.arg[0] & 0xff; uint8_t * data = resp.d.asBytes; PrintAndLog("isOk:%02x", isOK); if(isOK > 0) { PrintAndLog("CSN: %s",sprint_hex(data,8)); } if(isOK >= 1) { PrintAndLog("CC: %s",sprint_hex(data+8,8)); }else{ PrintAndLog("No CC obtained"); } } else { PrintAndLog("Command execute timeout"); } } return 0; } int CmdHFiClassReader_Replay(const char *Cmd) { uint8_t readerType = 0; uint8_t MAC[4]={0x00, 0x00, 0x00, 0x00}; if (strlen(Cmd)<1) { PrintAndLog("Usage: hf iclass replay "); PrintAndLog(" sample: hf iclass replay 00112233"); return 0; } if (param_gethex(Cmd, 0, MAC, 8)) { PrintAndLog("MAC must include 8 HEX symbols"); return 1; } UsbCommand c = {CMD_READER_ICLASS_REPLAY, {readerType}}; memcpy(c.d.asBytes, MAC, 4); SendCommand(&c); return 0; } int CmdHFiClassReader_Dump(const char *Cmd) { uint8_t readerType = 0; uint8_t MAC[4]={0x00,0x00,0x00,0x00}; uint8_t KEY[8]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}; uint8_t CSN[8]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}; uint8_t CCNR[12]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}; //uint8_t CC_temp[8]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}; uint8_t div_key[8]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}; uint8_t keytable[128] = {0}; int elite = 0; uint8_t *used_key; int i; if (strlen(Cmd)<1) { PrintAndLog("Usage: hf iclass dump [e]"); PrintAndLog(" Key - A 16 byte master key"); PrintAndLog(" e - If 'e' is specified, the key is interpreted as the 16 byte"); PrintAndLog(" Custom Key (KCus), which can be obtained via reader-attack"); PrintAndLog(" See 'hf iclass sim 2'. This key should be on iclass-format"); PrintAndLog(" sample: hf iclass dump 0011223344556677"); return 0; } if (param_gethex(Cmd, 0, KEY, 16)) { PrintAndLog("KEY must include 16 HEX symbols"); return 1; } if (param_getchar(Cmd, 1) == 'e') { PrintAndLog("Elite switch on"); elite = 1; //calc h2 hash2(KEY, keytable); printarr_human_readable("keytable", keytable, 128); } UsbCommand resp; uint8_t key_sel[8] = {0}; uint8_t key_sel_p[8] = { 0 }; //HACK -- Below is for testing without access to a tag uint8_t fake_dummy_test = false; if(fake_dummy_test) { uint8_t xdata[16] = {0x01,0x02,0x03,0x04,0xF7,0xFF,0x12,0xE0, //CSN from http://www.proxmark.org/forum/viewtopic.php?pid=11230#p11230 0xFE,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF}; // Just a random CC. Would be good to add a real testcase here memcpy(resp.d.asBytes,xdata, 16); resp.arg[0] = 2; } //End hack UsbCommand c = {CMD_READER_ICLASS, {0}}; c.arg[0] = FLAG_ICLASS_READER_ONLY_ONCE; if(!fake_dummy_test) SendCommand(&c); if (fake_dummy_test || WaitForResponseTimeout(CMD_ACK,&resp,4500)) { uint8_t isOK = resp.arg[0] & 0xff; uint8_t * data = resp.d.asBytes; memcpy(CSN,data,8); memcpy(CCNR,data+8,8); PrintAndLog("isOk:%02x", isOK); if(isOK > 0) { PrintAndLog("CSN: %s",sprint_hex(CSN,8)); } if(isOK > 1) { if(elite) { //Get the key index (hash1) uint8_t key_index[8] = {0}; hash1(CSN, key_index); printvar("hash1", key_index,8); for(i = 0; i < 8 ; i++) key_sel[i] = keytable[key_index[i]] & 0xFF; PrintAndLog("Pre-fortified 'permuted' HS key that would be needed by an iclass reader to talk to above CSN:"); printvar("k_sel", key_sel,8); //Permute from iclass format to standard format permutekey_rev(key_sel,key_sel_p); used_key = key_sel_p; }else{ //Perhaps this should also be permuted to std format? // Something like the code below? I have no std system // to test this with /Martin //uint8_t key_sel_p[8] = { 0 }; //permutekey_rev(KEY,key_sel_p); //used_key = key_sel_p; used_key = KEY; } PrintAndLog("Pre-fortified key that would be needed by the OmniKey reader to talk to above CSN:"); printvar("Used key",used_key,8); diversifyKey(CSN,used_key, div_key); PrintAndLog("Hash0, a.k.a diversified key, that is computed using Ksel and stored in the card (Block 3):"); printvar("Div key", div_key, 8); printvar("CC_NR:",CCNR,12); doMAC(CCNR,12,div_key, MAC); printvar("MAC", MAC, 4); UsbCommand d = {CMD_READER_ICLASS_REPLAY, {readerType}}; memcpy(d.d.asBytes, MAC, 4); if(!fake_dummy_test) SendCommand(&d); }else{ PrintAndLog("Failed to obtain CC! Aborting"); } } else { PrintAndLog("Command execute timeout"); } return 0; } int CmdHFiClass_iso14443A_write(const char *Cmd) { uint8_t readerType = 0; uint8_t MAC[4]={0x00,0x00,0x00,0x00}; uint8_t KEY[8]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}; uint8_t CSN[8]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}; uint8_t CCNR[12]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}; uint8_t div_key[8]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}; uint8_t blockNo=0; uint8_t bldata[8]={0}; if (strlen(Cmd)<3) { PrintAndLog("Usage: hf iclass write "); PrintAndLog(" sample: hf iclass write 0011223344556677 10 AAAAAAAAAAAAAAAA"); return 0; } if (param_gethex(Cmd, 0, KEY, 16)) { PrintAndLog("KEY must include 16 HEX symbols"); return 1; } blockNo = param_get8(Cmd, 1); if (blockNo>32) { PrintAndLog("Error: Maximum number of blocks is 32 for iClass 2K Cards!"); return 1; } if (param_gethex(Cmd, 2, bldata, 8)) { PrintAndLog("Block data must include 8 HEX symbols"); return 1; } UsbCommand c = {CMD_ICLASS_ISO14443A_WRITE, {0}}; SendCommand(&c); UsbCommand resp; if (WaitForResponseTimeout(CMD_ACK,&resp,4500)) { uint8_t isOK = resp.arg[0] & 0xff; uint8_t * data = resp.d.asBytes; memcpy(CSN,data,8); memcpy(CCNR,data+8,8); PrintAndLog("DEBUG: %s",sprint_hex(CSN,8)); PrintAndLog("DEBUG: %s",sprint_hex(CCNR,8)); PrintAndLog("isOk:%02x", isOK); } else { PrintAndLog("Command execute timeout"); } diversifyKey(CSN,KEY, div_key); PrintAndLog("Div Key: %s",sprint_hex(div_key,8)); doMAC(CCNR, 12,div_key, MAC); UsbCommand c2 = {CMD_ICLASS_ISO14443A_WRITE, {readerType,blockNo}}; memcpy(c2.d.asBytes, bldata, 8); memcpy(c2.d.asBytes+8, MAC, 4); SendCommand(&c2); if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) { uint8_t isOK = resp.arg[0] & 0xff; uint8_t * data = resp.d.asBytes; if (isOK) PrintAndLog("isOk:%02x data:%s", isOK, sprint_hex(data, 4)); else PrintAndLog("isOk:%02x", isOK); } else { PrintAndLog("Command execute timeout"); } return 0; } static command_t CommandTable[] = { {"help", CmdHelp, 1, "This help"}, {"list", CmdHFiClassList, 0, "List iClass history"}, {"snoop", CmdHFiClassSnoop, 0, "Eavesdrop iClass communication"}, {"sim", CmdHFiClassSim, 0, "Simulate iClass tag"}, {"reader",CmdHFiClassReader, 0, "Read an iClass tag"}, {"replay",CmdHFiClassReader_Replay, 0, "Read an iClass tag via Reply Attack"}, {"dump", CmdHFiClassReader_Dump, 0, "Authenticate and Dump iClass tag"}, {"write", CmdHFiClass_iso14443A_write, 0, "Authenticate and Write iClass block"}, {"replay", CmdHFiClassReader_Replay, 0, "Read an iClass tag via Reply Attack"}, {"dump", CmdHFiClassReader_Dump, 0, "Authenticate and Dump iClass tag"}, {"write", CmdHFiClass_iso14443A_write, 0, "Authenticate and Write iClass block"}, {NULL, NULL, 0, NULL} }; int CmdHFiClass(const char *Cmd) { CmdsParse(CommandTable, Cmd); return 0; } int CmdHelp(const char *Cmd) { CmdsHelp(CommandTable); return 0; }