//----------------------------------------------------------------------------- // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Low frequency Indala commands // PSK1, rf/32, 64 or 224 bits (known) //----------------------------------------------------------------------------- #include "cmdlfindala.h" #include #include #include #include #include "cmdparser.h" // command_t #include "comms.h" #include "graph.h" #include "cliparser/cliparser.h" #include "commonutil.h" #include "ui.h" // PrintAndLog #include "lfdemod.h" // parityTest, bitbytes_to_byte #include "cmddata.h" #include "cmdlf.h" // lf_read #include "protocols.h" // t55 defines #include "cmdlft55xx.h" // verifywrite static int CmdHelp(const char *Cmd); //large 224 bit indala formats (different preamble too...) static uint8_t preamble224[] = {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}; // standard 64 bit indala formats including 26 bit 40134 format static uint8_t preamble64[] = {1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}; static int usage_lf_indala_demod(void) { PrintAndLogEx(NORMAL, "Tries to psk demodulate the graphbuffer as Indala "); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Usage: lf indala demod [h] <0|1> "); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h : This help"); PrintAndLogEx(NORMAL, " clock : Set clock (as integer) optional, if not set, autodetect."); PrintAndLogEx(NORMAL, " invert : 1 for invert output"); PrintAndLogEx(NORMAL, " maxerror : Set maximum allowed errors, default = 100."); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " lf indala demod"); PrintAndLogEx(NORMAL, " lf indala demod 32 = demod a Indala tag from GraphBuffer using a clock of RF/32"); PrintAndLogEx(NORMAL, " lf indala demod 32 1 = demod a Indala tag from GraphBuffer using a clock of RF/32 and inverting data"); PrintAndLogEx(NORMAL, " lf indala demod 64 1 0 = demod a Indala tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors"); return PM3_SUCCESS; } static int usage_lf_indala_sim(void) { PrintAndLogEx(NORMAL, "Enables simulation of Indala card with specified uid."); PrintAndLogEx(NORMAL, "Simulation runs until the button is pressed or another USB command is issued."); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Usage: lf indala sim [h] "); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h : This help"); PrintAndLogEx(NORMAL, " : 64/224 UID"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " lf indala sim deadc0de"); return PM3_SUCCESS; } // Indala 26 bit decode // by marshmellow // optional arguments - same as PSKDemod (clock & invert & maxerr) static int CmdIndalaDemod(const char *Cmd) { char cmdp = tolower(param_getchar(Cmd, 0)); if (cmdp == 'h') return usage_lf_indala_demod(); int ans; if (strlen(Cmd) > 0) ans = PSKDemod(Cmd, true); else ans = PSKDemod("32", true); if (ans != PM3_SUCCESS) { PrintAndLogEx(DEBUG, "DEBUG: Error - Indala can't demod signal: %d", ans); return PM3_ESOFT; } uint8_t invert = 0; size_t size = DemodBufferLen; int idx = detectIndala(DemodBuffer, &size, &invert); if (idx < 0) { if (idx == -1) PrintAndLogEx(DEBUG, "DEBUG: Error - Indala: not enough samples"); else if (idx == -2) PrintAndLogEx(DEBUG, "DEBUG: Error - Indala: only noise found"); else if (idx == -4) PrintAndLogEx(DEBUG, "DEBUG: Error - Indala: preamble not found"); else if (idx == -5) PrintAndLogEx(DEBUG, "DEBUG: Error - Indala: size not correct: %zu", size); else PrintAndLogEx(DEBUG, "DEBUG: Error - Indala: error demoding psk idx: %d", idx); return PM3_ESOFT; } setDemodBuff(DemodBuffer, size, idx); setClockGrid(g_DemodClock, g_DemodStartIdx + (idx * g_DemodClock)); //convert UID to HEX uint32_t uid1 = bytebits_to_byte(DemodBuffer, 32); uint32_t uid2 = bytebits_to_byte(DemodBuffer + 32, 32); // To be checked, what's this internal ID ? // foo is only used for 64b ids and in that case uid1 must be only preamble, plus the following code is wrong as x<<32 & 0x1FFFFFFF is always zero //uint64_t foo = (((uint64_t)uid1 << 32) & 0x1FFFFFFF) | (uid2 & 0x7FFFFFFF); uint64_t foo = uid2 & 0x7FFFFFFF; if (DemodBufferLen == 64) { PrintAndLogEx( SUCCESS , "Indala Found - bitlength %zu, Raw %x%08x" , DemodBufferLen , uid1 , uid2 ); uint16_t p1 = 0; p1 |= DemodBuffer[32 + 3] << 8; p1 |= DemodBuffer[32 + 6] << 5; p1 |= DemodBuffer[32 + 8] << 4; p1 |= DemodBuffer[32 + 9] << 3; p1 |= DemodBuffer[32 + 11] << 1; p1 |= DemodBuffer[32 + 16] << 6; p1 |= DemodBuffer[32 + 19] << 7; p1 |= DemodBuffer[32 + 20] << 10; p1 |= DemodBuffer[32 + 21] << 2; p1 |= DemodBuffer[32 + 22] << 0; p1 |= DemodBuffer[32 + 24] << 9; /* uint16_t fc = 0; fc |= DemodBuffer[32+ 1] << 0; fc |= DemodBuffer[32+ 2] << 1; fc |= DemodBuffer[32+ 4] << 2; fc |= DemodBuffer[32+ 5] << 3; fc |= DemodBuffer[32+ 7] << 4; fc |= DemodBuffer[32+10] << 5; fc |= DemodBuffer[32+14] << 6; fc |= DemodBuffer[32+15] << 7; fc |= DemodBuffer[32+17] << 8; */ PrintAndLogEx(NORMAL, ""); PrintAndLogEx(SUCCESS, "Possible de-scramble patterns"); PrintAndLogEx(SUCCESS, "\tPrinted | __%04d__ [0x%X]", p1, p1); //PrintAndLogEx(SUCCESS, "\tPrinted | __%04d__ [0x%X]", fc, fc); PrintAndLogEx(SUCCESS, "\tInternal ID | %" PRIu64, foo); } else { uint32_t uid3 = bytebits_to_byte(DemodBuffer + 64, 32); uint32_t uid4 = bytebits_to_byte(DemodBuffer + 96, 32); uint32_t uid5 = bytebits_to_byte(DemodBuffer + 128, 32); uint32_t uid6 = bytebits_to_byte(DemodBuffer + 160, 32); uint32_t uid7 = bytebits_to_byte(DemodBuffer + 192, 32); PrintAndLogEx( SUCCESS , "Indala Found - bitlength %zu, Raw 0x%x%08x%08x%08x%08x%08x%08x" , DemodBufferLen , uid1 , uid2 , uid3 , uid4 , uid5 , uid6 , uid7 ); } if (g_debugMode) { PrintAndLogEx(DEBUG, "DEBUG: Indala - printing demodbuffer"); printDemodBuff(); } return PM3_SUCCESS; } // older alternative indala demodulate (has some positives and negatives) // returns false positives more often - but runs against more sets of samples // poor psk signal can be difficult to demod this approach might succeed when the other fails // but the other appears to currently be more accurate than this approach most of the time. static int CmdIndalaDemodAlt(const char *Cmd) { // Usage: recover 64bit UID by default, specify "224" as arg to recover a 224bit UID int state = -1; int count = 0; int i, j; // worst case with GraphTraceLen=40000 is < 4096 // under normal conditions it's < 2048 uint8_t data[MAX_GRAPH_TRACE_LEN] = {0}; size_t datasize = getFromGraphBuf(data); uint8_t rawbits[4096]; int rawbit = 0; int worst = 0, worstPos = 0; //clear clock grid and demod plot setClockGrid(0, 0); DemodBufferLen = 0; // PrintAndLogEx(NORMAL, "Expecting a bit less than %d raw bits", GraphTraceLen / 32); // loop through raw signal - since we know it is psk1 rf/32 fc/2 skip every other value (+=2) for (i = 0; i < datasize - 1; i += 2) { count += 1; if ((data[i] > data[i + 1]) && (state != 1)) { // appears redundant - marshmellow if (state == 0) { for (j = 0; j < count - 8; j += 16) { rawbits[rawbit++] = 0; } if ((abs(count - j)) > worst) { worst = abs(count - j); worstPos = i; } } state = 1; count = 0; } else if ((data[i] < data[i + 1]) && (state != 0)) { //appears redundant if (state == 1) { for (j = 0; j < count - 8; j += 16) { rawbits[rawbit++] = 1; } if ((abs(count - j)) > worst) { worst = abs(count - j); worstPos = i; } } state = 0; count = 0; } } if (rawbit > 0) { PrintAndLogEx(INFO, "Recovered %d raw bits, expected: %zu", rawbit, GraphTraceLen / 32); PrintAndLogEx(INFO, "worst metric (0=best..7=worst): %d at pos %d", worst, worstPos); } else { return PM3_ESOFT; } // Finding the start of a UID int uidlen, long_wait; if (strcmp(Cmd, "224") == 0) { uidlen = 224; long_wait = 30; } else { uidlen = 64; long_wait = 29; } int start; int first = 0; for (start = 0; start <= rawbit - uidlen; start++) { first = rawbits[start]; for (i = start; i < start + long_wait; i++) { if (rawbits[i] != first) { break; } } if (i == (start + long_wait)) { break; } } if (start == rawbit - uidlen + 1) { PrintAndLogEx(FAILED, "nothing to wait for"); return PM3_ESOFT; } // Inverting signal if needed if (first == 1) { for (i = start; i < rawbit; i++) { rawbits[i] = !rawbits[i]; } } // Dumping UID uint8_t bits[224] = {0x00}; char showbits[225] = {0x00}; int bit; i = start; int times = 0; if (uidlen > rawbit) { PrintAndLogEx(WARNING, "Warning: not enough raw bits to get a full UID"); for (bit = 0; bit < rawbit; bit++) { bits[bit] = rawbits[i++]; // As we cannot know the parity, let's use "." and "/" showbits[bit] = '.' + bits[bit]; } showbits[bit + 1] = '\0'; PrintAndLogEx(SUCCESS, "Partial UID | %s", showbits); return PM3_SUCCESS; } else { for (bit = 0; bit < uidlen; bit++) { bits[bit] = rawbits[i++]; showbits[bit] = '0' + bits[bit]; } times = 1; } //convert UID to HEX int idx; uint32_t uid1 = 0; uint32_t uid2 = 0; if (uidlen == 64) { for (idx = 0; idx < 64; idx++) { if (showbits[idx] == '0') { uid1 = (uid1 << 1) | (uid2 >> 31); uid2 = (uid2 << 1) | 0; } else { uid1 = (uid1 << 1) | (uid2 >> 31); uid2 = (uid2 << 1) | 1; } } PrintAndLogEx(SUCCESS, "UID | %s (%x%08x)", showbits, uid1, uid2); } else { uint32_t uid3 = 0; uint32_t uid4 = 0; uint32_t uid5 = 0; uint32_t uid6 = 0; uint32_t uid7 = 0; for (idx = 0; idx < 224; idx++) { uid1 = (uid1 << 1) | (uid2 >> 31); uid2 = (uid2 << 1) | (uid3 >> 31); uid3 = (uid3 << 1) | (uid4 >> 31); uid4 = (uid4 << 1) | (uid5 >> 31); uid5 = (uid5 << 1) | (uid6 >> 31); uid6 = (uid6 << 1) | (uid7 >> 31); if (showbits[idx] == '0') uid7 = (uid7 << 1) | 0; else uid7 = (uid7 << 1) | 1; } PrintAndLogEx(SUCCESS, "UID | %s (%x%08x%08x%08x%08x%08x%08x)", showbits, uid1, uid2, uid3, uid4, uid5, uid6, uid7); } // Checking UID against next occurrences for (; i + uidlen <= rawbit;) { int failed = 0; for (bit = 0; bit < uidlen; bit++) { if (bits[bit] != rawbits[i++]) { failed = 1; break; } } if (failed == 1) { break; } times += 1; } PrintAndLogEx(DEBUG, "Occurrences: %d (expected %d)", times, (rawbit - start) / uidlen); // Remodulating for tag cloning // HACK: 2015-01-04 this will have an impact on our new way of seening lf commands (demod) // since this changes graphbuffer data. GraphTraceLen = 32 * uidlen; i = 0; int phase; for (bit = 0; bit < uidlen; bit++) { if (bits[bit] == 0) { phase = 0; } else { phase = 1; } for (j = 0; j < 32; j++) { GraphBuffer[i++] = phase; phase = !phase; } } RepaintGraphWindow(); return PM3_SUCCESS; } // this read is the "normal" read, which download lf signal and tries to demod here. static int CmdIndalaRead(const char *Cmd) { lf_read(true, 30000); return CmdIndalaDemod(Cmd); } static int CmdIndalaSim(const char *Cmd) { char cmdp = tolower(param_getchar(Cmd, 0)); if (strlen(Cmd) == 0 || cmdp == 'h') return usage_lf_indala_sim(); uint8_t bs[224]; memset(bs, 0x00, sizeof(bs)); // uid uint8_t hexuid[100]; int len = 0; param_gethex_ex(Cmd, 0, hexuid, &len); if (len > 28) return usage_lf_indala_sim(); // convert to binarray uint8_t counter = 223; for (uint8_t i = 0; i < len; i++) { for (uint8_t j = 0; j < 8; j++) { bs[counter--] = hexuid[i] & 1; hexuid[i] >>= 1; } } // indala PSK // It has to send either 64bits (8bytes) or 224bits (28bytes). Zero padding needed if not. // lf simpsk 1 c 32 r 2 d 0102030405060708 PrintAndLogEx(SUCCESS, "Simulating Indala UID: %s", sprint_hex(hexuid, len)); PrintAndLogEx(SUCCESS, "Press pm3-button to abort simulation or run another command"); // indala PSK, clock 32, carrier 0 lf_psksim_t *payload = calloc(1, sizeof(lf_psksim_t) + sizeof(bs)); payload->carrier = 2; payload->invert = 0; payload->clock = 32; memcpy(payload->data, bs, sizeof(bs)); PrintAndLogEx(INFO, "Simulating"); clearCommandBuffer(); SendCommandNG(CMD_LF_PSK_SIMULATE, (uint8_t *)payload, sizeof(lf_psksim_t) + sizeof(bs)); free(payload); PacketResponseNG resp; WaitForResponse(CMD_LF_PSK_SIMULATE, &resp); PrintAndLogEx(INFO, "Done"); if (resp.status != PM3_EOPABORTED) return resp.status; return PM3_SUCCESS; } static int CmdIndalaClone(const char *Cmd) { bool isLongUid = false; uint32_t blocks[8] = {0}; uint8_t max = 0; uint8_t data[7 * 4]; int datalen = 0; CLIParserInit("lf indala clone", "Enables cloning of Indala card with specified uid onto T55x7\n" "defaults to 64.\n", "\n" "Samples:\n" "\tlf indala clone a0000000a0002021\n" "\tlf indala clone -l 80000001b23523a6c2e31eba3cbee4afb3c6ad1fcf649393928c14e5"); void *argtable[] = { arg_param_begin, arg_lit0("lL", "long", "long UID 224 bits"), arg_strx1(NULL, NULL, "", NULL), arg_param_end }; CLIExecWithReturn(Cmd, argtable, false); isLongUid = arg_get_lit(1); CLIGetHexWithReturn(2, data, &datalen); CLIParserFree(); /* //TODO add selection of chip for Q5 or T55x7 // data[0] = T5555_SET_BITRATE(32 | T5555_MODULATION_PSK2 | 7 << T5555_MAXBLOCK_SHIFT; //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data) // T5567WriteBlock(0x603E10E2,0); // data[0] = T5555_SET_BITRATE(32 | T5555_MODULATION_PSK1 | 2 << T5555_MAXBLOCK_SHIFT; //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data) // T5567WriteBlock(0x603E1042,0); */ if (isLongUid) { // config for Indala (RF/32;PSK2 with RF/2;Maxblock=7) PrintAndLogEx(INFO, "Preparing to clone Indala 224bit tag with RawID %s", sprint_hex(data, datalen)); blocks[0] = T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK2 | (7 << T55x7_MAXBLOCK_SHIFT); blocks[1] = bytes_to_num(data, 4); blocks[2] = bytes_to_num(data + 4, 4); blocks[3] = bytes_to_num(data + 8, 4); blocks[4] = bytes_to_num(data + 12, 4); blocks[5] = bytes_to_num(data + 16, 4); blocks[6] = bytes_to_num(data + 20, 4); blocks[7] = bytes_to_num(data + 24, 4); max = 8; } else { // config for Indala 64 format (RF/32;PSK1 with RF/2;Maxblock=2) PrintAndLogEx(INFO, "Preparing to clone Indala 64bit tag with RawID %s", sprint_hex(data, datalen)); blocks[0] = T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (2 << T55x7_MAXBLOCK_SHIFT); blocks[1] = bytes_to_num(data, 4); blocks[2] = bytes_to_num(data + 4, 4); max = 3; } print_blocks(blocks, max); return clone_t55xx_tag(blocks, max); } static command_t CommandTable[] = { {"help", CmdHelp, AlwaysAvailable, "this help"}, {"demod", CmdIndalaDemod, AlwaysAvailable, "demodulate an indala tag (PSK1) from GraphBuffer"}, {"altdemod", CmdIndalaDemodAlt, AlwaysAvailable, "alternative method to Demodulate samples for Indala 64 bit UID (option '224' for 224 bit)"}, {"read", CmdIndalaRead, IfPm3Lf, "read an Indala Prox tag from the antenna"}, {"clone", CmdIndalaClone, IfPm3Lf, "clone Indala to T55x7"}, {"sim", CmdIndalaSim, IfPm3Lf, "simulate Indala tag"}, {NULL, NULL, NULL, NULL} }; static int CmdHelp(const char *Cmd) { (void)Cmd; // Cmd is not used so far CmdsHelp(CommandTable); return PM3_SUCCESS; } int CmdLFINDALA(const char *Cmd) { clearCommandBuffer(); return CmdsParse(CommandTable, Cmd); } // redesigned by marshmellow adjusted from existing decode functions // indala id decoding int detectIndala(uint8_t *dest, size_t *size, uint8_t *invert) { uint8_t preamble64_i[] = {0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0}; uint8_t preamble224_i[] = {0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0}; size_t idx = 0; size_t found_size = *size; // PSK1 bool res = preambleSearch(dest, preamble64, sizeof(preamble64), &found_size, &idx); if (res) { PrintAndLogEx(DEBUG, "DEBUG: detectindala PSK1 found 64"); goto out; } idx = 0; found_size = *size; res = preambleSearch(dest, preamble64_i, sizeof(preamble64_i), &found_size, &idx); if (res) { PrintAndLogEx(DEBUG, "DEBUG: detectindala PSK1 found 64 inverted preamble"); goto inv; } /* idx = 0; found_size = *size; res = preambleSearch(dest, preamble224, sizeof(preamble224), &found_size, &idx); if ( res ) { PrintAndLogEx(DEBUG, "DEBUG: detectindala PSK1 found 224"); goto out; } idx = 0; found_size = *size; res = preambleSearch(dest, preamble224_i, sizeof(preamble224_i), &found_size, &idx); if ( res ) { PrintAndLogEx(DEBUG, "DEBUG: detectindala PSK1 found 224 inverted preamble"); goto inv; } */ // PSK2 psk1TOpsk2(dest, *size); PrintAndLogEx(DEBUG, "DEBUG: detectindala Converting PSK1 -> PSK2"); idx = 0; found_size = *size; res = preambleSearch(dest, preamble64, sizeof(preamble64), &found_size, &idx); if (res) { PrintAndLogEx(DEBUG, "DEBUG: detectindala PSK2 found 64 preamble"); goto out; } idx = 0; found_size = *size; res = preambleSearch(dest, preamble224, sizeof(preamble224), &found_size, &idx); if (res) { PrintAndLogEx(DEBUG, "DEBUG: detectindala PSK2 found 224 preamble"); goto out; } idx = 0; found_size = *size; res = preambleSearch(dest, preamble64_i, sizeof(preamble64_i), &found_size, &idx); if (res) { PrintAndLogEx(DEBUG, "DEBUG: detectindala PSK2 found 64 inverted preamble"); goto inv; } idx = 0; found_size = *size; res = preambleSearch(dest, preamble224_i, sizeof(preamble224_i), &found_size, &idx); if (res) { PrintAndLogEx(DEBUG, "DEBUG: detectindala PSK2 found 224 inverted preamble"); goto inv; } inv: if (res == 0) { return -4; } *invert ^= 1; if (*invert && idx > 0) { for (size_t i = idx - 1; i < found_size + idx + 2; i++) { dest[i] ^= 1; } } PrintAndLogEx(DEBUG, "DEBUG: Warning - Indala had to invert bits"); out: *size = found_size; //PrintAndLogEx(INFO, "DEBUG: detectindala RES = %d | %d | %d", res, found_size, idx); if (found_size != 224 && found_size != 64) { PrintAndLogEx(INFO, "DEBUG: detectindala | %zu", found_size); return -5; } // 224 formats are typically PSK2 (afaik 2017 Marshmellow) // note loses 1 bit at beginning of transformation... return (int) idx; } int demodIndala(void) { return CmdIndalaDemod(""); }