//-----------------------------------------------------------------------------
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Low frequency Indala commands
// PSK1, rf/32, 64 or 224 bits (known)
//-----------------------------------------------------------------------------

#include "cmdlfindala.h"

static int CmdHelp(const char *Cmd);

int usage_lf_indala_demod(void) {
    PrintAndLogEx(NORMAL, "Enables Indala compatible reader mode printing details of scanned tags.");
    PrintAndLogEx(NORMAL, "By default, values are printed and logged until the button is pressed or another USB command is issued.");
    PrintAndLogEx(NORMAL, "");
    PrintAndLogEx(NORMAL, "Usage:  lf indala demod [h]");
    PrintAndLogEx(NORMAL, "Options:");
    PrintAndLogEx(NORMAL, "      h :  This help");
    PrintAndLogEx(NORMAL, "");
    PrintAndLogEx(NORMAL, "Examples:");
    PrintAndLogEx(NORMAL, "        lf indala demod");
    return 0;
}

int usage_lf_indala_sim(void) {
    PrintAndLogEx(NORMAL, "Enables simulation of Indala card with specified uid.");
    PrintAndLogEx(NORMAL, "Simulation runs until the button is pressed or another USB command is issued.");
    PrintAndLogEx(NORMAL, "");
    PrintAndLogEx(NORMAL, "Usage:  lf indala sim [h] <uid>");
    PrintAndLogEx(NORMAL, "Options:");
    PrintAndLogEx(NORMAL, "            h :  This help");
    PrintAndLogEx(NORMAL, "        <uid> :  64/224 UID");
    PrintAndLogEx(NORMAL, "");
    PrintAndLogEx(NORMAL, "Examples:");
    PrintAndLogEx(NORMAL, "       lf indala sim deadc0de");
    return 0;
}

int usage_lf_indala_clone(void) {
    PrintAndLogEx(NORMAL, "Enables cloning of Indala card with specified uid onto T55x7.");
    PrintAndLogEx(NORMAL, "The T55x7 must be on the antenna when issuing this command.  T55x7 blocks are calculated and printed in the process.");
    PrintAndLogEx(NORMAL, "");
    PrintAndLogEx(NORMAL, "Usage:  lf indala clone [h] <uid> [Q5]");
    PrintAndLogEx(NORMAL, "Options:");
    PrintAndLogEx(NORMAL, "            h :  This help");
    PrintAndLogEx(NORMAL, "        <uid> :  64/224 UID");
    PrintAndLogEx(NORMAL, "           Q5 :  optional - clone to Q5 (T5555) instead of T55x7 chip");
    PrintAndLogEx(NORMAL, "");
    PrintAndLogEx(NORMAL, "Examples:");
    PrintAndLogEx(NORMAL, "       lf indala clone 112233");
    return 0;
}

// redesigned by marshmellow adjusted from existing decode functions
// indala id decoding
int indala64decode(uint8_t *dest, size_t *size, uint8_t *invert) {
    //standard 64 bit indala formats including 26 bit 40134 format
    uint8_t   preamble64[] = {1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1};
    uint8_t preamble64_i[] = {0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0};
    size_t idx = 0;
    size_t found_size = *size;
    if (!preambleSearch(dest, preamble64, sizeof(preamble64), &found_size, &idx)) {
        // if didn't find preamble try again inverting
        if (!preambleSearch(dest, preamble64_i, sizeof(preamble64_i), &found_size, &idx)) return -1;
        *invert ^= 1;
    }
    if (found_size != 64) return -2;

    if (*invert == 1)
        for (size_t i = idx; i < found_size + idx; i++)
            dest[i] ^= 1;

    // note: don't change *size until we are sure we got it...
    *size = found_size;
    return (int) idx;
}

int indala224decode(uint8_t *dest, size_t *size, uint8_t *invert) {
    //large 224 bit indala formats (different preamble too...)
    uint8_t   preamble224[] = {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1};
    uint8_t preamble224_i[] = {0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0};
    size_t idx = 0;
    size_t found_size = *size;
    if (!preambleSearch(dest, preamble224, sizeof(preamble224), &found_size, &idx)) {
        // if didn't find preamble try again inverting
        if (!preambleSearch(dest, preamble224_i, sizeof(preamble224_i), &found_size, &idx)) return -1;
        *invert ^= 1;
    }
    if (found_size != 224) return -2;

    if (*invert == 1 && idx > 0)
        for (size_t i = idx - 1; i < found_size + idx + 2; i++)
            dest[i] ^= 1;

    // 224 formats are typically PSK2 (afaik 2017 Marshmellow)
    // note loses 1 bit at beginning of transformation...
    // don't need to verify array is big enough as to get here there has to be a full preamble after all of our data
    psk1TOpsk2(dest + (idx - 1), found_size + 2);
    idx++;

    *size = found_size;
    return (int) idx;
}

// this read is the "normal" read,  which download lf signal and tries to demod here.
int CmdIndalaRead(const char *Cmd) {
    lf_read(true, 30000);
    return CmdIndalaDemod(Cmd);
}

// Indala 26 bit decode
// by marshmellow
// optional arguments - same as PSKDemod (clock & invert & maxerr)
int CmdIndalaDemod(const char *Cmd) {
    int ans;
    if (strlen(Cmd) > 0)
        ans = PSKDemod(Cmd, 0);
    else //default to RF/32
        ans = PSKDemod("32", 0);

    if (!ans) {
        PrintAndLogEx(DEBUG, "DEBUG: Error - Indala can't demod signal: %d", ans);
        return 0;
    }

    uint8_t invert = 0;
    size_t size = DemodBufferLen;
    int idx = indala64decode(DemodBuffer, &size, &invert);
    if (idx < 0 || size != 64) {
        // try 224 indala
        invert = 0;
        size = DemodBufferLen;
        idx = indala224decode(DemodBuffer, &size, &invert);
        if (idx < 0 || size != 224) {
            PrintAndLogEx(DEBUG, "DEBUG: Error - Indala wrong size, expected [64|224] got: %d (startindex %i)", size, idx);
            return 0;
        }
    }

    setDemodBuf(DemodBuffer, size, (size_t)idx);
    setClockGrid(g_DemodClock, g_DemodStartIdx + (idx * g_DemodClock));
    if (invert) {
        PrintAndLogEx(DEBUG, "DEBUG: Error - Indala had to invert bits");
        for (size_t i = 0; i < size; i++)
            DemodBuffer[i] ^= 1;
    }

    //convert UID to HEX
    uint32_t uid1, uid2, uid3, uid4, uid5, uid6, uid7;
    uid1 = bytebits_to_byte(DemodBuffer, 32);
    uid2 = bytebits_to_byte(DemodBuffer + 32, 32);
    if (DemodBufferLen == 64) {
        PrintAndLogEx(SUCCESS, "Indala Found - bitlength %d, UID = (0x%x%08x)\n%s",
                      DemodBufferLen, uid1, uid2, sprint_bin_break(DemodBuffer, DemodBufferLen, 32)
                     );
    } else {
        uid3 = bytebits_to_byte(DemodBuffer + 64, 32);
        uid4 = bytebits_to_byte(DemodBuffer + 96, 32);
        uid5 = bytebits_to_byte(DemodBuffer + 128, 32);
        uid6 = bytebits_to_byte(DemodBuffer + 160, 32);
        uid7 = bytebits_to_byte(DemodBuffer + 192, 32);
        PrintAndLogEx(SUCCESS, "Indala Found - bitlength %d, UID = (0x%x%08x%08x%08x%08x%08x%08x)\n%s",
                      DemodBufferLen,
                      uid1, uid2, uid3, uid4, uid5, uid6, uid7, sprint_bin_break(DemodBuffer, DemodBufferLen, 32)
                     );
    }
    if (g_debugMode) {
        PrintAndLogEx(DEBUG, "DEBUG: Indala - printing demodbuffer:");
        printDemodBuff();
    }
    return 1;
}

// older alternative indala demodulate (has some positives and negatives)
// returns false positives more often - but runs against more sets of samples
// poor psk signal can be difficult to demod this approach might succeed when the other fails
// but the other appears to currently be more accurate than this approach most of the time.
int CmdIndalaDemodAlt(const char *Cmd) {
    // Usage: recover 64bit UID by default, specify "224" as arg to recover a 224bit UID
    int state = -1;
    int count = 0;
    int i, j;

    // worst case with GraphTraceLen=40000 is < 4096
    // under normal conditions it's < 2048
    uint8_t data[MAX_GRAPH_TRACE_LEN] = {0};
    size_t datasize = getFromGraphBuf(data);

    uint8_t rawbits[4096];
    int rawbit = 0;
    int worst = 0, worstPos = 0;

    //clear clock grid and demod plot
    setClockGrid(0, 0);
    DemodBufferLen = 0;

    // PrintAndLogEx(NORMAL, "Expecting a bit less than %d raw bits", GraphTraceLen / 32);
    // loop through raw signal - since we know it is psk1 rf/32 fc/2 skip every other value (+=2)
    for (i = 0; i < datasize - 1; i += 2) {
        count += 1;
        if ((data[i] > data[i + 1]) && (state != 1)) {
            // appears redundant - marshmellow
            if (state == 0) {
                for (j = 0; j <  count - 8; j += 16) {
                    rawbits[rawbit++] = 0;
                }
                if ((abs(count - j)) > worst) {
                    worst = abs(count - j);
                    worstPos = i;
                }
            }
            state = 1;
            count = 0;
        } else if ((data[i] < data[i + 1]) && (state != 0)) {
            //appears redundant
            if (state == 1) {
                for (j = 0; j <  count - 8; j += 16) {
                    rawbits[rawbit++] = 1;
                }
                if ((abs(count - j)) > worst) {
                    worst = abs(count - j);
                    worstPos = i;
                }
            }
            state = 0;
            count = 0;
        }
    }

    if (rawbit > 0) {
        PrintAndLogEx(INFO, "Recovered %d raw bits, expected: %d", rawbit, GraphTraceLen / 32);
        PrintAndLogEx(INFO, "worst metric (0=best..7=worst): %d at pos %d", worst, worstPos);
    } else {
        return 0;
    }

    // Finding the start of a UID
    int uidlen, long_wait;
    if (strcmp(Cmd, "224") == 0) {
        uidlen = 224;
        long_wait = 30;
    } else {
        uidlen = 64;
        long_wait = 29;
    }

    int start;
    int first = 0;
    for (start = 0; start <= rawbit - uidlen; start++) {
        first = rawbits[start];
        for (i = start; i < start + long_wait; i++) {
            if (rawbits[i] != first) {
                break;
            }
        }
        if (i == (start + long_wait)) {
            break;
        }
    }

    if (start == rawbit - uidlen + 1) {
        PrintAndLogEx(FAILED, "nothing to wait for");
        return 0;
    }

    // Inverting signal if needed
    if (first == 1) {
        for (i = start; i < rawbit; i++) {
            rawbits[i] = !rawbits[i];
        }
    }

    // Dumping UID
    uint8_t bits[224] = {0x00};
    char showbits[225] = {0x00};
    int bit;
    i = start;
    int times = 0;

    if (uidlen > rawbit) {
        PrintAndLogEx(WARNING, "Warning: not enough raw bits to get a full UID");
        for (bit = 0; bit < rawbit; bit++) {
            bits[bit] = rawbits[i++];
            // As we cannot know the parity, let's use "." and "/"
            showbits[bit] = '.' + bits[bit];
        }
        showbits[bit + 1] = '\0';
        PrintAndLogEx(SUCCESS, "Partial UID | %s", showbits);
        return 0;
    } else {
        for (bit = 0; bit < uidlen; bit++) {
            bits[bit] = rawbits[i++];
            showbits[bit] = '0' + bits[bit];
        }
        times = 1;
    }

    //convert UID to HEX
    uint32_t uid1, uid2, uid3, uid4, uid5, uid6, uid7;
    int idx;
    uid1 = uid2 = 0;

    if (uidlen == 64) {
        for (idx = 0; idx < 64; idx++) {
            if (showbits[idx] == '0') {
                uid1 = (uid1 << 1) | (uid2 >> 31);
                uid2 = (uid2 << 1) | 0;
            } else {
                uid1 = (uid1 << 1) | (uid2 >> 31);
                uid2 = (uid2 << 1) | 1;
            }
        }
        PrintAndLogEx(SUCCESS, "UID | %s (%x%08x)", showbits, uid1, uid2);
    } else {
        uid3 = uid4 = uid5 = uid6 = uid7 = 0;

        for (idx = 0; idx < 224; idx++) {
            uid1 = (uid1 << 1) | (uid2 >> 31);
            uid2 = (uid2 << 1) | (uid3 >> 31);
            uid3 = (uid3 << 1) | (uid4 >> 31);
            uid4 = (uid4 << 1) | (uid5 >> 31);
            uid5 = (uid5 << 1) | (uid6 >> 31);
            uid6 = (uid6 << 1) | (uid7 >> 31);

            if (showbits[idx] == '0')
                uid7 = (uid7 << 1) | 0;
            else
                uid7 = (uid7 << 1) | 1;
        }
        PrintAndLogEx(SUCCESS, "UID | %s (%x%08x%08x%08x%08x%08x%08x)", showbits, uid1, uid2, uid3, uid4, uid5, uid6, uid7);
    }

    // Checking UID against next occurrences
    int failed = 0;
    for (; i + uidlen <= rawbit;) {
        failed = 0;
        for (bit = 0; bit < uidlen; bit++) {
            if (bits[bit] != rawbits[i++]) {
                failed = 1;
                break;
            }
        }
        if (failed == 1) {
            break;
        }
        times += 1;
    }

    PrintAndLogEx(DEBUG, "Occurrences: %d (expected %d)", times, (rawbit - start) / uidlen);

    // Remodulating for tag cloning
    // HACK: 2015-01-04 this will have an impact on our new way of seening lf commands (demod)
    // since this changes graphbuffer data.
    GraphTraceLen = 32 * uidlen;
    i = 0;
    int phase = 0;
    for (bit = 0; bit < uidlen; bit++) {
        if (bits[bit] == 0) {
            phase = 0;
        } else {
            phase = 1;
        }
        int j;
        for (j = 0; j < 32; j++) {
            GraphBuffer[i++] = phase;
            phase = !phase;
        }
    }

    RepaintGraphWindow();
    return 1;
}

int CmdIndalaSim(const char *Cmd) {

    char cmdp = tolower(param_getchar(Cmd, 0));
    if (strlen(Cmd) == 0 || cmdp == 'h') return usage_lf_indala_sim();

    uint8_t bits[224];
    size_t size = sizeof(bits);
    memset(bits, 0x00, size);

    // uid
    uint8_t hexuid[100];
    int len = 0;
    param_gethex_ex(Cmd, 0, hexuid, &len);
    if (len > 28)
        return usage_lf_indala_sim();

    // convert to binarray
    uint8_t counter = 223;
    for (uint8_t i = 0; i < len; i++) {
        for (uint8_t j = 0; j < 8; j++) {
            bits[counter--] = hexuid[i] & 1;
            hexuid[i] >>= 1;
        }
    }

    // indala PSK
    uint8_t clk = 32, carrier = 2, invert = 0;
    uint16_t arg1, arg2;
    arg1 = clk << 8 | carrier;
    arg2 = invert;

    // It has to send either 64bits (8bytes) or 224bits (28bytes).  Zero padding needed if not.
    // lf simpsk 1 c 32 r 2 d 0102030405060708

    PrintAndLogEx(SUCCESS, "Simulating Indala UID: %s",  sprint_hex(hexuid, len));
    PrintAndLogEx(SUCCESS, "Press pm3-button to abort simulation or run another command");

    UsbCommand c = {CMD_PSK_SIM_TAG, {arg1, arg2, size}};
    memcpy(c.d.asBytes, bits, size);
    clearCommandBuffer();
    SendCommand(&c);
    return 0;
}

// iceman - needs refactoring
int CmdIndalaClone(const char *Cmd) {
    UsbCommand c = {0};
    uint32_t uid1, uid2, uid3, uid4, uid5, uid6, uid7;
    uid1 =  uid2 = uid3 = uid4 = uid5 = uid6 = uid7 = 0;
    uint32_t n = 0, i = 0;

    if (strchr(Cmd, 'l') != 0) {

        while (sscanf(&Cmd[i++], "%1x", &n) == 1) {
            uid1 = (uid1 << 4) | (uid2 >> 28);
            uid2 = (uid2 << 4) | (uid3 >> 28);
            uid3 = (uid3 << 4) | (uid4 >> 28);
            uid4 = (uid4 << 4) | (uid5 >> 28);
            uid5 = (uid5 << 4) | (uid6 >> 28);
            uid6 = (uid6 << 4) | (uid7 >> 28);
            uid7 = (uid7 << 4) | (n & 0xf);
        }

        PrintAndLogEx(INFO, "Preparing to clone Indala 224bit tag with UID %x%08x%08x%08x%08x%08x%08x", uid1, uid2, uid3, uid4, uid5, uid6, uid7);
        c.cmd = CMD_INDALA_CLONE_TAG_L;
        c.d.asDwords[0] = uid1;
        c.d.asDwords[1] = uid2;
        c.d.asDwords[2] = uid3;
        c.d.asDwords[3] = uid4;
        c.d.asDwords[4] = uid5;
        c.d.asDwords[5] = uid6;
        c.d.asDwords[6] = uid7;
    } else {
        while (sscanf(&Cmd[i++], "%1x", &n) == 1) {
            uid1 = (uid1 << 4) | (uid2 >> 28);
            uid2 = (uid2 << 4) | (n & 0xf);
        }
        PrintAndLogEx(INFO, "Preparing to clone Indala 64bit tag with UID %x%08x", uid1, uid2);
        c.cmd = CMD_INDALA_CLONE_TAG;
        c.arg[0] = uid1;
        c.arg[1] = uid2;
    }

    clearCommandBuffer();
    SendCommand(&c);
    return 0;
}

static command_t CommandTable[] = {
    {"help",     CmdHelp,            1, "this help"},
    {"demod",    CmdIndalaDemod,     1, "demodulate an indala tag (PSK1) from GraphBuffer"},
    {"altdemod", CmdIndalaDemodAlt,  1, "alternative method to Demodulate samples for Indala 64 bit UID (option '224' for 224 bit)"},
    {"read",     CmdIndalaRead,      0, "read an Indala Prox tag from the antenna"},
    {"clone",    CmdIndalaClone,     0, "clone Indala to T55x7"},
    {"sim",      CmdIndalaSim,       0, "simulate Indala tag"},
    {NULL, NULL, 0, NULL}
};

int CmdLFINDALA(const char *Cmd) {
    clearCommandBuffer();
    CmdsParse(CommandTable, Cmd);
    return 0;
}

int CmdHelp(const char *Cmd) {
    CmdsHelp(CommandTable);
    return 0;
}