//----------------------------------------------------------------------------- // Ultralight Code (c) 2013,2014 Midnitesnake & Andy Davies of Pentura // 2015,2016,2017 Iceman, Marshmellow // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // High frequency MIFARE ULTRALIGHT (C) commands //----------------------------------------------------------------------------- #include "cmdhfmfu.h" #define MAX_UL_BLOCKS 0x0F #define MAX_ULC_BLOCKS 0x2B #define MAX_ULEV1a_BLOCKS 0x13 #define MAX_ULEV1b_BLOCKS 0x28 #define MAX_NTAG_203 0x29 #define MAX_NTAG_210 0x13 #define MAX_NTAG_212 0x28 #define MAX_NTAG_213 0x2C #define MAX_NTAG_215 0x86 #define MAX_NTAG_216 0xE6 #define MAX_NTAG_I2C_1K 0xE9 #define MAX_MY_D_NFC 0xFF #define MAX_MY_D_MOVE 0x25 #define MAX_MY_D_MOVE_LEAN 0x0F #define MAX_UL_NANO_40 0x0A static int CmdHelp(const char *Cmd); static int usage_hf_mfu_info(void) { PrintAndLogEx(NORMAL, "It gathers information about the tag and tries to detect what kind it is."); PrintAndLogEx(NORMAL, "Sometimes the tags are locked down, and you may need a key to be able to read the information"); PrintAndLogEx(NORMAL, "The following tags can be identified:\n"); PrintAndLogEx(NORMAL, "Ultralight, Ultralight-C, Ultralight EV1, NTAG 203, NTAG 210,"); PrintAndLogEx(NORMAL, "NTAG 212, NTAG 213, NTAG 215, NTAG 216, NTAG I2C 1K & 2K"); PrintAndLogEx(NORMAL, "my-d, my-d NFC, my-d move, my-d move NFC\n"); PrintAndLogEx(NORMAL, "Usage: hf mfu info k l"); PrintAndLogEx(NORMAL, " Options : "); PrintAndLogEx(NORMAL, " k : (optional) key for authentication [UL-C 16bytes, EV1/NTAG 4bytes]"); PrintAndLogEx(NORMAL, " l : (optional) swap entered key's endianness"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf mfu info"); PrintAndLogEx(NORMAL, " hf mfu info k 00112233445566778899AABBCCDDEEFF"); PrintAndLogEx(NORMAL, " hf mfu info k AABBCCDD"); return PM3_SUCCESS; } static int usage_hf_mfu_dump(void) { PrintAndLogEx(NORMAL, "Reads all pages from Ultralight, Ultralight-C, Ultralight EV1"); PrintAndLogEx(NORMAL, "NTAG 203, NTAG 210, NTAG 212, NTAG 213, NTAG 215, NTAG 216"); PrintAndLogEx(NORMAL, "and saves binary dump into the file `filename.bin` or `cardUID.bin`"); PrintAndLogEx(NORMAL, "It autodetects card type.\n"); PrintAndLogEx(NORMAL, "Usage: hf mfu dump k l f p q <#pages>"); PrintAndLogEx(NORMAL, " Options :"); PrintAndLogEx(NORMAL, " k : (optional) key for authentication [UL-C 16bytes, EV1/NTAG 4bytes]"); PrintAndLogEx(NORMAL, " l : (optional) swap entered key's endianness"); PrintAndLogEx(NORMAL, " f : filename w/o .bin to save the dump as"); PrintAndLogEx(NORMAL, " p : starting Page number to manually set a page to start the dump at"); PrintAndLogEx(NORMAL, " q : number of Pages to manually set how many pages to dump"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf mfu dump"); PrintAndLogEx(NORMAL, " hf mfu dump n myfile"); PrintAndLogEx(NORMAL, " hf mfu dump k 00112233445566778899AABBCCDDEEFF"); PrintAndLogEx(NORMAL, " hf mfu dump k AABBCCDD\n"); return PM3_SUCCESS; } static int usage_hf_mfu_restore(void) { PrintAndLogEx(NORMAL, "Restore dumpfile onto card."); PrintAndLogEx(NORMAL, "Usage: hf mfu restore [h] [l] [s] k n "); PrintAndLogEx(NORMAL, " Options :"); PrintAndLogEx(NORMAL, " k : (optional) key for authentication [UL-C 16bytes, EV1/NTAG 4bytes]"); PrintAndLogEx(NORMAL, " l : (optional) swap entered key's endianness"); PrintAndLogEx(NORMAL, " s : (optional) enable special write UID -MAGIC TAG ONLY-"); PrintAndLogEx(NORMAL, " e : (optional) enable special write version/signature -MAGIC NTAG 21* ONLY-"); PrintAndLogEx(NORMAL, " r : (optional) use the password found in dumpfile to configure tag. requires 'e' parameter to work"); PrintAndLogEx(NORMAL, " f : filename w/o .bin to restore"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf mfu restore s f myfile"); PrintAndLogEx(NORMAL, " hf mfu restore k AABBCCDD s f myfile\n"); PrintAndLogEx(NORMAL, " hf mfu restore k AABBCCDD s e r f myfile\n"); return PM3_SUCCESS; } static int usage_hf_mfu_rdbl(void) { PrintAndLogEx(NORMAL, "Read a block and print. It autodetects card type.\n"); PrintAndLogEx(NORMAL, "Usage: hf mfu rdbl b k l\n"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " b : block to read"); PrintAndLogEx(NORMAL, " k : (optional) key for authentication [UL-C 16bytes, EV1/NTAG 4bytes]"); PrintAndLogEx(NORMAL, " l : (optional) swap entered key's endianness"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf mfu rdbl b 0"); PrintAndLogEx(NORMAL, " hf mfu rdbl b 0 k 00112233445566778899AABBCCDDEEFF"); PrintAndLogEx(NORMAL, " hf mfu rdbl b 0 k AABBCCDD\n"); return PM3_SUCCESS; } static int usage_hf_mfu_wrbl(void) { PrintAndLogEx(NORMAL, "Write a block. It autodetects card type.\n"); PrintAndLogEx(NORMAL, "Usage: hf mfu wrbl b d k l\n"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " b : block to write"); PrintAndLogEx(NORMAL, " d : block data - (8 hex symbols)"); PrintAndLogEx(NORMAL, " k : (optional) key for authentication [UL-C 16bytes, EV1/NTAG 4bytes]"); PrintAndLogEx(NORMAL, " l : (optional) swap entered key's endianness"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf mfu wrbl b 0 d 01234567"); PrintAndLogEx(NORMAL, " hf mfu wrbl b 0 d 01234567 k AABBCCDD\n"); return PM3_SUCCESS; } static int usage_hf_mfu_eload(void) { PrintAndLogEx(NORMAL, "It loads emul dump from the file `filename.eml`"); PrintAndLogEx(NORMAL, "Hint: See script dumptoemul-mfu.lua to convert the .bin to the eml"); PrintAndLogEx(NORMAL, "Usage: hf mfu eload u [numblocks]"); PrintAndLogEx(NORMAL, " Options:"); PrintAndLogEx(NORMAL, " h : this help"); PrintAndLogEx(NORMAL, " u : UL (required)"); PrintAndLogEx(NORMAL, " [filename] : without `.eml` (required)"); PrintAndLogEx(NORMAL, " numblocks : number of blocks to load from eml file (optional)"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, " sample: hf mfu eload u filename"); PrintAndLogEx(NORMAL, " hf mfu eload u filename 57"); return PM3_SUCCESS; } static int usage_hf_mfu_sim(void) { PrintAndLogEx(NORMAL, "\nEmulating Ultralight tag from emulator memory\n"); PrintAndLogEx(NORMAL, "\nBe sure to load the emulator memory first!\n"); PrintAndLogEx(NORMAL, "Usage: hf mfu sim t 7 u "); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h : this help"); PrintAndLogEx(NORMAL, " t 7 : 7 = NTAG or Ultralight sim (required)"); PrintAndLogEx(NORMAL, " u : 4 or 7 byte UID (optional)"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf mfu sim t 7"); PrintAndLogEx(NORMAL, " hf mfu sim t 7 u 1122344556677\n"); return PM3_SUCCESS; } static int usage_hf_mfu_ucauth(void) { PrintAndLogEx(NORMAL, "Usage: hf mfu cauth k "); PrintAndLogEx(NORMAL, " 0 (default): 3DES standard key"); PrintAndLogEx(NORMAL, " 1 : all 0x00 key"); PrintAndLogEx(NORMAL, " 2 : 0x00-0x0F key"); PrintAndLogEx(NORMAL, " 3 : nfc key"); PrintAndLogEx(NORMAL, " 4 : all 0x01 key"); PrintAndLogEx(NORMAL, " 5 : all 0xff key"); PrintAndLogEx(NORMAL, " 6 : 0x00-0xFF key"); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf mfu cauth k"); PrintAndLogEx(NORMAL, " hf mfu cauth k 3"); return PM3_SUCCESS; } static int usage_hf_mfu_ucsetpwd(void) { PrintAndLogEx(NORMAL, "Usage: hf mfu setpwd "); PrintAndLogEx(NORMAL, " [password] - (32 hex symbols)"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf mfu setpwd 000102030405060708090a0b0c0d0e0f"); PrintAndLogEx(NORMAL, ""); return PM3_SUCCESS; } static int usage_hf_mfu_ucsetuid(void) { PrintAndLogEx(NORMAL, "Usage: hf mfu setuid "); PrintAndLogEx(NORMAL, " [uid] - (14 hex symbols)"); PrintAndLogEx(NORMAL, "\nThis only works for Magic Ultralight tags."); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf mfu setuid 11223344556677"); PrintAndLogEx(NORMAL, ""); return PM3_SUCCESS; } static int usage_hf_mfu_gendiverse(void) { PrintAndLogEx(NORMAL, "Usage: hf mfu gen [h] [r] "); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h : this help"); PrintAndLogEx(NORMAL, " r : read uid from tag"); PrintAndLogEx(NORMAL, " : 4 byte UID (optional)"); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf mfu gen r"); PrintAndLogEx(NORMAL, " hf mfu gen 11223344"); PrintAndLogEx(NORMAL, ""); return PM3_SUCCESS; } static int usage_hf_mfu_pwdgen(void) { PrintAndLogEx(NORMAL, "Usage: hf mfu pwdgen [h|t] [r] "); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h : this help"); PrintAndLogEx(NORMAL, " t : selftest"); PrintAndLogEx(NORMAL, " r : read uid from tag"); PrintAndLogEx(NORMAL, " : 7 byte UID (optional)"); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf mfu pwdgen r"); PrintAndLogEx(NORMAL, " hf mfu pwdgen 11223344556677"); PrintAndLogEx(NORMAL, " hf mfu pwdgen t"); PrintAndLogEx(NORMAL, ""); return PM3_SUCCESS; } uint8_t default_3des_keys[][16] = { { 0x42, 0x52, 0x45, 0x41, 0x4b, 0x4d, 0x45, 0x49, 0x46, 0x59, 0x4f, 0x55, 0x43, 0x41, 0x4e, 0x21 }, // 3des std key { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // all zeroes { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f }, // 0x00-0x0F { 0x49, 0x45, 0x4D, 0x4B, 0x41, 0x45, 0x52, 0x42, 0x21, 0x4E, 0x41, 0x43, 0x55, 0x4F, 0x59, 0x46 }, // NFC-key { 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01 }, // all ones { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }, // all FF { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF } // 11 22 33 }; uint8_t default_pwd_pack[][4] = { {0xFF, 0xFF, 0xFF, 0xFF}, // PACK 0x00,0x00 -- factory default }; #define PUBLIC_ECDA_KEYLEN 33 // known public keys for the originality check (source: https://github.com/alexbatalov/node-nxp-originality-verifier) // ref: AN11350 NTAG 21x Originality Signature Validation // ref: AN11341 MIFARE Ultralight EV1 Originality Signature Validation uint8_t public_keys[2][PUBLIC_ECDA_KEYLEN] = { // UL, NTAG21x and NDEF { 0x04, 0x49, 0x4e, 0x1a, 0x38, 0x6d, 0x3d, 0x3c, 0xfe, 0x3d, 0xc1, 0x0e, 0x5d, 0xe6, 0x8a, 0x49, 0x9b, 0x1c, 0x20, 0x2d, 0xb5, 0xb1, 0x32, 0x39, 0x3e, 0x89, 0xed, 0x19, 0xfe, 0x5b, 0xe8, 0xbc, 0x61 }, // UL EV1 { 0x04, 0x90, 0x93, 0x3b, 0xdc, 0xd6, 0xe9, 0x9b, 0x4e, 0x25, 0x5e, 0x3d, 0xa5, 0x53, 0x89, 0xa8, 0x27, 0x56, 0x4e, 0x11, 0x71, 0x8e, 0x01, 0x72, 0x92, 0xfa, 0xf2, 0x32, 0x26, 0xa9, 0x66, 0x14, 0xb8 } }; uint32_t UL_TYPES_ARRAY[] = { UNKNOWN, UL, UL_C, UL_EV1_48, UL_EV1_128, NTAG, NTAG_203, NTAG_210, NTAG_212, NTAG_213, NTAG_215, NTAG_216, MY_D, MY_D_NFC, MY_D_MOVE, MY_D_MOVE_NFC, MY_D_MOVE_LEAN, FUDAN_UL, UL_EV1, NTAG_213_F, NTAG_216_F, UL_NANO_40, NTAG_I2C_1K }; uint8_t UL_MEMORY_ARRAY[ARRAYLEN(UL_TYPES_ARRAY)] = { MAX_UL_BLOCKS, MAX_UL_BLOCKS, MAX_ULC_BLOCKS, MAX_ULEV1a_BLOCKS, MAX_ULEV1b_BLOCKS, MAX_NTAG_203, MAX_NTAG_203, MAX_NTAG_210, MAX_NTAG_212, MAX_NTAG_213, MAX_NTAG_215, MAX_NTAG_216, MAX_UL_BLOCKS, MAX_MY_D_NFC, MAX_MY_D_MOVE, MAX_MY_D_MOVE, MAX_MY_D_MOVE_LEAN, MAX_UL_BLOCKS, MAX_ULEV1a_BLOCKS, MAX_NTAG_213, MAX_NTAG_216, MAX_UL_NANO_40, MAX_NTAG_I2C_1K }; //------------------------------------ // Pwd & Pack generation Stuff //------------------------------------ const uint32_t c_D[] = { 0x6D835AFC, 0x7D15CD97, 0x0942B409, 0x32F9C923, 0xA811FB02, 0x64F121E8, 0xD1CC8B4E, 0xE8873E6F, 0x61399BBB, 0xF1B91926, 0xAC661520, 0xA21A31C9, 0xD424808D, 0xFE118E07, 0xD18E728D, 0xABAC9E17, 0x18066433, 0x00E18E79, 0x65A77305, 0x5AE9E297, 0x11FC628C, 0x7BB3431F, 0x942A8308, 0xB2F8FD20, 0x5728B869, 0x30726D5A }; static void transform_D(uint8_t *ru) { //Transform uint8_t i; uint8_t p = 0; uint32_t v1 = ((ru[3] << 24) | (ru[2] << 16) | (ru[1] << 8) | ru[0]) + c_D[p++]; uint32_t v2 = ((ru[7] << 24) | (ru[6] << 16) | (ru[5] << 8) | ru[4]) + c_D[p++]; for (i = 0; i < 12; i += 2) { uint32_t xor1 = v1 ^ v2; uint32_t t1 = ROTL(xor1, v2 & 0x1F) + c_D[p++]; uint32_t xor2 = v2 ^ t1; uint32_t t2 = ROTL(xor2, t1 & 0x1F) + c_D[p++]; uint32_t xor3 = t1 ^ t2; uint32_t xor4 = t2 ^ v1; v1 = ROTL(xor3, t2 & 0x1F) + c_D[p++]; v2 = ROTL(xor4, v1 & 0x1F) + c_D[p++]; } //Re-use ru ru[0] = v1 & 0xFF; ru[1] = (v1 >> 8) & 0xFF; ru[2] = (v1 >> 16) & 0xFF; ru[3] = (v1 >> 24) & 0xFF; ru[4] = v2 & 0xFF; ru[5] = (v2 >> 8) & 0xFF; ru[6] = (v2 >> 16) & 0xFF; ru[7] = (v2 >> 24) & 0xFF; } // Certain pwd generation algo nickname A. uint32_t ul_ev1_pwdgenA(uint8_t *uid) { uint8_t pos = (uid[3] ^ uid[4] ^ uid[5] ^ uid[6]) % 32; uint32_t xortable[] = { 0x4f2711c1, 0x07D7BB83, 0x9636EF07, 0xB5F4460E, 0xF271141C, 0x7D7BB038, 0x636EF871, 0x5F4468E3, 0x271149C7, 0xD7BB0B8F, 0x36EF8F1E, 0xF446863D, 0x7114947A, 0x7BB0B0F5, 0x6EF8F9EB, 0x44686BD7, 0x11494fAF, 0xBB0B075F, 0xEF8F96BE, 0x4686B57C, 0x1494F2F9, 0xB0B07DF3, 0xF8F963E6, 0x686B5FCC, 0x494F2799, 0x0B07D733, 0x8F963667, 0x86B5F4CE, 0x94F2719C, 0xB07D7B38, 0xF9636E70, 0x6B5F44E0 }; uint8_t entry[] = {0x00, 0x00, 0x00, 0x00}; uint8_t pwd[] = {0x00, 0x00, 0x00, 0x00}; num_to_bytes(xortable[pos], 4, entry); pwd[0] = entry[0] ^ uid[1] ^ uid[2] ^ uid[3]; pwd[1] = entry[1] ^ uid[0] ^ uid[2] ^ uid[4]; pwd[2] = entry[2] ^ uid[0] ^ uid[1] ^ uid[5]; pwd[3] = entry[3] ^ uid[6]; return (uint32_t)bytes_to_num(pwd, 4); } // Certain pwd generation algo nickname B. (very simple) static uint32_t ul_ev1_pwdgenB(uint8_t *uid) { uint8_t pwd[] = {0x00, 0x00, 0x00, 0x00}; pwd[0] = uid[1] ^ uid[3] ^ 0xAA; pwd[1] = uid[2] ^ uid[4] ^ 0x55; pwd[2] = uid[3] ^ uid[5] ^ 0xAA; pwd[3] = uid[4] ^ uid[6] ^ 0x55; return (uint32_t)bytes_to_num(pwd, 4); } // Certain pwd generation algo nickname C. uint32_t ul_ev1_pwdgenC(uint8_t *uid) { uint32_t pwd = 0; uint8_t base[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x28, 0x63, 0x29, 0x20, 0x43, 0x6f, 0x70, 0x79, 0x72, 0x69, 0x67, 0x68, 0x74, 0x20, 0x4c, 0x45, 0x47, 0x4f, 0x20, 0x32, 0x30, 0x31, 0x34, 0xaa, 0xaa }; memcpy(base, uid, 7); for (int i = 0; i < 32; i += 4) { uint32_t b = *(uint32_t *)(base + i); pwd = b + ROTR(pwd, 25) + ROTR(pwd, 10) - pwd; } return BSWAP_32(pwd); } // Certain pwd generation algo nickname D. // a.k.a xzy uint32_t ul_ev1_pwdgenD(uint8_t *uid) { uint8_t i; //Rotate uint8_t r = (uid[1] + uid[3] + uid[5]) & 7; //Rotation offset uint8_t ru[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; //Rotated UID for (i = 0; i < 7; i++) ru[(i + r) & 7] = uid[i]; transform_D(ru); //Calc key uint32_t pwd = 0; //Key as int r = (ru[0] + ru[2] + ru[4] + ru[6]) & 3; //Offset for (i = 0; i < 4; i++) pwd = ru[i + r] + (pwd << 8); return BSWAP_32(pwd); } // pack generation for algo 1-3 uint16_t ul_ev1_packgenA(uint8_t *uid) { uint16_t pack = (uid[0] ^ uid[1] ^ uid[2]) << 8 | (uid[2] ^ 8); return pack; } uint16_t ul_ev1_packgenB(uint8_t *uid) { return 0x8080; } uint16_t ul_ev1_packgenC(uint8_t *uid) { return 0xaa55; } uint16_t ul_ev1_packgenD(uint8_t *uid) { uint8_t i; //Rotate uint8_t r = (uid[2] + uid[5]) & 7; //Rotation offset uint8_t ru[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; //Rotated UID for (i = 0; i < 7; i++) ru[(i + r) & 7] = uid[i]; transform_D(ru); //Calc pack uint32_t p = 0; for (i = 0; i < 8; i++) p += ru[i] * 13; p ^= 0x5555; return BSWAP_16(p & 0xFFFF); } static int ul_ev1_pwdgen_selftest() { uint8_t uid1[] = {0x04, 0x11, 0x12, 0x11, 0x12, 0x11, 0x10}; uint32_t pwd1 = ul_ev1_pwdgenA(uid1); PrintAndLogEx(NORMAL, "UID | %s | %08X | %s", sprint_hex(uid1, 7), pwd1, (pwd1 == 0x8432EB17) ? "OK" : "->8432EB17<-"); uint8_t uid2[] = {0x04, 0x1f, 0x98, 0xea, 0x1e, 0x3e, 0x81}; uint32_t pwd2 = ul_ev1_pwdgenB(uid2); PrintAndLogEx(NORMAL, "UID | %s | %08X | %s", sprint_hex(uid2, 7), pwd2, (pwd2 == 0x5fd37eca) ? "OK" : "->5fd37eca<--"); uint8_t uid3[] = {0x04, 0x62, 0xB6, 0x8A, 0xB4, 0x42, 0x80}; uint32_t pwd3 = ul_ev1_pwdgenC(uid3); PrintAndLogEx(NORMAL, "UID | %s | %08X | %s", sprint_hex(uid3, 7), pwd3, (pwd3 == 0x5a349515) ? "OK" : "->5a349515<--"); uint8_t uid4[] = {0x04, 0xC5, 0xDF, 0x4A, 0x6D, 0x51, 0x80}; uint32_t pwd4 = ul_ev1_pwdgenD(uid4); PrintAndLogEx(NORMAL, "UID | %s | %08X | %s", sprint_hex(uid4, 7), pwd4, (pwd4 == 0x72B1EC61) ? "OK" : "->72B1EC61<--"); return 0; } //------------------------------------ // get version nxp product type static char *getProductTypeStr(uint8_t id) { static char buf[20]; char *retStr = buf; switch (id) { case 3: sprintf(retStr, "%02X, Ultralight", id); break; case 4: sprintf(retStr, "%02X, NTAG", id); break; default: sprintf(retStr, "%02X, unknown", id); break; } return buf; } /* The 7 MSBits (=n) code the storage size itself based on 2^n, the LSBit is set to '0' if the size is exactly 2^n and set to '1' if the storage size is between 2^n and 2^(n+1). */ static char *getUlev1CardSizeStr(uint8_t fsize) { static char buf[40]; char *retStr = buf; memset(buf, 0, sizeof(buf)); uint16_t usize = 1 << ((fsize >> 1) + 1); uint16_t lsize = 1 << (fsize >> 1); // is LSB set? if (fsize & 1) sprintf(retStr, "%02X, (%u <-> %u bytes)", fsize, usize, lsize); else sprintf(retStr, "%02X, (%u bytes)", fsize, lsize); return buf; } static void ul_switch_on_field(void) { clearCommandBuffer(); SendCommandMIX(CMD_READER_ISO_14443a, ISO14A_CONNECT | ISO14A_NO_DISCONNECT | ISO14A_NO_RATS, 0, 0, NULL, 0); } static int ul_send_cmd_raw(uint8_t *cmd, uint8_t cmdlen, uint8_t *response, uint16_t responseLength) { clearCommandBuffer(); SendCommandOLD(CMD_READER_ISO_14443a, ISO14A_RAW | ISO14A_NO_DISCONNECT | ISO14A_APPEND_CRC | ISO14A_NO_RATS, cmdlen, 0, cmd, cmdlen); PacketResponseNG resp; if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500)) return -1; if (!resp.oldarg[0] && responseLength) return -1; uint16_t resplen = (resp.oldarg[0] < responseLength) ? resp.oldarg[0] : responseLength; memcpy(response, resp.data.asBytes, resplen); return resplen; } static int ul_select(iso14a_card_select_t *card) { ul_switch_on_field(); PacketResponseNG resp; bool ans = false; ans = WaitForResponseTimeout(CMD_ACK, &resp, 1500); if (!ans || resp.oldarg[0] < 1) { PrintAndLogEx(WARNING, "iso14443a card select failed"); DropField(); return 0; } memcpy(card, resp.data.asBytes, sizeof(iso14a_card_select_t)); return 1; } // This read command will at least return 16bytes. static int ul_read(uint8_t page, uint8_t *response, uint16_t responseLength) { uint8_t cmd[] = {ISO14443A_CMD_READBLOCK, page}; int len = ul_send_cmd_raw(cmd, sizeof(cmd), response, responseLength); return len; } static int ul_comp_write(uint8_t page, uint8_t *data, uint8_t datalen) { if (data == NULL) return -1; uint8_t cmd[18]; memset(cmd, 0x00, sizeof(cmd)); datalen = (datalen > 16) ? 16 : datalen; cmd[0] = ISO14443A_CMD_WRITEBLOCK; cmd[1] = page; memcpy(cmd + 2, data, datalen); uint8_t response[1] = {0xFF}; ul_send_cmd_raw(cmd, 2 + datalen, response, sizeof(response)); // ACK if (response[0] == 0x0a) return 0; // NACK return -1; } static int ulc_requestAuthentication(uint8_t *nonce, uint16_t nonceLength) { uint8_t cmd[] = {MIFARE_ULC_AUTH_1, 0x00}; int len = ul_send_cmd_raw(cmd, sizeof(cmd), nonce, nonceLength); return len; } static int ulc_authentication(uint8_t *key, bool switch_off_field) { clearCommandBuffer(); SendCommandOLD(CMD_MIFAREUC_AUTH, switch_off_field, 0, 0, key, 16); PacketResponseNG resp; if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500)) return 0; if (resp.oldarg[0] == 1) return 1; return 0; } static int ulev1_requestAuthentication(uint8_t *pwd, uint8_t *pack, uint16_t packLength) { uint8_t cmd[] = {MIFARE_ULEV1_AUTH, pwd[0], pwd[1], pwd[2], pwd[3]}; int len = ul_send_cmd_raw(cmd, sizeof(cmd), pack, packLength); // NACK tables different tags, but between 0-9 is a NEGATIVE response. // ACK == 0xA if (len == 1 && pack[0] <= 0x09) return -1; return len; } static int ul_auth_select(iso14a_card_select_t *card, TagTypeUL_t tagtype, bool hasAuthKey, uint8_t *authkey, uint8_t *pack, uint8_t packSize) { if (hasAuthKey && (tagtype & UL_C)) { //will select card automatically and close connection on error if (!ulc_authentication(authkey, false)) { PrintAndLogEx(WARNING, "Authentication Failed UL-C"); return PM3_ESOFT; } } else { if (!ul_select(card)) return PM3_ESOFT; if (hasAuthKey) { if (ulev1_requestAuthentication(authkey, pack, packSize) == -1) { DropField(); PrintAndLogEx(WARNING, "Authentication Failed UL-EV1/NTAG"); return PM3_ESOFT; } } } return PM3_SUCCESS; } static int ulev1_getVersion(uint8_t *response, uint16_t responseLength) { uint8_t cmd[] = {MIFARE_ULEV1_VERSION}; int len = ul_send_cmd_raw(cmd, sizeof(cmd), response, responseLength); return len; } static int ulev1_readCounter(uint8_t counter, uint8_t *response, uint16_t responseLength) { uint8_t cmd[] = {MIFARE_ULEV1_READ_CNT, counter}; int len = ul_send_cmd_raw(cmd, sizeof(cmd), response, responseLength); return len; } static int ulev1_readTearing(uint8_t counter, uint8_t *response, uint16_t responseLength) { uint8_t cmd[] = {MIFARE_ULEV1_CHECKTEAR, counter}; int len = ul_send_cmd_raw(cmd, sizeof(cmd), response, responseLength); return len; } static int ulev1_readSignature(uint8_t *response, uint16_t responseLength) { uint8_t cmd[] = {MIFARE_ULEV1_READSIG, 0x00}; int len = ul_send_cmd_raw(cmd, sizeof(cmd), response, responseLength); return len; } // Fudan check checks for which error is given for a command with incorrect crc // NXP UL chip responds with 01, fudan 00. // other possible checks: // send a0 + crc // UL responds with 00, fudan doesn't respond // or // send a200 + crc // UL doesn't respond, fudan responds with 00 // or // send 300000 + crc (read with extra byte(s)) // UL responds with read of page 0, fudan doesn't respond. // // make sure field is off before calling this function static int ul_fudan_check(void) { iso14a_card_select_t card; if (!ul_select(&card)) return UL_ERROR; uint8_t cmd[4] = {0x30, 0x00, 0x02, 0xa7}; //wrong crc on purpose should be 0xa8 clearCommandBuffer(); SendCommandOLD(CMD_READER_ISO_14443a, ISO14A_RAW | ISO14A_NO_DISCONNECT | ISO14A_NO_RATS, 4, 0, cmd, sizeof(cmd)); PacketResponseNG resp; if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500)) return UL_ERROR; if (resp.oldarg[0] != 1) return UL_ERROR; return (!resp.data.asBytes[0]) ? FUDAN_UL : UL; //if response == 0x00 then Fudan, else Genuine NXP } static int ul_print_default(uint8_t *data) { uint8_t uid[7]; uid[0] = data[0]; uid[1] = data[1]; uid[2] = data[2]; uid[3] = data[4]; uid[4] = data[5]; uid[5] = data[6]; uid[6] = data[7]; PrintAndLogEx(NORMAL, " UID : %s ", sprint_hex(uid, 7)); PrintAndLogEx(NORMAL, " UID[0] : %02X, %s", uid[0], getTagInfo(uid[0])); if (uid[0] == 0x05 && ((uid[1] & 0xf0) >> 4) == 2) { // is infineon and 66RxxP uint8_t chip = (data[8] & 0xC7); // 11000111 mask, bit 3,4,5 RFU switch (chip) { case 0xC2: PrintAndLogEx(NORMAL, " IC type : SLE 66R04P 770 Bytes"); break; //77 pages case 0xC4: PrintAndLogEx(NORMAL, " IC type : SLE 66R16P 2560 Bytes"); break; //256 pages case 0xC6: PrintAndLogEx(NORMAL, " IC type : SLE 66R32P 5120 Bytes"); break; //512 pages /2 sectors } } // CT (cascade tag byte) 0x88 xor SN0 xor SN1 xor SN2 int crc0 = 0x88 ^ uid[0] ^ uid[1] ^ uid[2]; if (data[3] == crc0) PrintAndLogEx(NORMAL, " BCC0 : %02X, Ok", data[3]); else PrintAndLogEx(NORMAL, " BCC0 : %02X, crc should be %02X", data[3], crc0); int crc1 = uid[3] ^ uid[4] ^ uid[5] ^ uid[6]; if (data[8] == crc1) PrintAndLogEx(NORMAL, " BCC1 : %02X, Ok", data[8]); else PrintAndLogEx(NORMAL, " BCC1 : %02X, crc should be %02X", data[8], crc1); PrintAndLogEx(NORMAL, " Internal : %02X, %sdefault", data[9], (data[9] == 0x48) ? "" : "not "); PrintAndLogEx(NORMAL, " Lock : %s - %s", sprint_hex(data + 10, 2), sprint_bin(data + 10, 2) ); PrintAndLogEx(NORMAL, "OneTimePad : %s - %s\n", sprint_hex(data + 12, 4), sprint_bin(data + 12, 4) ); return PM3_SUCCESS; } static int ndef_print_CC(uint8_t *data) { // no NDEF message if (data[0] != 0xE1) return PM3_ESOFT; //NFC Forum Type 1,2,3,4 // // 4 has 1.1 (11) // b7, b6 major version // b5, b4 minor version // b3, b2 read // 00 always, 01 rfu, 10 proprietary, 11 rfu // b1, b0 write // 00 always, 01 rfo, 10 proprietary, 11 never uint8_t cc_write = data[1] & 0x03; uint8_t cc_read = (data[1] & 0x0C) >> 2; uint8_t cc_minor = (data[1] & 0x30) >> 4; uint8_t cc_major = (data[1] & 0xC0) >> 6; char wStr[50]; switch (cc_write) { case 0: sprintf(wStr, "Write access granted without any security"); break; case 1: sprintf(wStr, "RFU"); break; case 2: sprintf(wStr, "Proprietary"); break; case 3: sprintf(wStr, "No write access"); break; } char rStr[46]; switch (cc_read) { case 0: sprintf(rStr, "Read access granted without any security"); break; case 1: case 3: sprintf(rStr, "RFU"); break; case 2: sprintf(rStr, "Proprietary"); break; } PrintAndLogEx(NORMAL, "--- NDEF Message"); PrintAndLogEx(NORMAL, "Capability Container: %s", sprint_hex(data, 4)); PrintAndLogEx(NORMAL, " %02X : NDEF Magic Number", data[0]); // PrintAndLogEx(NORMAL, " %02X : version %d.%d supported by tag", data[1], (data[1] & 0xF0) >> 4, data[1] & 0x0F); PrintAndLogEx(NORMAL, " %02X : version %d.%d supported by tag", data[1], cc_major, cc_minor); PrintAndLogEx(NORMAL, " : %s / %s", rStr, wStr); PrintAndLogEx(NORMAL, " %02X : Physical Memory Size: %d bytes", data[2], data[2] * 8); if (data[2] == 0x06) PrintAndLogEx(NORMAL, " %02X : NDEF Memory Size: %d bytes", data[2], 48); else if (data[2] == 0x12) PrintAndLogEx(NORMAL, " %02X : NDEF Memory Size: %d bytes", data[2], 144); else if (data[2] == 0x3E) PrintAndLogEx(NORMAL, " %02X : NDEF Memory Size: %d bytes", data[2], 496); else if (data[2] == 0x6D) PrintAndLogEx(NORMAL, " %02X : NDEF Memory Size: %d bytes", data[2], 872); uint8_t msb3 = (data[3] & 0xE0) >> 5; uint8_t sf = (data[3] & 0x10) >> 4; uint8_t lb = (data[3] & 0x08) >> 3; uint8_t mlrule = (data[3] & 0x06) >> 1; uint8_t mbread = (data[3] & 0x01); PrintAndLogEx(NORMAL, " Additional feature information"); PrintAndLogEx(NORMAL, " %02X", data[3]); PrintAndLogEx(NORMAL, " 00000000"); PrintAndLogEx(NORMAL, " xxx - %02X : RFU (%s)", msb3, (msb3 == 0) ? _GREEN_("OK") : _RED_("Fail")); PrintAndLogEx(NORMAL, " x - %02X : %s special frame", sf, (sf) ? "support" : "don\'t support"); PrintAndLogEx(NORMAL, " x - %02X : %s lock block", lb, (lb) ? "support" : "don\'t support"); PrintAndLogEx(NORMAL, " xx - %02X : RFU (%s)", mlrule, (mlrule == 0) ? _GREEN_("OK") : _RED_("Fail")); PrintAndLogEx(NORMAL, " x - %02X : IC %s multiple block reads", mbread, (mbread) ? "support" : "don\'t support"); return PM3_SUCCESS; } int ul_print_type(uint32_t tagtype, uint8_t spaces) { char spc[11] = " "; spc[10] = 0x00; char *spacer = spc + (10 - spaces); if (tagtype & UL) PrintAndLogEx(NORMAL, "%sTYPE : MIFARE Ultralight (MF0ICU1) %s", spacer, (tagtype & MAGIC) ? "" : ""); else if (tagtype & UL_C) PrintAndLogEx(NORMAL, "%sTYPE : MIFARE Ultralight C (MF0ULC) %s", spacer, (tagtype & MAGIC) ? "" : ""); else if (tagtype & UL_NANO_40) PrintAndLogEx(NORMAL, "%sTYPE : MIFARE Ultralight Nano 40bytes (MF0UNH00)", spacer); else if (tagtype & UL_EV1_48) PrintAndLogEx(NORMAL, "%sTYPE : MIFARE Ultralight EV1 48bytes (MF0UL1101)", spacer); else if (tagtype & UL_EV1_128) PrintAndLogEx(NORMAL, "%sTYPE : MIFARE Ultralight EV1 128bytes (MF0UL2101)", spacer); else if (tagtype & UL_EV1) PrintAndLogEx(NORMAL, "%sTYPE : MIFARE Ultralight EV1 UNKNOWN", spacer); else if (tagtype & NTAG) PrintAndLogEx(NORMAL, "%sTYPE : NTAG UNKNOWN", spacer); else if (tagtype & NTAG_203) PrintAndLogEx(NORMAL, "%sTYPE : NTAG 203 144bytes (NT2H0301F0DT)", spacer); else if (tagtype & NTAG_210) PrintAndLogEx(NORMAL, "%sTYPE : NTAG 210 48bytes (NT2L1011G0DU)", spacer); else if (tagtype & NTAG_212) PrintAndLogEx(NORMAL, "%sTYPE : NTAG 212 128bytes (NT2L1211G0DU)", spacer); else if (tagtype & NTAG_213) PrintAndLogEx(NORMAL, "%sTYPE : NTAG 213 144bytes (NT2H1311G0DU)", spacer); else if (tagtype & NTAG_213_F) PrintAndLogEx(NORMAL, "%sTYPE : NTAG 213F 144bytes (NT2H1311F0DTL)", spacer); else if (tagtype & NTAG_215) PrintAndLogEx(NORMAL, "%sTYPE : NTAG 215 504bytes (NT2H1511G0DU)", spacer); else if (tagtype & NTAG_216) PrintAndLogEx(NORMAL, "%sTYPE : NTAG 216 888bytes (NT2H1611G0DU)", spacer); else if (tagtype & NTAG_216_F) PrintAndLogEx(NORMAL, "%sTYPE : NTAG 216F 888bytes (NT2H1611F0DTL)", spacer); else if (tagtype & NTAG_I2C_1K) PrintAndLogEx(NORMAL, "%sTYPE : NTAG I2C 888bytes (NT3H1101FHK)", spacer); else if (tagtype & NTAG_I2C_2K) PrintAndLogEx(NORMAL, "%sTYPE : NTAG I2C 1904bytes (NT3H1201FHK)", spacer); else if (tagtype & NTAG_I2C_1K_PLUS) PrintAndLogEx(NORMAL, "%sTYPE : NTAG I2C plus 888bytes (NT3H2111FHK)", spacer); else if (tagtype & NTAG_I2C_2K_PLUS) PrintAndLogEx(NORMAL, "%sTYPE : NTAG I2C plus 1912bytes (NT3H2211FHK)", spacer); else if (tagtype & MY_D) PrintAndLogEx(NORMAL, "%sTYPE : INFINEON my-d\x99 (SLE 66RxxS)", spacer); else if (tagtype & MY_D_NFC) PrintAndLogEx(NORMAL, "%sTYPE : INFINEON my-d\x99 NFC (SLE 66RxxP)", spacer); else if (tagtype & MY_D_MOVE) PrintAndLogEx(NORMAL, "%sTYPE : INFINEON my-d\x99 move (SLE 66R01P)", spacer); else if (tagtype & MY_D_MOVE_NFC) PrintAndLogEx(NORMAL, "%sTYPE : INFINEON my-d\x99 move NFC (SLE 66R01P)", spacer); else if (tagtype & MY_D_MOVE_LEAN) PrintAndLogEx(NORMAL, "%sTYPE : INFINEON my-d\x99 move lean (SLE 66R01L)", spacer); else if (tagtype & FUDAN_UL) PrintAndLogEx(NORMAL, "%sTYPE : FUDAN Ultralight Compatible (or other compatible) %s", spacer, (tagtype & MAGIC) ? "" : ""); else PrintAndLogEx(NORMAL, "%sTYPE : Unknown %06x", spacer, tagtype); return PM3_SUCCESS; } static int ulc_print_3deskey(uint8_t *data) { PrintAndLogEx(NORMAL, " deskey1 [44/0x2C] : %s [s]", sprint_hex(data, 4), sprint_ascii(data, 4)); PrintAndLogEx(NORMAL, " deskey1 [45/0x2D] : %s [s]", sprint_hex(data + 4, 4), sprint_ascii(data + 4, 4)); PrintAndLogEx(NORMAL, " deskey2 [46/0x2E] : %s [s]", sprint_hex(data + 8, 4), sprint_ascii(data + 8, 4)); PrintAndLogEx(NORMAL, " deskey2 [47/0x2F] : %s [s]", sprint_hex(data + 12, 4), sprint_ascii(data + 12, 4)); PrintAndLogEx(NORMAL, "\n 3des key : %s", sprint_hex(SwapEndian64(data, 16, 8), 16)); return PM3_SUCCESS; } static int ulc_print_configuration(uint8_t *data) { PrintAndLogEx(NORMAL, "--- UL-C Configuration"); PrintAndLogEx(NORMAL, " Higher Lockbits [40/0x28] : %s - %s", sprint_hex(data, 4), sprint_bin(data, 2)); PrintAndLogEx(NORMAL, " Counter [41/0x29] : %s - %s", sprint_hex(data + 4, 4), sprint_bin(data + 4, 2)); bool validAuth = (data[8] >= 0x03 && data[8] <= 0x30); if (validAuth) PrintAndLogEx(NORMAL, " Auth0 [42/0x2A] : %s page %d/0x%02X and above need authentication", sprint_hex(data + 8, 4), data[8], data[8]); else { if (data[8] == 0) { PrintAndLogEx(NORMAL, " Auth0 [42/0x2A] : %s default", sprint_hex(data + 8, 4)); } else { PrintAndLogEx(NORMAL, " Auth0 [42/0x2A] : %s auth byte is out-of-range", sprint_hex(data + 8, 4)); } } PrintAndLogEx(NORMAL, " Auth1 [43/0x2B] : %s %s", sprint_hex(data + 12, 4), (data[12] & 1) ? "write access restricted" : "read and write access restricted" ); return PM3_SUCCESS; } static int ulev1_print_configuration(uint32_t tagtype, uint8_t *data, uint8_t startPage) { PrintAndLogEx(NORMAL, "\n--- Tag Configuration"); bool strg_mod_en = (data[0] & 2); uint8_t authlim = (data[4] & 0x07); bool nfc_cnf_en = (data[4] & 0x08); bool nfc_cnf_prot_pwd = (data[4] & 0x10); bool cfglck = (data[4] & 0x40); bool prot = (data[4] & 0x80); uint8_t vctid = data[5]; PrintAndLogEx(NORMAL, " cfg0 [%u/0x%02X] : %s", startPage, startPage, sprint_hex(data, 4)); if ((tagtype & (NTAG_213_F | NTAG_216_F))) { uint8_t mirror_conf = (data[0] & 0xC0); uint8_t mirror_byte = (data[0] & 0x30); bool sleep_en = (data[0] & 0x08); strg_mod_en = (data[0] & 0x04); uint8_t fdp_conf = (data[0] & 0x03); switch (mirror_conf) { case 0: PrintAndLogEx(NORMAL, " - no ASCII mirror"); break; case 1: PrintAndLogEx(NORMAL, " - UID ASCII mirror"); break; case 2: PrintAndLogEx(NORMAL, " - NFC counter ASCII mirror"); break; case 3: PrintAndLogEx(NORMAL, " - UID and NFC counter ASCII mirror"); break; default: break; } PrintAndLogEx(NORMAL, " - SLEEP mode %s", (sleep_en) ? "enabled" : "disabled"); switch (fdp_conf) { case 0: PrintAndLogEx(NORMAL, " - no field detect"); break; case 1: PrintAndLogEx(NORMAL, " - enabled by first State-of-Frame (start of communication)"); break; case 2: PrintAndLogEx(NORMAL, " - enabled by selection of the tag"); break; case 3: PrintAndLogEx(NORMAL, " - enabled by field presence"); break; default: break; } // valid mirror start page and byte position within start page. if (tagtype & NTAG_213_F) { switch (mirror_conf) { case 1: { PrintAndLogEx(NORMAL, " mirror start block %02X | byte pos %02X - %s", data[2], mirror_byte, (data[2] >= 0x4 && data[2] <= 0x24) ? "OK" : "Invalid value"); break;} case 2: { PrintAndLogEx(NORMAL, " mirror start block %02X | byte pos %02X - %s", data[2], mirror_byte, (data[2] >= 0x4 && data[2] <= 0x26) ? "OK" : "Invalid value"); break;} case 3: { PrintAndLogEx(NORMAL, " mirror start block %02X | byte pos %02X - %s", data[2], mirror_byte, (data[2] >= 0x4 && data[2] <= 0x22) ? "OK" : "Invalid value"); break;} default: break; } } else if (tagtype & NTAG_216_F) { switch (mirror_conf) { case 1: { PrintAndLogEx(NORMAL, " mirror start block %02X | byte pos %02X - %s", data[2], mirror_byte, (data[2] >= 0x4 && data[2] <= 0xDE) ? "OK" : "Invalid value"); break;} case 2: { PrintAndLogEx(NORMAL, " mirror start block %02X | byte pos %02X - %s", data[2], mirror_byte, (data[2] >= 0x4 && data[2] <= 0xE0) ? "OK" : "Invalid value"); break;} case 3: { PrintAndLogEx(NORMAL, " mirror start block %02X | byte pos %02X - %s", data[2], mirror_byte, (data[2] >= 0x4 && data[2] <= 0xDC) ? "OK" : "Invalid value"); break;} default: break; } } } PrintAndLogEx(NORMAL, " - strong modulation mode %s", (strg_mod_en) ? "enabled" : "disabled"); if (data[3] < 0xff) PrintAndLogEx(NORMAL, " - page %d and above need authentication", data[3]); else PrintAndLogEx(NORMAL, " - pages don't need authentication"); PrintAndLogEx(NORMAL, " cfg1 [%u/0x%02X] : %s", startPage + 1, startPage + 1, sprint_hex(data + 4, 4)); if (authlim == 0) PrintAndLogEx(NORMAL, " - Unlimited password attempts"); else PrintAndLogEx(NORMAL, " - Max number of password attempts is %d", authlim); PrintAndLogEx(NORMAL, " - NFC counter %s", (nfc_cnf_en) ? "enabled" : "disabled"); PrintAndLogEx(NORMAL, " - NFC counter %s", (nfc_cnf_prot_pwd) ? "not protected" : "password protection enabled"); PrintAndLogEx(NORMAL, " - user configuration %s", cfglck ? "permanently locked" : "writeable"); PrintAndLogEx(NORMAL, " - %s access is protected with password", prot ? "read and write" : "write"); PrintAndLogEx(NORMAL, " - %02X, Virtual Card Type Identifier is %s default", vctid, (vctid == 0x05) ? "" : "not"); PrintAndLogEx(NORMAL, " PWD [%u/0x%02X] : %s- (cannot be read)", startPage + 2, startPage + 2, sprint_hex(data + 8, 4)); PrintAndLogEx(NORMAL, " PACK [%u/0x%02X] : %s - (cannot be read)", startPage + 3, startPage + 3, sprint_hex(data + 12, 2)); PrintAndLogEx(NORMAL, " RFU [%u/0x%02X] : %s- (cannot be read)", startPage + 3, startPage + 3, sprint_hex(data + 14, 2)); return PM3_SUCCESS; } static int ulev1_print_counters() { PrintAndLogEx(NORMAL, "--- Tag Counters"); uint8_t tear[1] = {0}; uint8_t counter[3] = {0, 0, 0}; uint16_t len = 0; for (uint8_t i = 0; i < 3; ++i) { ulev1_readTearing(i, tear, sizeof(tear)); len = ulev1_readCounter(i, counter, sizeof(counter)); if (len == 3) { PrintAndLogEx(NORMAL, " [%0d] : %s", i, sprint_hex(counter, 3)); PrintAndLogEx(NORMAL, " - %02X tearing %s", tear[0], (tear[0] == 0xBD) ? "Ok" : "failure"); } } return len; } static int ulev1_print_signature(TagTypeUL_t tagtype, uint8_t *uid, uint8_t *signature, size_t signature_len) { uint8_t public_key = 0; if (tagtype == UL_EV1_48 || tagtype == UL_EV1_128) { public_key = 1; } int res = ecdsa_signature_r_s_verify(MBEDTLS_ECP_DP_SECP128R1, public_keys[public_key], uid, 7, signature, signature_len, false); bool is_valid = (res == 0); PrintAndLogEx(NORMAL, "\n--- Tag Signature"); PrintAndLogEx(NORMAL, "IC signature public key name : NXP NTAG21x (2013)"); PrintAndLogEx(NORMAL, "IC signature public key value : %s", sprint_hex(public_keys[public_key], PUBLIC_ECDA_KEYLEN)); PrintAndLogEx(NORMAL, " Elliptic curve parameters : NID_secp128r1"); PrintAndLogEx(NORMAL, " TAG IC Signature : %s", sprint_hex(signature, signature_len)); PrintAndLogEx(NORMAL, "Signature verified %s", (is_valid) ? _GREEN_("successful") : _RED_("failed")); return PM3_SUCCESS; } static int ulev1_print_version(uint8_t *data) { PrintAndLogEx(NORMAL, "\n--- Tag Version"); PrintAndLogEx(NORMAL, " Raw bytes : %s", sprint_hex(data, 8)); PrintAndLogEx(NORMAL, " Vendor ID : %02X, %s", data[1], getTagInfo(data[1])); PrintAndLogEx(NORMAL, " Product type : %s", getProductTypeStr(data[2])); PrintAndLogEx(NORMAL, " Product subtype : %02X, %s", data[3], (data[3] == 1) ? "17 pF" : "50pF"); PrintAndLogEx(NORMAL, " Major version : %02X", data[4]); PrintAndLogEx(NORMAL, " Minor version : %02X", data[5]); PrintAndLogEx(NORMAL, " Size : %s", getUlev1CardSizeStr(data[6])); PrintAndLogEx(NORMAL, " Protocol type : %02X %s", data[7], (data[7] == 0x3) ? "(ISO14443-3 Compliant)" : ""); return PM3_SUCCESS; } /* static int ulc_magic_test(){ // Magic Ultralight test // Magic UL-C, by observation, // 1) it seems to have a static nonce response to 0x1A command. // 2) the deskey bytes is not-zero:d out on as datasheet states. // 3) UID - changeable, not only, but pages 0-1-2-3. // 4) use the ul_magic_test ! magic tags answers specially! int returnValue = UL_ERROR; iso14a_card_select_t card; uint8_t nonce1[11] = {0x00}; uint8_t nonce2[11] = {0x00}; int status = ul_select(&card); if ( !status ){ return UL_ERROR; } status = ulc_requestAuthentication(nonce1, sizeof(nonce1)); if ( status > 0 ) { status = ulc_requestAuthentication(nonce2, sizeof(nonce2)); returnValue = ( !memcmp(nonce1, nonce2, 11) ) ? UL_C_MAGIC : UL_C; } else { returnValue = UL; } DropField(); return returnValue; } */ static int ul_magic_test() { // Magic Ultralight tests // 1) take present UID, and try to write it back. OBSOLETE // 2) make a wrong length write to page0, and see if tag answers with ACK/NACK: iso14a_card_select_t card; if (!ul_select(&card)) return UL_ERROR; int status = ul_comp_write(0, NULL, 0); DropField(); if (status == 0) return MAGIC; return 0; } uint32_t GetHF14AMfU_Type(void) { TagTypeUL_t tagtype = UNKNOWN; iso14a_card_select_t card; if (!ul_select(&card)) return UL_ERROR; // Ultralight - ATQA / SAK if (card.atqa[1] != 0x00 || card.atqa[0] != 0x44 || card.sak != 0x00) { //PrintAndLogEx(NORMAL, "Tag is not Ultralight | NTAG | MY-D [ATQA: %02X %02X SAK: %02X]\n", card.atqa[1], card.atqa[0], card.sak); DropField(); return UL_ERROR; } if (card.uid[0] != 0x05) { uint8_t version[10] = {0x00}; int len = ulev1_getVersion(version, sizeof(version)); DropField(); switch (len) { case 0x0A: { if (memcmp(version, "\x00\x04\x03\x01\x01\x00\x0B", 7) == 0) { tagtype = UL_EV1_48; break; } else if (memcmp(version, "\x00\x04\x03\x01\x02\x00\x0B", 7) == 0) { tagtype = UL_NANO_40; break; } else if (memcmp(version, "\x00\x04\x03\x02\x01\x00\x0B", 7) == 0) { tagtype = UL_EV1_48; break; } else if (memcmp(version, "\x00\x04\x03\x01\x01\x00\x0E", 7) == 0) { tagtype = UL_EV1_128; break; } else if (memcmp(version, "\x00\x04\x03\x02\x01\x00\x0E", 7) == 0) { tagtype = UL_EV1_128; break; } else if (memcmp(version, "\x00\x04\x04\x01\x01\x00\x0B", 7) == 0) { tagtype = NTAG_210; break; } else if (memcmp(version, "\x00\x04\x04\x01\x01\x00\x0E", 7) == 0) { tagtype = NTAG_212; break; } else if (memcmp(version, "\x00\x04\x04\x02\x01\x00\x0F", 7) == 0) { tagtype = NTAG_213; break; } else if (memcmp(version, "\x00\x04\x04\x02\x01\x00\x11", 7) == 0) { tagtype = NTAG_215; break; } else if (memcmp(version, "\x00\x04\x04\x02\x01\x00\x13", 7) == 0) { tagtype = NTAG_216; break; } else if (memcmp(version, "\x00\x04\x04\x04\x01\x00\x0F", 7) == 0) { tagtype = NTAG_213_F; break; } else if (memcmp(version, "\x00\x04\x04\x04\x01\x00\x13", 7) == 0) { tagtype = NTAG_216_F; break; } else if (memcmp(version, "\x00\x04\x04\x05\x02\x01\x13", 7) == 0) { tagtype = NTAG_I2C_1K; break; } else if (memcmp(version, "\x00\x04\x04\x05\x02\x01\x15", 7) == 0) { tagtype = NTAG_I2C_2K; break; } else if (memcmp(version, "\x00\x04\x04\x05\x02\x02\x13", 7) == 0) { tagtype = NTAG_I2C_1K_PLUS; break; } else if (memcmp(version, "\x00\x04\x04\x05\x02\x02\x15", 7) == 0) { tagtype = NTAG_I2C_2K_PLUS; break; } else if (version[2] == 0x04) { tagtype = NTAG; break; } else if (version[2] == 0x03) { tagtype = UL_EV1; } break; } case 0x01: tagtype = UL_C; break; case 0x00: tagtype = UL; break; case -1 : tagtype = (UL | UL_C | NTAG_203); break; // could be UL | UL_C magic tags default : tagtype = UNKNOWN; break; } // UL vs UL-C vs ntag203 test if (tagtype & (UL | UL_C | NTAG_203)) { if (!ul_select(&card)) return UL_ERROR; // do UL_C check first... uint8_t nonce[11] = {0x00}; int status = ulc_requestAuthentication(nonce, sizeof(nonce)); DropField(); if (status > 1) { tagtype = UL_C; } else { // need to re-select after authentication error if (!ul_select(&card)) return UL_ERROR; uint8_t data[16] = {0x00}; // read page 0x26-0x29 (last valid ntag203 page) status = ul_read(0x26, data, sizeof(data)); if (status <= 1) { tagtype = UL; } else { // read page 0x30 (should error if it is a ntag203) status = ul_read(0x30, data, sizeof(data)); if (status <= 1) { tagtype = NTAG_203; } else { tagtype = UNKNOWN; } } DropField(); } } if (tagtype & UL) { tagtype = ul_fudan_check(); DropField(); } } else { DropField(); // Infinition MY-D tests Exam high nibble uint8_t nib = (card.uid[1] & 0xf0) >> 4; switch (nib) { // case 0: tagtype = SLE66R35E7; break; //or SLE 66R35E7 - mifare compat... should have different sak/atqa for mf 1k case 1: tagtype = MY_D; break; // or SLE 66RxxS ... up to 512 pages of 8 user bytes... case 2: tagtype = (MY_D_NFC); break; // or SLE 66RxxP ... up to 512 pages of 8 user bytes... (or in nfc mode FF pages of 4 bytes) case 3: tagtype = (MY_D_MOVE | MY_D_MOVE_NFC); break; // or SLE 66R01P // 38 pages of 4 bytes //notice: we can not currently distinguish between these two case 7: tagtype = MY_D_MOVE_LEAN; break; // or SLE 66R01L // 16 pages of 4 bytes } } tagtype |= ul_magic_test(); if (tagtype == (UNKNOWN | MAGIC)) tagtype = (UL_MAGIC); return tagtype; } // // extended tag information // static int CmdHF14AMfUInfo(const char *Cmd) { uint8_t authlim = 0xff; uint8_t data[16] = {0x00}; iso14a_card_select_t card; int status; bool errors = false; bool hasAuthKey = false; bool locked = false; bool swapEndian = false; uint8_t cmdp = 0; uint8_t dataLen = 0; uint8_t authenticationkey[16] = {0x00}; uint8_t *authkeyptr = authenticationkey; uint8_t pwd[4] = {0, 0, 0, 0}; uint8_t *key = pwd; uint8_t pack[4] = {0, 0, 0, 0}; int len; uint8_t uid[7]; char tempStr[50]; while (param_getchar(Cmd, cmdp) != 0x00 && !errors) { switch (tolower(param_getchar(Cmd, cmdp))) { case 'h': return usage_hf_mfu_info(); case 'k': dataLen = param_getstr(Cmd, cmdp + 1, tempStr, sizeof(tempStr)); if (dataLen == 32 || dataLen == 8) { //ul-c or ev1/ntag key length errors = param_gethex(tempStr, 0, authenticationkey, dataLen); dataLen /= 2; // handled as bytes from now on } else { PrintAndLogEx(WARNING, "ERROR: Key is incorrect length\n"); errors = true; } cmdp += 2; hasAuthKey = true; break; case 'l': swapEndian = true; cmdp++; break; default: PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } } //Validations if (errors) return usage_hf_mfu_info(); TagTypeUL_t tagtype = GetHF14AMfU_Type(); if (tagtype == UL_ERROR) return PM3_ESOFT; PrintAndLogEx(NORMAL, "\n--- Tag Information ---------"); PrintAndLogEx(NORMAL, "-------------------------------------------------------------"); ul_print_type(tagtype, 6); // Swap endianness if (swapEndian && hasAuthKey) authkeyptr = SwapEndian64(authenticationkey, dataLen, (dataLen == 16) ? 8 : 4); if (ul_auth_select(&card, tagtype, hasAuthKey, authkeyptr, pack, sizeof(pack)) == PM3_ESOFT) return PM3_ESOFT; // read pages 0,1,2,3 (should read 4pages) status = ul_read(0, data, sizeof(data)); if (status == -1) { DropField(); PrintAndLogEx(ERR, "Error: tag didn't answer to READ"); return PM3_ESOFT; } else if (status == 16) { memcpy(uid, data, 3); memcpy(uid + 3, data + 4, 4); ul_print_default(data); ndef_print_CC(data + 12); } else { locked = true; } // UL_C Specific if ((tagtype & UL_C)) { // read pages 0x28, 0x29, 0x2A, 0x2B uint8_t ulc_conf[16] = {0x00}; status = ul_read(0x28, ulc_conf, sizeof(ulc_conf)); if (status == -1) { PrintAndLogEx(ERR, "Error: tag didn't answer to READ UL-C"); DropField(); return PM3_ESOFT; } if (status == 16) ulc_print_configuration(ulc_conf); else locked = true; if ((tagtype & MAGIC)) { //just read key uint8_t ulc_deskey[16] = {0x00}; status = ul_read(0x2C, ulc_deskey, sizeof(ulc_deskey)); if (status == -1) { DropField(); PrintAndLogEx(ERR, "Error: tag didn't answer to READ magic"); return PM3_ESOFT; } if (status == 16) ulc_print_3deskey(ulc_deskey); } else { DropField(); // if we called info with key, just return if (hasAuthKey) return PM3_SUCCESS; // also try to diversify default keys.. look into CmdHF14AMfGenDiverseKeys PrintAndLogEx(INFO, "Trying some default 3des keys"); for (uint8_t i = 0; i < ARRAYLEN(default_3des_keys); ++i) { key = default_3des_keys[i]; if (ulc_authentication(key, true)) { PrintAndLogEx(SUCCESS, "Found default 3des key: "); uint8_t keySwap[16]; memcpy(keySwap, SwapEndian64(key, 16, 8), 16); ulc_print_3deskey(keySwap); return PM3_SUCCESS; } } return PM3_SUCCESS; } } // do counters and signature first (don't neet auth) // ul counters are different than ntag counters if ((tagtype & (UL_EV1_48 | UL_EV1_128 | UL_EV1))) { if (ulev1_print_counters() != 3) { // failed - re-select if (ul_auth_select(&card, tagtype, hasAuthKey, authkeyptr, pack, sizeof(pack)) == PM3_ESOFT) return PM3_ESOFT; } } // NTAG counters? // Read signature if ((tagtype & (UL_EV1_48 | UL_EV1_128 | UL_EV1 | UL_NANO_40 | NTAG_213 | NTAG_213_F | NTAG_215 | NTAG_216 | NTAG_216_F | NTAG_I2C_1K | NTAG_I2C_2K | NTAG_I2C_1K_PLUS | NTAG_I2C_2K_PLUS))) { uint8_t ulev1_signature[32] = {0x00}; status = ulev1_readSignature(ulev1_signature, sizeof(ulev1_signature)); if (status == -1) { PrintAndLogEx(ERR, "Error: tag didn't answer to READ SIGNATURE"); DropField(); return PM3_ESOFT; } if (status == 32) { ulev1_print_signature(tagtype, uid, ulev1_signature, sizeof(ulev1_signature)); } else { // re-select if (ul_auth_select(&card, tagtype, hasAuthKey, authkeyptr, pack, sizeof(pack)) == PM3_ESOFT) return PM3_ESOFT; } } // Get Version if ((tagtype & (UL_EV1_48 | UL_EV1_128 | UL_EV1 | UL_NANO_40 | NTAG_213 | NTAG_213_F | NTAG_215 | NTAG_216 | NTAG_216_F | NTAG_I2C_1K | NTAG_I2C_2K | NTAG_I2C_1K_PLUS | NTAG_I2C_2K_PLUS))) { uint8_t version[10] = {0x00}; status = ulev1_getVersion(version, sizeof(version)); if (status == -1) { PrintAndLogEx(ERR, "Error: tag didn't answer to GETVERSION"); DropField(); return PM3_ESOFT; } else if (status == 10) { ulev1_print_version(version); } else { locked = true; if (ul_auth_select(&card, tagtype, hasAuthKey, authkeyptr, pack, sizeof(pack)) == PM3_ESOFT) return PM3_ESOFT; } uint8_t startconfigblock = 0; uint8_t ulev1_conf[16] = {0x00}; // config blocks always are last 4 pages for (uint8_t i = 0; i < ARRAYLEN(UL_TYPES_ARRAY); i++) { if (tagtype & UL_TYPES_ARRAY[i]) { startconfigblock = UL_MEMORY_ARRAY[i] - 3; break; } } if (startconfigblock) { // if we know where the config block is... status = ul_read(startconfigblock, ulev1_conf, sizeof(ulev1_conf)); if (status == -1) { PrintAndLogEx(ERR, "Error: tag didn't answer to READ EV1"); DropField(); return PM3_ESOFT; } else if (status == 16) { // save AUTHENTICATION LIMITS for later: authlim = (ulev1_conf[4] & 0x07); // add pwd / pack if used from cli if (hasAuthKey) { memcpy(ulev1_conf + 8, authkeyptr, 4); memcpy(ulev1_conf + 12, pack, 2); } ulev1_print_configuration(tagtype, ulev1_conf, startconfigblock); } } // AUTHLIMIT, (number of failed authentications) // 0 = limitless. // 1-7 = limit. No automatic tries then. // hasAuthKey, if we was called with key, skip test. if (!authlim && !hasAuthKey) { PrintAndLogEx(NORMAL, "\n--- Known EV1/NTAG passwords."); // test pwd gen A num_to_bytes(ul_ev1_pwdgenA(card.uid), 4, key); len = ulev1_requestAuthentication(key, pack, sizeof(pack)); if (len > -1) { PrintAndLogEx(SUCCESS, "Found a default password: %s || Pack: %02X %02X", sprint_hex(key, 4), pack[0], pack[1]); goto out; } if (ul_auth_select(&card, tagtype, hasAuthKey, authkeyptr, pack, sizeof(pack)) == PM3_ESOFT) return PM3_ESOFT; // test pwd gen B num_to_bytes(ul_ev1_pwdgenB(card.uid), 4, key); len = ulev1_requestAuthentication(key, pack, sizeof(pack)); if (len > -1) { PrintAndLogEx(SUCCESS, "Found a default password: %s || Pack: %02X %02X", sprint_hex(key, 4), pack[0], pack[1]); goto out; } if (ul_auth_select(&card, tagtype, hasAuthKey, authkeyptr, pack, sizeof(pack)) == PM3_ESOFT) return PM3_ESOFT; // test pwd gen C num_to_bytes(ul_ev1_pwdgenC(card.uid), 4, key); len = ulev1_requestAuthentication(key, pack, sizeof(pack)); if (len > -1) { PrintAndLogEx(SUCCESS, "Found a default password: %s || Pack: %02X %02X", sprint_hex(key, 4), pack[0], pack[1]); goto out; } if (ul_auth_select(&card, tagtype, hasAuthKey, authkeyptr, pack, sizeof(pack)) == PM3_ESOFT) return PM3_ESOFT; // test pwd gen D num_to_bytes(ul_ev1_pwdgenD(card.uid), 4, key); len = ulev1_requestAuthentication(key, pack, sizeof(pack)); if (len > -1) { PrintAndLogEx(SUCCESS, "Found a default password: %s || Pack: %02X %02X", sprint_hex(key, 4), pack[0], pack[1]); goto out; } if (ul_auth_select(&card, tagtype, hasAuthKey, authkeyptr, pack, sizeof(pack)) == PM3_ESOFT) return PM3_ESOFT; for (uint8_t i = 0; i < ARRAYLEN(default_pwd_pack); ++i) { key = default_pwd_pack[i]; len = ulev1_requestAuthentication(key, pack, sizeof(pack)); if (len > -1) { PrintAndLogEx(SUCCESS, "Found a default password: %s || Pack: %02X %02X", sprint_hex(key, 4), pack[0], pack[1]); break; } else { if (ul_auth_select(&card, tagtype, hasAuthKey, authkeyptr, pack, sizeof(pack)) == PM3_ESOFT) return PM3_ESOFT; } } if (len < 1) PrintAndLogEx(WARNING, "password not known"); } } out: DropField(); if (locked) PrintAndLogEx(FAILED, "\nTag appears to be locked, try using the key to get more info"); PrintAndLogEx(NORMAL, ""); return PM3_SUCCESS; } // // Write Single Block // static int CmdHF14AMfUWrBl(const char *Cmd) { int blockNo = -1; bool errors = false; bool hasAuthKey = false; bool hasPwdKey = false; bool swapEndian = false; uint8_t cmdp = 0; uint8_t keylen = 0; uint8_t blockdata[20] = {0x00}; uint8_t data[16] = {0x00}; uint8_t authenticationkey[16] = {0x00}; uint8_t *authKeyPtr = authenticationkey; while (param_getchar(Cmd, cmdp) != 0x00 && !errors) { switch (tolower(param_getchar(Cmd, cmdp))) { case 'h': return usage_hf_mfu_wrbl(); case 'k': // EV1/NTAG size key keylen = param_gethex(Cmd, cmdp + 1, data, 8); if (!keylen) { memcpy(authenticationkey, data, 4); cmdp += 2; hasPwdKey = true; break; } // UL-C size key keylen = param_gethex(Cmd, cmdp + 1, data, 32); if (!keylen) { memcpy(authenticationkey, data, 16); cmdp += 2; hasAuthKey = true; break; } PrintAndLogEx(WARNING, "ERROR: Key is incorrect length\n"); errors = true; break; case 'b': blockNo = param_get8(Cmd, cmdp + 1); if (blockNo < 0) { PrintAndLogEx(WARNING, "Wrong block number"); errors = true; } cmdp += 2; break; case 'l': swapEndian = true; cmdp++; break; case 'd': if (param_gethex(Cmd, cmdp + 1, blockdata, 8)) { PrintAndLogEx(WARNING, "Block data must include 8 HEX symbols"); errors = true; break; } cmdp += 2; break; default: PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } } //Validations if (errors || cmdp == 0) return usage_hf_mfu_wrbl(); if (blockNo == -1) return usage_hf_mfu_wrbl(); // starting with getting tagtype TagTypeUL_t tagtype = GetHF14AMfU_Type(); if (tagtype == UL_ERROR) return -1; uint8_t maxblockno = 0; for (uint8_t idx = 0; idx < ARRAYLEN(UL_TYPES_ARRAY); idx++) { if (tagtype & UL_TYPES_ARRAY[idx]) { maxblockno = UL_MEMORY_ARRAY[idx]; break; } } if (blockNo > maxblockno) { PrintAndLogEx(WARNING, "block number too large. Max block is %u/0x%02X \n", maxblockno, maxblockno); return usage_hf_mfu_wrbl(); } // Swap endianness if (swapEndian && hasAuthKey) authKeyPtr = SwapEndian64(authenticationkey, 16, 8); if (swapEndian && hasPwdKey) authKeyPtr = SwapEndian64(authenticationkey, 4, 4); if (blockNo <= 3) PrintAndLogEx(NORMAL, "Special Block: %0d (0x%02X) [ %s]", blockNo, blockNo, sprint_hex(blockdata, 4)); else PrintAndLogEx(NORMAL, "Block: %0d (0x%02X) [ %s]", blockNo, blockNo, sprint_hex(blockdata, 4)); //Send write Block uint8_t cmddata[20]; memcpy(cmddata, blockdata, 4); uint8_t datalen = 4; uint8_t keytype = 0; if (hasAuthKey) { keytype = 1; memcpy(cmddata + datalen, authKeyPtr, 16); datalen += 16; } else if (hasPwdKey) { keytype = 2; memcpy(cmddata + datalen, authKeyPtr, 4); datalen += 4; } clearCommandBuffer(); SendCommandOLD(CMD_MIFAREU_WRITEBL, blockNo, keytype, 0, cmddata, datalen); PacketResponseNG resp; if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) { uint8_t isOK = resp.oldarg[0] & 0xff; PrintAndLogEx(SUCCESS, "isOk:%02x", isOK); } else { PrintAndLogEx(WARNING, "Command execute timeout"); } return 0; } // // Read Single Block // static int CmdHF14AMfURdBl(const char *Cmd) { int blockNo = -1; bool errors = false; bool hasAuthKey = false; bool hasPwdKey = false; bool swapEndian = false; uint8_t cmdp = 0; uint8_t keylen = 0; uint8_t data[16] = {0x00}; uint8_t authenticationkey[16] = {0x00}; uint8_t *authKeyPtr = authenticationkey; while (param_getchar(Cmd, cmdp) != 0x00 && !errors) { switch (tolower(param_getchar(Cmd, cmdp))) { case 'h': return usage_hf_mfu_rdbl(); case 'k': // EV1/NTAG size key keylen = param_gethex(Cmd, cmdp + 1, data, 8); if (!keylen) { memcpy(authenticationkey, data, 4); cmdp += 2; hasPwdKey = true; break; } // UL-C size key keylen = param_gethex(Cmd, cmdp + 1, data, 32); if (!keylen) { memcpy(authenticationkey, data, 16); cmdp += 2; hasAuthKey = true; break; } PrintAndLogEx(WARNING, "ERROR: Key is incorrect length\n"); errors = true; break; case 'b': blockNo = param_get8(Cmd, cmdp + 1); if (blockNo < 0) { PrintAndLogEx(WARNING, "Wrong block number"); errors = true; } cmdp += 2; break; case 'l': swapEndian = true; cmdp++; break; default: PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } } //Validations if (errors || cmdp == 0) return usage_hf_mfu_rdbl(); if (blockNo == -1) return usage_hf_mfu_rdbl(); // start with getting tagtype TagTypeUL_t tagtype = GetHF14AMfU_Type(); if (tagtype == UL_ERROR) return -1; uint8_t maxblockno = 0; for (uint8_t idx = 0; idx < ARRAYLEN(UL_TYPES_ARRAY); idx++) { if (tagtype & UL_TYPES_ARRAY[idx]) { maxblockno = UL_MEMORY_ARRAY[idx]; break; } } if (blockNo > maxblockno) { PrintAndLogEx(WARNING, "block number to large. Max block is %u/0x%02X \n", maxblockno, maxblockno); return usage_hf_mfu_rdbl(); } // Swap endianness if (swapEndian && hasAuthKey) authKeyPtr = SwapEndian64(authenticationkey, 16, 8); if (swapEndian && hasPwdKey) authKeyPtr = SwapEndian64(authenticationkey, 4, 4); //Read Block uint8_t keytype = 0; uint8_t datalen = 0; if (hasAuthKey) { keytype = 1; datalen = 16; } else if (hasPwdKey) { keytype = 2; datalen = 4; } clearCommandBuffer(); SendCommandOLD(CMD_MIFAREU_READBL, blockNo, keytype, 0, authKeyPtr, datalen); PacketResponseNG resp; if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) { uint8_t isOK = resp.oldarg[0] & 0xff; if (isOK) { uint8_t *d = resp.data.asBytes; PrintAndLogEx(NORMAL, "\nBlock# | Data | Ascii"); PrintAndLogEx(NORMAL, "-----------------------------"); PrintAndLogEx(NORMAL, "%02d/0x%02X | %s| %s\n", blockNo, blockNo, sprint_hex(d, 4), sprint_ascii(d, 4)); } else { PrintAndLogEx(WARNING, "Failed reading block: (%02x)", isOK); } } else { PrintAndLogEx(WARNING, "Command execute time-out"); } return 0; } void printMFUdump(mfu_dump_t *card) { printMFUdumpEx(card, 255, 0); } void printMFUdumpEx(mfu_dump_t *card, uint16_t pages, uint8_t startpage) { PrintAndLogEx(NORMAL, "\n*special* data\n"); PrintAndLogEx(NORMAL, "\nDataType | Data | Ascii"); PrintAndLogEx(NORMAL, "----------+-------------------------+---------"); PrintAndLogEx(NORMAL, "Version | %s| %s", sprint_hex(card->version, sizeof(card->version)), sprint_ascii(card->version, sizeof(card->version))); PrintAndLogEx(NORMAL, "TBD | %-24s| %s", sprint_hex(card->tbo, sizeof(card->tbo)), sprint_ascii(card->tbo, sizeof(card->tbo))); PrintAndLogEx(NORMAL, "TBD | %-24s| %s", sprint_hex(card->tbo1, sizeof(card->tbo1)), sprint_ascii(card->tbo1, sizeof(card->tbo1))); PrintAndLogEx(NORMAL, "Signature1| %s| %s", sprint_hex(card->signature, 16), sprint_ascii(card->signature, 16)); PrintAndLogEx(NORMAL, "Signature2| %s| %s", sprint_hex(card->signature + 16, 16), sprint_ascii(card->signature + 16, 16)); for (uint8_t i = 0; i < 3; i ++) { PrintAndLogEx(NORMAL, "Counter%d | %-24s| %s", i, sprint_hex(card->counter_tearing[i], 3), sprint_ascii(card->counter_tearing[i], 3)); PrintAndLogEx(NORMAL, "Tearing%d | %-24s| %s", i, sprint_hex(card->counter_tearing[i] + 3, 1), sprint_ascii(card->counter_tearing[i] + 3, 1)); } PrintAndLogEx(NORMAL, "-------------------------------------------------------------"); PrintAndLogEx(NORMAL, "\nBlock# | Data |lck| Ascii"); PrintAndLogEx(NORMAL, "---------+-------------+---+------"); uint8_t j = 0; bool lckbit = false; uint8_t *data = card->data; uint8_t lockbytes_sta[] = {0, 0}; uint8_t lockbytes_dyn[] = {0, 0, 0}; bool bit_stat[16] = {0}; bool bit_dyn[16] = {0}; // Load static lock bytes. memcpy(lockbytes_sta, data + 10, sizeof(lockbytes_sta)); for (j = 0; j < 16; j++) { bit_stat[j] = lockbytes_sta[j / 8] & (1 << (7 - j % 8)); } // Load dynamic lockbytes if available // TODO -- FIGURE OUT LOCK BYTES FOR TO EV1 and/or NTAG if (pages == 44) { memcpy(lockbytes_dyn, data + (40 * 4), sizeof(lockbytes_dyn)); for (j = 0; j < 16; j++) { bit_dyn[j] = lockbytes_dyn[j / 8] & (1 << (7 - j % 8)); } PrintAndLogEx(NORMAL, "DYNAMIC LOCK: %s\n", sprint_hex(lockbytes_dyn, 3)); } for (uint8_t i = 0; i < pages; ++i) { if (i < 3) { PrintAndLogEx(NORMAL, "%3d/0x%02X | %s| | %s", i + startpage, i + startpage, sprint_hex(data + i * 4, 4), sprint_ascii(data + i * 4, 4)); continue; } switch (i) { case 3: lckbit = bit_stat[4]; break; case 4: lckbit = bit_stat[3]; break; case 5: lckbit = bit_stat[2]; break; case 6: lckbit = bit_stat[1]; break; case 7: lckbit = bit_stat[0]; break; case 8: lckbit = bit_stat[15]; break; case 9: lckbit = bit_stat[14]; break; case 10: lckbit = bit_stat[13]; break; case 11: lckbit = bit_stat[12]; break; case 12: lckbit = bit_stat[11]; break; case 13: lckbit = bit_stat[10]; break; case 14: lckbit = bit_stat[9]; break; case 15: lckbit = bit_stat[8]; break; case 16: case 17: case 18: case 19: lckbit = bit_dyn[6]; break; case 20: case 21: case 22: case 23: lckbit = bit_dyn[5]; break; case 24: case 25: case 26: case 27: lckbit = bit_dyn[4]; break; case 28: case 29: case 30: case 31: lckbit = bit_dyn[2]; break; case 32: case 33: case 34: case 35: lckbit = bit_dyn[1]; break; case 36: case 37: case 38: case 39: lckbit = bit_dyn[0]; break; case 40: lckbit = bit_dyn[12]; break; case 41: lckbit = bit_dyn[11]; break; case 42: lckbit = bit_dyn[10]; break; //auth0 case 43: lckbit = bit_dyn[9]; break; //auth1 default: break; } PrintAndLogEx(NORMAL, "%3d/0x%02X | %s| %d | %s", i + startpage, i + startpage, sprint_hex(data + i * 4, 4), lckbit, sprint_ascii(data + i * 4, 4)); } PrintAndLogEx(NORMAL, "---------------------------------"); } // // Mifare Ultralight / Ultralight-C / Ultralight-EV1 // Read and Dump Card Contents, using auto detection of tag size. static int CmdHF14AMfUDump(const char *Cmd) { uint8_t fileNameLen = 0; char filename[FILE_PATH_SIZE] = {0x00}; char *fptr = filename; uint8_t data[1024] = {0x00}; memset(data, 0x00, sizeof(data)); bool hasAuthKey = false; int pages = 16; uint8_t dataLen = 0; uint8_t cmdp = 0; uint8_t authenticationkey[16] = {0x00}; memset(authenticationkey, 0x00, sizeof(authenticationkey)); uint8_t *authKeyPtr = authenticationkey; bool errors = false; bool swapEndian = false; bool manualPages = false; uint8_t startPage = 0; uint8_t card_mem_size = 0; char tempStr[50]; while (param_getchar(Cmd, cmdp) != 0x00 && !errors) { switch (tolower(param_getchar(Cmd, cmdp))) { case 'h': return usage_hf_mfu_dump(); case 'k': dataLen = param_getstr(Cmd, cmdp + 1, tempStr, sizeof(tempStr)); if (dataLen == 32 || dataLen == 8) { //ul-c or ev1/ntag key length errors = param_gethex(tempStr, 0, authenticationkey, dataLen); dataLen /= 2; } else { PrintAndLogEx(WARNING, "ERROR: Key is incorrect length\n"); errors = true; } cmdp += 2; hasAuthKey = true; break; case 'l': swapEndian = true; cmdp++; break; case 'f': fileNameLen = param_getstr(Cmd, cmdp + 1, filename, sizeof(filename)); cmdp += 2; break; case 'p': //set start page startPage = param_get8(Cmd, cmdp + 1); manualPages = true; cmdp += 2; break; case 'q': pages = param_get8(Cmd, cmdp + 1); cmdp += 2; manualPages = true; break; default: PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } } //Validations if (errors) return usage_hf_mfu_dump(); //if we entered a key in little endian and set the swapEndian switch - switch it... if (swapEndian && hasAuthKey) authKeyPtr = SwapEndian64(authenticationkey, dataLen, (dataLen == 16) ? 8 : 4); TagTypeUL_t tagtype = GetHF14AMfU_Type(); if (tagtype == UL_ERROR) return -1; //get number of pages to read if (!manualPages) { for (uint8_t idx = 0; idx < ARRAYLEN(UL_TYPES_ARRAY); idx++) { if (tagtype & UL_TYPES_ARRAY[idx]) { //add one as maxblks starts at 0 card_mem_size = pages = UL_MEMORY_ARRAY[idx] + 1; break; } } } ul_print_type(tagtype, 0); PrintAndLogEx(SUCCESS, "Reading tag memory..."); uint8_t keytype = 0; if (hasAuthKey) { if (tagtype & UL_C) keytype = 1; //UL_C auth else keytype = 2; //UL_EV1/NTAG auth } clearCommandBuffer(); SendCommandOLD(CMD_MIFAREU_READCARD, startPage, pages, keytype, authKeyPtr, dataLen); PacketResponseNG resp; if (!WaitForResponseTimeout(CMD_ACK, &resp, 2500)) { PrintAndLogEx(WARNING, "Command execute time-out"); return 1; } if (resp.oldarg[0] != 1) { PrintAndLogEx(WARNING, "Failed dumping card"); return 1; } uint32_t startindex = resp.oldarg[2]; uint32_t bufferSize = resp.oldarg[1]; if (bufferSize > sizeof(data)) { PrintAndLogEx(FAILED, "Data exceeded Buffer size!"); bufferSize = sizeof(data); } if (!GetFromDevice(BIG_BUF, data, bufferSize, startindex, NULL, 0, NULL, 2500, false)) { PrintAndLogEx(WARNING, "command execution time out"); return 1; } bool is_partial = (pages != bufferSize / 4); pages = bufferSize / 4; iso14a_card_select_t card; mfu_dump_t dump_file_data; uint8_t get_version[] = {0, 0, 0, 0, 0, 0, 0, 0}; uint8_t get_counter_tearing[][4] = {{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}}; uint8_t get_signature[32]; memset(get_signature, 0, sizeof(get_signature)); // not ul_c and not std ul then attempt to collect info like // VERSION, SIGNATURE, COUNTERS, TEARING, PACK, if (!(tagtype & UL_C || tagtype & UL)) { //attempt to read pack uint8_t get_pack[] = {0, 0}; if (!ul_auth_select(&card, tagtype, true, authKeyPtr, get_pack, sizeof(get_pack))) { //reset pack get_pack[0] = 0; get_pack[1] = 0; } DropField(); // only add pack if not partial read, and complete pages read. if (!is_partial && pages == card_mem_size) { // add pack to block read memcpy(data + (pages * 4) - 4, get_pack, sizeof(get_pack)); } if (hasAuthKey) { uint8_t dummy_pack[] = {0, 0}; ul_auth_select(&card, tagtype, hasAuthKey, authKeyPtr, dummy_pack, sizeof(dummy_pack)); } else ul_select(&card); ulev1_getVersion(get_version, sizeof(get_version)); for (uint8_t n = 0; n < 3; ++n) { ulev1_readTearing(n, &get_counter_tearing[n][3], 1); ulev1_readCounter(n, &get_counter_tearing[n][0], 3); } DropField(); if (hasAuthKey) { uint8_t dummy_pack[] = {0, 0}; ul_auth_select(&card, tagtype, hasAuthKey, authKeyPtr, dummy_pack, sizeof(dummy_pack)); } else ul_select(&card); ulev1_readSignature(get_signature, sizeof(get_signature)); DropField(); } // format and add keys to block dump output // only add keys if not partial read, and complete pages read if (!is_partial && pages == card_mem_size && hasAuthKey) { // if we didn't swapendian before - do it now for the sprint_hex call // NOTE: default entry is bigendian (unless swapped), sprint_hex outputs little endian // need to swap to keep it the same if (!swapEndian) { authKeyPtr = SwapEndian64(authenticationkey, dataLen, (dataLen == 16) ? 8 : 4); } else { authKeyPtr = authenticationkey; } if (tagtype & UL_C) { //add 4 pages memcpy(data + pages * 4, authKeyPtr, dataLen); pages += dataLen / 4; } else { // 2nd page from end memcpy(data + (pages * 4) - 8, authenticationkey, dataLen); } } //add *special* blocks to dump // pack and pwd saved into last pages of dump, if was not partial read dump_file_data.pages = pages - 1; memcpy(dump_file_data.version, get_version, sizeof(dump_file_data.version)); memcpy(dump_file_data.signature, get_signature, sizeof(dump_file_data.signature)); memcpy(dump_file_data.counter_tearing, get_counter_tearing, sizeof(dump_file_data.counter_tearing)); memcpy(dump_file_data.data, data, pages * 4); printMFUdumpEx(&dump_file_data, pages, startPage); // user supplied filename? if (fileNameLen < 1) { PrintAndLogEx(INFO, "Using UID as filename"); uint8_t uid[7] = {0}; memcpy(uid, (uint8_t *)&dump_file_data.data, 3); memcpy(uid + 3, (uint8_t *)&dump_file_data.data + 4, 4); fptr += sprintf(fptr, "hf-mfu-"); FillFileNameByUID(fptr, uid, "-dump", sizeof(uid)); } uint16_t datalen = pages * 4 + MFU_DUMP_PREFIX_LENGTH; saveFile(filename, ".bin", (uint8_t *)&dump_file_data, datalen); saveFileJSON(filename, jsfMfuMemory, (uint8_t *)&dump_file_data, datalen); if (is_partial) PrintAndLogEx(WARNING, "Partial dump created. (%d of %d blocks)", pages, card_mem_size); return 0; } static void wait4response(uint8_t b) { PacketResponseNG resp; if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) { uint8_t isOK = resp.oldarg[0] & 0xff; if (!isOK) PrintAndLogEx(WARNING, "failed to write block %d", b); } else { PrintAndLogEx(WARNING, "Command execute timeout"); } } // // Restore dump file onto tag // static int CmdHF14AMfURestore(const char *Cmd) { char tempStr[50] = {0}; char filename[FILE_PATH_SIZE] = {0}; uint8_t authkey[16] = {0}; uint8_t *p_authkey = authkey; uint8_t cmdp = 0, keylen = 0; bool hasKey = false; bool swapEndian = false; bool errors = false; bool write_special = false; bool write_extra = false; bool read_key = false; size_t filelen = 0; FILE *f; memset(authkey, 0x00, sizeof(authkey)); while (param_getchar(Cmd, cmdp) != 0x00 && !errors) { switch (tolower(param_getchar(Cmd, cmdp))) { case 'h': return usage_hf_mfu_restore(); case 'k': keylen = param_getstr(Cmd, cmdp + 1, tempStr, sizeof(tempStr)); if (keylen == 32 || keylen == 8) { //ul-c or ev1/ntag key length errors = param_gethex(tempStr, 0, authkey, keylen); keylen /= 2; } else { PrintAndLogEx(WARNING, "ERROR: Key is incorrect length\n"); errors = true; } cmdp += 2; hasKey = true; break; case 'l': swapEndian = true; cmdp++; break; case 'f': filelen = param_getstr(Cmd, cmdp + 1, filename, FILE_PATH_SIZE); if (filelen > FILE_PATH_SIZE - 5) filelen = FILE_PATH_SIZE - 5; if (filelen < 1) sprintf(filename, "dumpdata.bin"); cmdp += 2; break; case 's': cmdp++; write_special = true; break; case 'e': cmdp++; write_extra = true; break; case 'r': cmdp++; read_key = true; break; default: PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } } //Validations if (errors || cmdp == 0) return usage_hf_mfu_restore(); if ((f = fopen(filename, "rb")) == NULL) { PrintAndLogEx(WARNING, "Could not find file " _YELLOW_("%s"), filename); return 1; } // get filesize to know how memory to allocate fseek(f, 0, SEEK_END); long fsize = ftell(f); fseek(f, 0, SEEK_SET); if (fsize <= 0) { PrintAndLogEx(ERR, "Error, when getting filesize"); fclose(f); return 1; } uint8_t *dump = calloc(fsize, sizeof(uint8_t)); if (!dump) { PrintAndLogEx(WARNING, "Failed to allocate memory"); fclose(f); return 1; } // read all data size_t bytes_read = fread(dump, 1, fsize, f); fclose(f); if (bytes_read < MFU_DUMP_PREFIX_LENGTH) { PrintAndLogEx(ERR, "Error, dump file is too small"); free(dump); return 1; } // convert old format to new format, if need int res = convertOldMfuDump(&dump, &bytes_read); if (res) { PrintAndLogEx(WARNING, "Failed convert on load to new Ultralight/NTAG format"); free(dump); return res; } mfu_dump_t *mem = (mfu_dump_t *)dump; uint8_t pages = (bytes_read - MFU_DUMP_PREFIX_LENGTH) / 4; if (pages - 1 != mem->pages) { PrintAndLogEx(ERR, "Error, invalid dump, wrong page count"); free(dump); return 1; } PrintAndLogEx(INFO, "Restoring " _YELLOW_("%s")" to card", filename); // print dump printMFUdumpEx(mem, pages, 0); // Swap endianness if (swapEndian && hasKey) { if (keylen == 16) p_authkey = SwapEndian64(authkey, keylen, 8); else p_authkey = SwapEndian64(authkey, keylen, 4); } uint8_t data[20] = {0}; uint8_t keytype = 0; // set key - only once if (hasKey) { keytype = (keylen == 16) ? 1 : 2; memcpy(data + 4, p_authkey, keylen); } // write version, signature, pack // only magic NTAG cards if (write_extra) { #define MFU_NTAG_SPECIAL_PWD 0xF0 #define MFU_NTAG_SPECIAL_PACK 0xF1 #define MFU_NTAG_SPECIAL_VERSION 0xFA #define MFU_NTAG_SPECIAL_SIGNATURE 0xF2 // pwd if (hasKey || read_key) { if (read_key) { // try reading key from dump and use. memcpy(data, mem->data + (bytes_read - MFU_DUMP_PREFIX_LENGTH - 8), 4); } else { memcpy(data, p_authkey, 4); } PrintAndLogEx(NORMAL, "special PWD block written 0x%X - %s\n", MFU_NTAG_SPECIAL_PWD, sprint_hex(data, 4)); clearCommandBuffer(); SendCommandOLD(CMD_MIFAREU_WRITEBL, MFU_NTAG_SPECIAL_PWD, keytype, 0, data, sizeof(data)); wait4response(MFU_NTAG_SPECIAL_PWD); // copy the new key keytype = 2; memcpy(authkey, data, 4); memcpy(data + 4, authkey, 4); } // pack memcpy(data, mem->data + (bytes_read - MFU_DUMP_PREFIX_LENGTH - 4), 2); data[2] = 0; data[3] = 0; PrintAndLogEx(NORMAL, "special PACK block written 0x%X - %s\n", MFU_NTAG_SPECIAL_PACK, sprint_hex(data, 4)); clearCommandBuffer(); SendCommandOLD(CMD_MIFAREU_WRITEBL, MFU_NTAG_SPECIAL_PACK, keytype, 0, data, sizeof(data)); wait4response(MFU_NTAG_SPECIAL_PACK); // Signature for (uint8_t s = MFU_NTAG_SPECIAL_SIGNATURE, i = 0; s < MFU_NTAG_SPECIAL_SIGNATURE + 8; s++, i += 4) { memcpy(data, mem->signature + i, 4); PrintAndLogEx(NORMAL, "special SIG block written 0x%X - %s\n", s, sprint_hex(data, 4)); clearCommandBuffer(); SendCommandOLD(CMD_MIFAREU_WRITEBL, s, keytype, 0, data, sizeof(data)); wait4response(s); } // Version for (uint8_t s = MFU_NTAG_SPECIAL_VERSION, i = 0; s < MFU_NTAG_SPECIAL_VERSION + 2; s++, i += 4) { memcpy(data, mem->version + i, 4); PrintAndLogEx(NORMAL, "special VERSION block written 0x%X - %s\n", s, sprint_hex(data, 4)); clearCommandBuffer(); SendCommandOLD(CMD_MIFAREU_WRITEBL, s, keytype, 0, data, sizeof(data)); wait4response(s); } } PrintAndLogEx(INFO, "Restoring data blocks."); // write all other data // Skip block 0,1,2,3 (only magic tags can write to them) // Skip last 5 blocks usually is configuration for (uint8_t b = 4; b < pages - 5; b++) { //Send write Block memcpy(data, mem->data + (b * 4), 4); clearCommandBuffer(); SendCommandOLD(CMD_MIFAREU_WRITEBL, b, keytype, 0, data, sizeof(data)); wait4response(b); printf("."); fflush(stdout); } PrintAndLogEx(NORMAL, "\n"); // write special data last if (write_special) { PrintAndLogEx(INFO, "Restoring configuration blocks.\n"); PrintAndLogEx(NORMAL, "authentication with keytype[%x] %s\n", (uint8_t)(keytype & 0xff), sprint_hex(p_authkey, 4)); // otp, uid, lock, cfg1, cfg0, dynlockbits uint8_t blocks[] = {3, 0, 1, 2, pages - 5, pages - 4, pages - 3}; for (uint8_t i = 0; i < sizeof(blocks); i++) { uint8_t b = blocks[i]; memcpy(data, mem->data + (b * 4), 4); clearCommandBuffer(); SendCommandOLD(CMD_MIFAREU_WRITEBL, b, keytype, 0, data, sizeof(data)); wait4response(b); PrintAndLogEx(NORMAL, "special block written %u - %s\n", b, sprint_hex(data, 4)); } } DropField(); free(dump); PrintAndLogEx(INFO, "Finish restore"); return 0; } // // Load emulator with dump file // static int CmdHF14AMfUeLoad(const char *Cmd) { char c = tolower(param_getchar(Cmd, 0)); if (c == 'h' || c == 0x00) return usage_hf_mfu_eload(); return CmdHF14AMfELoad(Cmd); } // // Simulate tag // static int CmdHF14AMfUSim(const char *Cmd) { char c = tolower(param_getchar(Cmd, 0)); if (c == 'h' || c == 0x00) return usage_hf_mfu_sim(); return CmdHF14ASim(Cmd); } //------------------------------------------------------------------------------- // Ultralight C Methods //------------------------------------------------------------------------------- // // Ultralight C Authentication Demo {currently uses hard-coded key} // static int CmdHF14AMfUCAuth(const char *Cmd) { uint8_t keyNo = 3; bool errors = false; char cmdp = tolower(param_getchar(Cmd, 0)); //Change key to user defined one if (cmdp == 'k') { keyNo = param_get8(Cmd, 1); if (keyNo >= ARRAYLEN(default_3des_keys)) errors = true; } if (cmdp == 'h') errors = true; if (errors) return usage_hf_mfu_ucauth(); uint8_t *key = default_3des_keys[keyNo]; if (ulc_authentication(key, true)) PrintAndLogEx(SUCCESS, "Authentication successful. 3des key: %s", sprint_hex(key, 16)); else PrintAndLogEx(WARNING, "Authentication failed"); return 0; } /** A test function to validate that the polarssl-function works the same was as the openssl-implementation. Commented out, since it requires openssl static int CmdTestDES(const char * cmd) { uint8_t key[16] = {0x00}; memcpy(key,key3_3des_data,16); DES_cblock RndA, RndB; PrintAndLogEx(NORMAL, "----------OpenSSL DES implementation----------"); { uint8_t e_RndB[8] = {0x00}; unsigned char RndARndB[16] = {0x00}; DES_cblock iv = { 0 }; DES_key_schedule ks1,ks2; DES_cblock key1,key2; memcpy(key,key3_3des_data,16); memcpy(key1,key,8); memcpy(key2,key+8,8); DES_set_key((DES_cblock *)key1,&ks1); DES_set_key((DES_cblock *)key2,&ks2); DES_random_key(&RndA); PrintAndLogEx(NORMAL, " RndA:%s",sprint_hex(RndA, 8)); PrintAndLogEx(NORMAL, " e_RndB:%s",sprint_hex(e_RndB, 8)); //void DES_ede2_cbc_encrypt(const unsigned char *input, // unsigned char *output, long length, DES_key_schedule *ks1, // DES_key_schedule *ks2, DES_cblock *ivec, int enc); DES_ede2_cbc_encrypt(e_RndB,RndB,sizeof(e_RndB),&ks1,&ks2,&iv,0); PrintAndLogEx(NORMAL, " RndB:%s",sprint_hex(RndB, 8)); rol(RndB,8); memcpy(RndARndB,RndA,8); memcpy(RndARndB+8,RndB,8); PrintAndLogEx(NORMAL, " RA+B:%s",sprint_hex(RndARndB, 16)); DES_ede2_cbc_encrypt(RndARndB,RndARndB,sizeof(RndARndB),&ks1,&ks2,&e_RndB,1); PrintAndLogEx(NORMAL, "enc(RA+B):%s",sprint_hex(RndARndB, 16)); } PrintAndLogEx(NORMAL, "----------PolarSSL implementation----------"); { uint8_t random_a[8] = { 0 }; uint8_t enc_random_a[8] = { 0 }; uint8_t random_b[8] = { 0 }; uint8_t enc_random_b[8] = { 0 }; uint8_t random_a_and_b[16] = { 0 }; des3_context ctx = { 0 }; memcpy(random_a, RndA,8); uint8_t output[8] = { 0 }; uint8_t iv[8] = { 0 }; PrintAndLogEx(NORMAL, " RndA :%s",sprint_hex(random_a, 8)); PrintAndLogEx(NORMAL, " e_RndB:%s",sprint_hex(enc_random_b, 8)); des3_set2key_dec(&ctx, key); des3_crypt_cbc(&ctx // des3_context *ctx , DES_DECRYPT // int mode , sizeof(random_b) // size_t length , iv // unsigned char iv[8] , enc_random_b // const unsigned char *input , random_b // unsigned char *output ); PrintAndLogEx(NORMAL, " RndB:%s",sprint_hex(random_b, 8)); rol(random_b,8); memcpy(random_a_and_b ,random_a,8); memcpy(random_a_and_b+8,random_b,8); PrintAndLogEx(NORMAL, " RA+B:%s",sprint_hex(random_a_and_b, 16)); des3_set2key_enc(&ctx, key); des3_crypt_cbc(&ctx // des3_context *ctx , DES_ENCRYPT // int mode , sizeof(random_a_and_b) // size_t length , enc_random_b // unsigned char iv[8] , random_a_and_b // const unsigned char *input , random_a_and_b // unsigned char *output ); PrintAndLogEx(NORMAL, "enc(RA+B):%s",sprint_hex(random_a_and_b, 16)); } return 0; } **/ // // Mifare Ultralight C - Set password // static int CmdHF14AMfUCSetPwd(const char *Cmd) { uint8_t pwd[16] = {0x00}; char cmdp = tolower(param_getchar(Cmd, 0)); if (strlen(Cmd) == 0 || cmdp == 'h') return usage_hf_mfu_ucsetpwd(); if (param_gethex(Cmd, 0, pwd, 32)) { PrintAndLogEx(WARNING, "Password must include 32 HEX symbols"); return 1; } clearCommandBuffer(); SendCommandOLD(CMD_MIFAREUC_SETPWD, 0, 0, 0, pwd, 16); PacketResponseNG resp; if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) { if ((resp.oldarg[0] & 0xff) == 1) { PrintAndLogEx(INFO, "Ultralight-C new password: %s", sprint_hex(pwd, 16)); } else { PrintAndLogEx(WARNING, "Failed writing at block %d", resp.oldarg[1] & 0xff); return 1; } } else { PrintAndLogEx(WARNING, "command execution time out"); return 1; } return 0; } // // Magic UL / UL-C tags - Set UID // static int CmdHF14AMfUCSetUid(const char *Cmd) { PacketResponseNG resp; uint8_t uid[7] = {0x00}; char cmdp = tolower(param_getchar(Cmd, 0)); if (strlen(Cmd) == 0 || cmdp == 'h') return usage_hf_mfu_ucsetuid(); if (param_gethex(Cmd, 0, uid, 14)) { PrintAndLogEx(WARNING, "UID must include 14 HEX symbols"); return 1; } // read block2. clearCommandBuffer(); SendCommandMIX(CMD_MIFAREU_READBL, 2, 0, 0, NULL, 0); if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500)) { PrintAndLogEx(WARNING, "Command execute timeout"); return 2; } // save old block2. uint8_t oldblock2[4] = {0x00}; memcpy(resp.data.asBytes, oldblock2, 4); // block 0. uint8_t data[4]; data[0] = uid[0]; data[1] = uid[1]; data[2] = uid[2]; data[3] = 0x88 ^ uid[0] ^ uid[1] ^ uid[2]; clearCommandBuffer(); SendCommandOLD(CMD_MIFAREU_WRITEBL, 0, 0, 0, data, sizeof(data)); if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500)) { PrintAndLogEx(WARNING, "Command execute timeout"); return 3; } // block 1. data[0] = uid[3]; data[1] = uid[4]; data[2] = uid[5]; data[3] = uid[6]; clearCommandBuffer(); SendCommandOLD(CMD_MIFAREU_WRITEBL, 1, 0, 0, data, sizeof(data)); if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500)) { PrintAndLogEx(WARNING, "Command execute timeout"); return 4; } // block 2. data[0] = uid[3] ^ uid[4] ^ uid[5] ^ uid[6]; data[1] = oldblock2[1]; data[2] = oldblock2[2]; data[3] = oldblock2[3]; clearCommandBuffer(); SendCommandOLD(CMD_MIFAREU_WRITEBL, 2, 0, 0, data, sizeof(data)); if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500)) { PrintAndLogEx(WARNING, "Command execute timeout"); return 5; } return 0; } static int CmdHF14AMfUGenDiverseKeys(const char *Cmd) { uint8_t uid[4]; char cmdp = tolower(param_getchar(Cmd, 0)); if (strlen(Cmd) == 0 || cmdp == 'h') return usage_hf_mfu_gendiverse(); if (cmdp == 'r') { // read uid from tag clearCommandBuffer(); SendCommandMIX(CMD_READER_ISO_14443a, ISO14A_CONNECT | ISO14A_NO_RATS, 0, 0, NULL, 0); PacketResponseNG resp; WaitForResponse(CMD_ACK, &resp); iso14a_card_select_t card; memcpy(&card, (iso14a_card_select_t *)resp.data.asBytes, sizeof(iso14a_card_select_t)); uint64_t select_status = resp.oldarg[0]; // 0: couldn't read, // 1: OK, with ATS // 2: OK, no ATS // 3: proprietary Anticollision if (select_status == 0) { PrintAndLogEx(WARNING, "iso14443a card select failed"); return 1; } if (card.uidlen != 4) { PrintAndLogEx(WARNING, "Wrong sized UID, expected 4bytes got %d", card.uidlen); return 1; } memcpy(uid, card.uid, sizeof(uid)); } else { if (param_gethex(Cmd, 0, uid, 8)) return usage_hf_mfu_gendiverse(); } uint8_t iv[8] = { 0x00 }; uint8_t block = 0x01; uint8_t mifarekeyA[] = { 0xA0, 0xA1, 0xA2, 0xA3, 0xA4, 0xA5 }; uint8_t mifarekeyB[] = { 0xB0, 0xB1, 0xB2, 0xB3, 0xB4, 0xB5 }; uint8_t dkeyA[8] = { 0x00 }; uint8_t dkeyB[8] = { 0x00 }; uint8_t masterkey[] = { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff }; uint8_t mix[8] = { 0x00 }; uint8_t divkey[8] = { 0x00 }; memcpy(mix, mifarekeyA, 4); mix[4] = mifarekeyA[4] ^ uid[0]; mix[5] = mifarekeyA[5] ^ uid[1]; mix[6] = block ^ uid[2]; mix[7] = uid[3]; mbedtls_des3_context ctx; mbedtls_des3_set2key_enc(&ctx, masterkey); mbedtls_des3_crypt_cbc(&ctx // des3_context , MBEDTLS_DES_ENCRYPT // int mode , sizeof(mix) // length , iv // iv[8] , mix // input , divkey // output ); PrintAndLogEx(NORMAL, "-- 3DES version"); PrintAndLogEx(NORMAL, "Masterkey :\t %s", sprint_hex(masterkey, sizeof(masterkey))); PrintAndLogEx(NORMAL, "UID :\t %s", sprint_hex(uid, sizeof(uid))); PrintAndLogEx(NORMAL, "block :\t %0d", block); PrintAndLogEx(NORMAL, "Mifare key :\t %s", sprint_hex(mifarekeyA, sizeof(mifarekeyA))); PrintAndLogEx(NORMAL, "Message :\t %s", sprint_hex(mix, sizeof(mix))); PrintAndLogEx(NORMAL, "Diversified key: %s", sprint_hex(divkey + 1, 6)); for (int i = 0; i < sizeof(mifarekeyA); ++i) { dkeyA[i] = (mifarekeyA[i] << 1) & 0xff; dkeyA[6] |= ((mifarekeyA[i] >> 7) & 1) << (i + 1); } for (int i = 0; i < sizeof(mifarekeyB); ++i) { dkeyB[1] |= ((mifarekeyB[i] >> 7) & 1) << (i + 1); dkeyB[2 + i] = (mifarekeyB[i] << 1) & 0xff; } uint8_t zeros[8] = {0x00}; uint8_t newpwd[8] = {0x00}; uint8_t dmkey[24] = {0x00}; memcpy(dmkey, dkeyA, 8); memcpy(dmkey + 8, dkeyB, 8); memcpy(dmkey + 16, dkeyA, 8); memset(iv, 0x00, 8); mbedtls_des3_set3key_enc(&ctx, dmkey); mbedtls_des3_crypt_cbc(&ctx // des3_context , MBEDTLS_DES_ENCRYPT // int mode , sizeof(newpwd) // length , iv // iv[8] , zeros // input , newpwd // output ); PrintAndLogEx(NORMAL, "\n-- DES version"); PrintAndLogEx(NORMAL, "Mifare dkeyA :\t %s", sprint_hex(dkeyA, sizeof(dkeyA))); PrintAndLogEx(NORMAL, "Mifare dkeyB :\t %s", sprint_hex(dkeyB, sizeof(dkeyB))); PrintAndLogEx(NORMAL, "Mifare ABA :\t %s", sprint_hex(dmkey, sizeof(dmkey))); PrintAndLogEx(NORMAL, "Mifare Pwd :\t %s", sprint_hex(newpwd, sizeof(newpwd))); // next. from the diversify_key method. return 0; } static int CmdHF14AMfUPwdGen(const char *Cmd) { uint8_t uid[7] = {0x00}; char cmdp = tolower(param_getchar(Cmd, 0)); if (strlen(Cmd) == 0 || cmdp == 'h') return usage_hf_mfu_pwdgen(); if (cmdp == 't') return ul_ev1_pwdgen_selftest(); if (cmdp == 'r') { // read uid from tag clearCommandBuffer(); SendCommandMIX(CMD_READER_ISO_14443a, ISO14A_CONNECT | ISO14A_NO_RATS, 0, 0, NULL, 0); PacketResponseNG resp; WaitForResponse(CMD_ACK, &resp); iso14a_card_select_t card; memcpy(&card, (iso14a_card_select_t *)resp.data.asBytes, sizeof(iso14a_card_select_t)); uint64_t select_status = resp.oldarg[0]; // 0: couldn't read // 1: OK with ATS // 2: OK, no ATS // 3: proprietary Anticollision if (select_status == 0) { PrintAndLogEx(WARNING, "iso14443a card select failed"); return 1; } if (card.uidlen != 7) { PrintAndLogEx(WARNING, "Wrong sized UID, expected 7bytes got %d", card.uidlen); return 1; } memcpy(uid, card.uid, sizeof(uid)); } else { if (param_gethex(Cmd, 0, uid, 14)) return usage_hf_mfu_pwdgen(); } PrintAndLogEx(NORMAL, "---------------------------------"); PrintAndLogEx(NORMAL, " Using UID : %s", sprint_hex(uid, 7)); PrintAndLogEx(NORMAL, "---------------------------------"); PrintAndLogEx(NORMAL, " algo | pwd | pack"); PrintAndLogEx(NORMAL, "------+----------+-----"); PrintAndLogEx(NORMAL, " EV1 | %08X | %04X", ul_ev1_pwdgenA(uid), ul_ev1_packgenA(uid)); PrintAndLogEx(NORMAL, " Ami | %08X | %04X", ul_ev1_pwdgenB(uid), ul_ev1_packgenB(uid)); PrintAndLogEx(NORMAL, " LD | %08X | %04X", ul_ev1_pwdgenC(uid), ul_ev1_packgenC(uid)); PrintAndLogEx(NORMAL, " XYZ | %08X | %04X", ul_ev1_pwdgenD(uid), ul_ev1_packgenD(uid)); PrintAndLogEx(NORMAL, "------+----------+-----"); PrintAndLogEx(NORMAL, " Vingcard algo"); PrintAndLogEx(NORMAL, "--------------------"); return 0; } //------------------------------------ // Menu Stuff //------------------------------------ static command_t CommandTable[] = { {"help", CmdHelp, AlwaysAvailable, "This help"}, {"info", CmdHF14AMfUInfo, IfPm3Iso14443a, "Tag information"}, {"dump", CmdHF14AMfUDump, IfPm3Iso14443a, "Dump Ultralight / Ultralight-C / NTAG tag to binary file"}, {"restore", CmdHF14AMfURestore, IfPm3Iso14443a, "Restore a dump onto a MFU MAGIC tag"}, {"eload", CmdHF14AMfUeLoad, IfPm3Iso14443a, "load Ultralight .eml dump file into emulator memory"}, {"rdbl", CmdHF14AMfURdBl, IfPm3Iso14443a, "Read block"}, {"wrbl", CmdHF14AMfUWrBl, IfPm3Iso14443a, "Write block"}, {"cauth", CmdHF14AMfUCAuth, IfPm3Iso14443a, "Authentication - Ultralight C"}, {"setpwd", CmdHF14AMfUCSetPwd, IfPm3Iso14443a, "Set 3des password - Ultralight-C"}, {"setuid", CmdHF14AMfUCSetUid, IfPm3Iso14443a, "Set UID - MAGIC tags only"}, {"sim", CmdHF14AMfUSim, IfPm3Iso14443a, "Simulate Ultralight from emulator memory"}, {"gen", CmdHF14AMfUGenDiverseKeys, AlwaysAvailable, "Generate 3des mifare diversified keys"}, {"pwdgen", CmdHF14AMfUPwdGen, AlwaysAvailable, "Generate pwd from known algos"}, {NULL, NULL, NULL, NULL} }; static int CmdHelp(const char *Cmd) { (void)Cmd; // Cmd is not used so far CmdsHelp(CommandTable); return 0; } int CmdHFMFUltra(const char *Cmd) { clearCommandBuffer(); return CmdsParse(CommandTable, Cmd); }