//----------------------------------------------------------------------------- // Merlok - June 2011, 2012 // Gerhard de Koning Gans - May 2008 // Hagen Fritsch - June 2010 // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Mifare Classic Card Simulation //----------------------------------------------------------------------------- // Verbose Mode: // MF_DBG_NONE 0 // MF_DBG_ERROR 1 // MF_DBG_INFO 2 // MF_DBG_DEBUG 3 // MF_DBG_EXTENDED 4 // /!\ Printing Debug message is disrupting emulation, // Only use with caution during debugging #include "iso14443a.h" #include "mifaresim.h" #include "crapto1/crapto1.h" #include "BigBuf.h" #include "string.h" #include "mifareutil.h" #include "fpgaloader.h" #include "proxmark3.h" #include "usb_cdc.h" #include "cmd.h" #include "protocols.h" #include "apps.h" static bool IsTrailerAccessAllowed(uint8_t blockNo, uint8_t keytype, uint8_t action) { uint8_t sector_trailer[16]; emlGetMem(sector_trailer, blockNo, 1); uint8_t AC = ((sector_trailer[7] >> 5) & 0x04) | ((sector_trailer[8] >> 2) & 0x02) | ((sector_trailer[8] >> 7) & 0x01); switch (action) { case AC_KEYA_READ: { if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("IsTrailerAccessAllowed: AC_KEYA_READ"); return false; } case AC_KEYA_WRITE: { if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("IsTrailerAccessAllowed: AC_KEYA_WRITE"); return ((keytype == AUTHKEYA && (AC == 0x00 || AC == 0x01)) || (keytype == AUTHKEYB && (AC == 0x04 || AC == 0x03))); } case AC_KEYB_READ: { if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("IsTrailerAccessAllowed: AC_KEYB_READ"); return (keytype == AUTHKEYA && (AC == 0x00 || AC == 0x02 || AC == 0x01)); } case AC_KEYB_WRITE: { if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("IsTrailerAccessAllowed: AC_KEYB_WRITE"); return ((keytype == AUTHKEYA && (AC == 0x00 || AC == 0x04)) || (keytype == AUTHKEYB && (AC == 0x04 || AC == 0x03))); } case AC_AC_READ: { if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("IsTrailerAccessAllowed: AC_AC_READ"); return ((keytype == AUTHKEYA) || (keytype == AUTHKEYB && !(AC == 0x00 || AC == 0x02 || AC == 0x01))); } case AC_AC_WRITE: { if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("IsTrailerAccessAllowed: AC_AC_WRITE"); return ((keytype == AUTHKEYA && (AC == 0x01)) || (keytype == AUTHKEYB && (AC == 0x03 || AC == 0x05))); } default: return false; } } static bool IsDataAccessAllowed(uint8_t blockNo, uint8_t keytype, uint8_t action) { uint8_t sector_trailer[16]; emlGetMem(sector_trailer, SectorTrailer(blockNo), 1); uint8_t sector_block; if (blockNo <= MIFARE_2K_MAXBLOCK) { sector_block = blockNo & 0x03; } else { sector_block = (blockNo & 0x0f) / 5; } uint8_t AC; switch (sector_block) { case 0x00: { AC = ((sector_trailer[7] >> 2) & 0x04) | ((sector_trailer[8] << 1) & 0x02) | ((sector_trailer[8] >> 4) & 0x01); if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("IsDataAccessAllowed: case 0x00 - %02x", AC); break; } case 0x01: { AC = ((sector_trailer[7] >> 3) & 0x04) | ((sector_trailer[8] >> 0) & 0x02) | ((sector_trailer[8] >> 5) & 0x01); if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("IsDataAccessAllowed: case 0x01 - %02x", AC); break; } case 0x02: { AC = ((sector_trailer[7] >> 4) & 0x04) | ((sector_trailer[8] >> 1) & 0x02) | ((sector_trailer[8] >> 6) & 0x01); if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("IsDataAccessAllowed: case 0x02 - %02x", AC); break; } default: if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("IsDataAccessAllowed: Error"); return false; } switch (action) { case AC_DATA_READ: { if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("IsDataAccessAllowed - AC_DATA_READ: OK"); return ((keytype == AUTHKEYA && !(AC == 0x03 || AC == 0x05 || AC == 0x07)) || (keytype == AUTHKEYB && !(AC == 0x07))); } case AC_DATA_WRITE: { if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("IsDataAccessAllowed - AC_DATA_WRITE: OK"); return ((keytype == AUTHKEYA && (AC == 0x00)) || (keytype == AUTHKEYB && (AC == 0x00 || AC == 0x04 || AC == 0x06 || AC == 0x03))); } case AC_DATA_INC: { if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("IsDataAccessAllowed - AC_DATA_INC: OK"); return ((keytype == AUTHKEYA && (AC == 0x00)) || (keytype == AUTHKEYB && (AC == 0x00 || AC == 0x06))); } case AC_DATA_DEC_TRANS_REST: { if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("AC_DATA_DEC_TRANS_REST: OK"); return ((keytype == AUTHKEYA && (AC == 0x00 || AC == 0x06 || AC == 0x01)) || (keytype == AUTHKEYB && (AC == 0x00 || AC == 0x06 || AC == 0x01))); } } return false; } static bool IsAccessAllowed(uint8_t blockNo, uint8_t keytype, uint8_t action) { if (IsSectorTrailer(blockNo)) { return IsTrailerAccessAllowed(blockNo, keytype, action); } else { return IsDataAccessAllowed(blockNo, keytype, action); } } static bool MifareSimInit(uint16_t flags, uint8_t *datain, tag_response_info_t **responses, uint32_t *cuid, uint8_t *uid_len, uint8_t **rats, uint8_t *rats_len) { // SPEC: https://www.nxp.com/docs/en/application-note/AN10833.pdf // ATQA static uint8_t rATQA_Mini[] = {0x04, 0x00}; // indicate Mifare classic Mini 4Byte UID static uint8_t rATQA_1k[] = {0x04, 0x00}; // indicate Mifare classic 1k 4Byte UID static uint8_t rATQA_2k[] = {0x04, 0x00}; // indicate Mifare classic 2k 4Byte UID static uint8_t rATQA_4k[] = {0x02, 0x00}; // indicate Mifare classic 4k 4Byte UID // SAK static uint8_t rSAK_Mini = 0x09; // mifare Mini static uint8_t rSAK_1k = 0x08; // mifare 1k static uint8_t rSAK_2k = 0x08; // mifare 2k with RATS support static uint8_t rSAK_4k = 0x18; // mifare 4k static uint8_t rUIDBCC1[] = {0x00, 0x00, 0x00, 0x00, 0x00}; // UID 1st cascade level static uint8_t rUIDBCC1b4[] = {0x00, 0x00, 0x00, 0x00}; // UID 1st cascade level, last 4 bytes static uint8_t rUIDBCC1b3[] = {0x00, 0x00, 0x00}; // UID 1st cascade level, last 3 bytes static uint8_t rUIDBCC1b2[] = {0x00, 0x00}; // UID 1st cascade level, last 2 bytes static uint8_t rUIDBCC1b1[] = {0x00}; // UID 1st cascade level, last byte static uint8_t rUIDBCC2[] = {0x00, 0x00, 0x00, 0x00, 0x00}; // UID 2nd cascade level static uint8_t rUIDBCC2b4[] = {0x00, 0x00, 0x00, 0x00}; // UID 2st cascade level, last 4 bytes static uint8_t rUIDBCC2b3[] = {0x00, 0x00, 0x00}; // UID 2st cascade level, last 3 bytes static uint8_t rUIDBCC2b2[] = {0x00, 0x00}; // UID 2st cascade level, last 2 bytes static uint8_t rUIDBCC2b1[] = {0x00}; // UID 2st cascade level, last byte static uint8_t rUIDBCC3[] = {0x00, 0x00, 0x00, 0x00, 0x00}; // UID 3nd cascade level static uint8_t rUIDBCC3b4[] = {0x00, 0x00, 0x00, 0x00}; // UID 3st cascade level, last 4 bytes static uint8_t rUIDBCC3b3[] = {0x00, 0x00, 0x00}; // UID 3st cascade level, last 3 bytes static uint8_t rUIDBCC3b2[] = {0x00, 0x00}; // UID 3st cascade level, last 2 bytes static uint8_t rUIDBCC3b1[] = {0x00}; // UID 3st cascade level, last byte static uint8_t rATQA[] = {0x00, 0x00}; // Current ATQA static uint8_t rSAK[] = {0x00, 0x00, 0x00}; // Current SAK, CRC static uint8_t rSAKuid[] = {0x04, 0xda, 0x17}; // UID incomplete cascade bit, CRC // RATS answer for 2K NXP mifare classic (with CRC) static uint8_t rRATS[] = {0x0c, 0x75, 0x77, 0x80, 0x02, 0xc1, 0x05, 0x2f, 0x2f, 0x01, 0xbc, 0xd6, 0x60, 0xd3}; *uid_len = 0; // By default use 1K tag memcpy(rATQA, rATQA_1k, sizeof(rATQA)); rSAK[0] = rSAK_1k; //by default RATS not supported *rats_len = 0; *rats = NULL; // -- Determine the UID // Can be set from emulator memory or incoming data // Length: 4,7,or 10 bytes // Get UID, SAK, ATQA from EMUL if ((flags & FLAG_UID_IN_EMUL) == FLAG_UID_IN_EMUL) { uint8_t block0[16]; emlGetMemBt(block0, 0, 16); // If uid size defined, copy only uid from EMUL to use, backward compatibility for 'hf_colin.c', 'hf_mattyrun.c' if ((flags & (FLAG_4B_UID_IN_DATA | FLAG_7B_UID_IN_DATA | FLAG_10B_UID_IN_DATA)) != 0) { memcpy(datain, block0, 10); // load 10bytes from EMUL to the datain pointer. to be used below. } else { // Check for 4 bytes uid: bcc corrected and single size uid bits in ATQA if ((block0[0] ^ block0[1] ^ block0[2] ^ block0[3]) == block0[4] && (block0[6] & 0xc0) == 0) { flags |= FLAG_4B_UID_IN_DATA; memcpy(datain, block0, 4); rSAK[0] = block0[5]; memcpy(rATQA, &block0[6], sizeof(rATQA)); } // Check for 7 bytes UID: double size uid bits in ATQA else if ((block0[8] & 0xc0) == 0x40) { flags |= FLAG_7B_UID_IN_DATA; memcpy(datain, block0, 7); rSAK[0] = block0[7]; memcpy(rATQA, &block0[8], sizeof(rATQA)); } else { Dbprintf("[-] ERROR: Invalid dump. UID/SAK/ATQA not found"); return false; } } } // Tune tag type, if defined directly // Otherwise use defined by default or extracted from EMUL if ((flags & FLAG_MF_MINI) == FLAG_MF_MINI) { memcpy(rATQA, rATQA_Mini, sizeof(rATQA)); rSAK[0] = rSAK_Mini; Dbprintf("Mifare Mini"); } else if ((flags & FLAG_MF_1K) == FLAG_MF_1K) { memcpy(rATQA, rATQA_1k, sizeof(rATQA)); rSAK[0] = rSAK_1k; Dbprintf("Mifare 1K"); } else if ((flags & FLAG_MF_2K) == FLAG_MF_2K) { memcpy(rATQA, rATQA_2k, sizeof(rATQA)); rSAK[0] = rSAK_2k; *rats = rRATS; *rats_len = sizeof(rRATS); Dbprintf("Mifare 2K with RATS support"); } else if ((flags & FLAG_MF_4K) == FLAG_MF_4K) { memcpy(rATQA, rATQA_4k, sizeof(rATQA)); rSAK[0] = rSAK_4k; Dbprintf("Mifare 4K"); } // Prepare UID arrays if ((flags & FLAG_4B_UID_IN_DATA) == FLAG_4B_UID_IN_DATA) { // get UID from datain memcpy(rUIDBCC1, datain, 4); *uid_len = 4; if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("MifareSimInit - FLAG_4B_UID_IN_DATA => Get UID from datain: %02X - Flag: %02X - UIDBCC1: %02X", FLAG_4B_UID_IN_DATA, flags, rUIDBCC1); // save CUID *cuid = bytes_to_num(rUIDBCC1, 4); // BCC rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; if (MF_DBGLEVEL >= MF_DBG_NONE) { Dbprintf("4B UID: %02x%02x%02x%02x", rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3]); } // Correct uid size bits in ATQA rATQA[0] = (rATQA[0] & 0x3f) | 0x00; // single size uid } else if ((flags & FLAG_7B_UID_IN_DATA) == FLAG_7B_UID_IN_DATA) { memcpy(&rUIDBCC1[1], datain, 3); memcpy(rUIDBCC2, datain + 3, 4); *uid_len = 7; if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("MifareSimInit - FLAG_7B_UID_IN_DATA => Get UID from datain: %02X - Flag: %02X - UIDBCC1: %02X", FLAG_7B_UID_IN_DATA, flags, rUIDBCC1); // save CUID *cuid = bytes_to_num(rUIDBCC2, 4); // CascadeTag, CT rUIDBCC1[0] = MIFARE_SELECT_CT; // BCC rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3]; if (MF_DBGLEVEL >= MF_DBG_NONE) { Dbprintf("7B UID: %02x %02x %02x %02x %02x %02x %02x", rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3], rUIDBCC2[0], rUIDBCC2[1], rUIDBCC2[2], rUIDBCC2[3]); } // Correct uid size bits in ATQA rATQA[0] = (rATQA[0] & 0x3f) | 0x40; // double size uid } else if ((flags & FLAG_10B_UID_IN_DATA) == FLAG_10B_UID_IN_DATA) { memcpy(&rUIDBCC1[1], datain, 3); memcpy(&rUIDBCC2[1], datain + 3, 3); memcpy(rUIDBCC3, datain + 6, 4); *uid_len = 10; if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("MifareSimInit - FLAG_10B_UID_IN_DATA => Get UID from datain: %02X - Flag: %02X - UIDBCC1: %02X", FLAG_10B_UID_IN_DATA, flags, rUIDBCC1); // save CUID *cuid = bytes_to_num(rUIDBCC3, 4); // CascadeTag, CT rUIDBCC1[0] = MIFARE_SELECT_CT; rUIDBCC2[0] = MIFARE_SELECT_CT; // BCC rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3]; rUIDBCC3[4] = rUIDBCC3[0] ^ rUIDBCC3[1] ^ rUIDBCC3[2] ^ rUIDBCC3[3]; if (MF_DBGLEVEL >= MF_DBG_NONE) { Dbprintf("10B UID: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x", rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3], rUIDBCC2[1], rUIDBCC2[2], rUIDBCC2[3], rUIDBCC3[0], rUIDBCC3[1], rUIDBCC3[2], rUIDBCC3[3] ); } // Correct uid size bits in ATQA rATQA[0] = (rATQA[0] & 0x3f) | 0x80; // triple size uid } else { Dbprintf("[-] ERROR: UID size not defined"); return false; } // clone UIDs for byte-frame anti-collision multiple tag selection procedure memcpy(rUIDBCC1b4, &rUIDBCC1[1], 4); memcpy(rUIDBCC1b3, &rUIDBCC1[2], 3); memcpy(rUIDBCC1b2, &rUIDBCC1[3], 2); memcpy(rUIDBCC1b1, &rUIDBCC1[4], 1); if (*uid_len >= 7) { memcpy(rUIDBCC2b4, &rUIDBCC2[1], 4); memcpy(rUIDBCC2b3, &rUIDBCC2[2], 3); memcpy(rUIDBCC2b2, &rUIDBCC2[3], 2); memcpy(rUIDBCC2b1, &rUIDBCC2[4], 1); } if (*uid_len == 10) { memcpy(rUIDBCC3b4, &rUIDBCC3[1], 4); memcpy(rUIDBCC3b3, &rUIDBCC3[2], 3); memcpy(rUIDBCC3b2, &rUIDBCC3[3], 2); memcpy(rUIDBCC3b1, &rUIDBCC3[4], 1); } // Calculate actual CRC AddCrc14A(rSAK, sizeof(rSAK) - 2); #define TAG_RESPONSE_COUNT 18 static tag_response_info_t responses_init[TAG_RESPONSE_COUNT] = { { .response = rATQA, .response_n = sizeof(rATQA) }, // Answer to request - respond with card type { .response = rSAK, .response_n = sizeof(rSAK) }, // { .response = rSAKuid, .response_n = sizeof(rSAKuid) }, // // Do not reorder. Block used via relative index of rUIDBCC1 { .response = rUIDBCC1, .response_n = sizeof(rUIDBCC1) }, // Anticollision cascade1 - respond with first part of uid { .response = rUIDBCC1b4, .response_n = sizeof(rUIDBCC1b4)}, { .response = rUIDBCC1b3, .response_n = sizeof(rUIDBCC1b3)}, { .response = rUIDBCC1b2, .response_n = sizeof(rUIDBCC1b2)}, { .response = rUIDBCC1b1, .response_n = sizeof(rUIDBCC1b1)}, // Do not reorder. Block used via relative index of rUIDBCC2 { .response = rUIDBCC2, .response_n = sizeof(rUIDBCC2) }, // Anticollision cascade2 - respond with 2nd part of uid { .response = rUIDBCC2b4, .response_n = sizeof(rUIDBCC2b4)}, { .response = rUIDBCC2b3, .response_n = sizeof(rUIDBCC2b3)}, { .response = rUIDBCC2b2, .response_n = sizeof(rUIDBCC2b2)}, { .response = rUIDBCC2b1, .response_n = sizeof(rUIDBCC2b1)}, // Do not reorder. Block used via relative index of rUIDBCC3 { .response = rUIDBCC3, .response_n = sizeof(rUIDBCC3) }, // Anticollision cascade3 - respond with 3th part of uid { .response = rUIDBCC3b4, .response_n = sizeof(rUIDBCC3b4)}, { .response = rUIDBCC3b3, .response_n = sizeof(rUIDBCC3b3)}, { .response = rUIDBCC3b2, .response_n = sizeof(rUIDBCC3b2)}, { .response = rUIDBCC3b1, .response_n = sizeof(rUIDBCC3b1)} }; // Prepare ("precompile") the responses of the anticollision phase. // There will be not enough time to do this at the moment the reader sends its REQA or SELECT // There are 18 predefined responses with a total of 53 bytes data to transmit. // Coded responses need one byte per bit to transfer (data, parity, start, stop, correction) // 53 * 8 data bits, 53 * 1 parity bits, 18 start bits, 18 stop bits, 18 correction bits -> need 571 bytes buffer #define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 571 uint8_t *free_buffer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE); // modulation buffer pointer and current buffer free space size uint8_t *free_buffer_pointer = free_buffer; size_t free_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE; for (size_t i = 0; i < TAG_RESPONSE_COUNT; i++) { if (prepare_allocated_tag_modulation(&responses_init[i], &free_buffer_pointer, &free_buffer_size) == false) { Dbprintf("Not enough modulation buffer size, exit after %d elements", i); return false; } } *responses = responses_init; // indices into responses array: #define ATQA 0 #define SAK 1 #define SAKuid 2 #define UIDBCC1 3 #define UIDBCC2 8 #define UIDBCC3 13 return true; } /** *MIFARE 1K simulate. * *@param flags : * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK * FLAG_4B_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that * FLAG_7B_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that * FLAG_10B_UID_IN_DATA - use 10-byte UID in the data-section not finished * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is infinite ... * (unless reader attack mode enabled then it runs util it gets enough nonces to recover all keys attmpted) */ void Mifare1ksim(uint16_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain) { tag_response_info_t *responses; uint8_t cardSTATE = MFEMUL_NOFIELD; uint8_t uid_len = 0; // 4,7, 10 uint32_t cuid = 0; int vHf = 0; // in mV uint32_t selTimer = 0; uint32_t authTimer = 0; uint8_t blockNo; uint32_t nr; uint32_t ar; bool encrypted_data; uint8_t cardWRBL = 0; uint8_t cardAUTHSC = 0; uint8_t cardAUTHKEY = AUTHKEYNONE; // no authentication uint32_t cardRr = 0; uint32_t ans = 0; uint32_t cardINTREG = 0; uint8_t cardINTBLOCK = 0; struct Crypto1State mpcs = {0, 0}; struct Crypto1State *pcs; pcs = &mpcs; uint32_t numReads = 0; //Counts numer of times reader reads a block uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE] = {0x00}; uint8_t receivedCmd_dec[MAX_MIFARE_FRAME_SIZE] = {0x00}; uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE] = {0x00}; uint16_t receivedCmd_len; uint8_t response[MAX_MIFARE_FRAME_SIZE] = {0x00}; uint8_t response_par[MAX_MIFARE_PARITY_SIZE] = {0x00}; uint8_t *rats = NULL; uint8_t rats_len = 0; uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00}; //Here, we collect UID,sector,keytype,NT,AR,NR,NT2,AR2,NR2 // This will be used in the reader-only attack. //allow collecting up to 7 sets of nonces to allow recovery of up to 7 keys #define ATTACK_KEY_COUNT 7 // keep same as define in cmdhfmf.c -> readerAttack() (Cannot be more than 7) nonces_t ar_nr_resp[ATTACK_KEY_COUNT * 2]; //*2 for 2 separate attack types (nml, moebius) 36 * 7 * 2 bytes = 504 bytes memset(ar_nr_resp, 0x00, sizeof(ar_nr_resp)); uint8_t ar_nr_collected[ATTACK_KEY_COUNT * 2]; //*2 for 2nd attack type (moebius) memset(ar_nr_collected, 0x00, sizeof(ar_nr_collected)); uint8_t nonce1_count = 0; uint8_t nonce2_count = 0; uint8_t moebius_n_count = 0; bool gettingMoebius = false; uint8_t mM = 0; //moebius_modifier for collection storage // Authenticate response - nonce uint8_t rAUTH_NT[4]; uint8_t rAUTH_NT_keystream[4]; uint32_t nonce = 0; tUart *uart = GetUart(); // free eventually allocated BigBuf memory but keep Emulator Memory BigBuf_free_keep_EM(); if (MifareSimInit(flags, datain, &responses, &cuid, &uid_len, &rats, &rats_len) == false) { BigBuf_free_keep_EM(); return; } // We need to listen to the high-frequency, peak-detected path. iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN); // clear trace clear_trace(); set_tracing(true); LED_D_ON(); ResetSspClk(); bool finished = false; bool button_pushed = BUTTON_PRESS(); while (!button_pushed && !finished && !usb_poll_validate_length()) { WDT_HIT(); // find reader field if (cardSTATE == MFEMUL_NOFIELD) { vHf = (MAX_ADC_HF_VOLTAGE_RDV40 * AvgAdc(ADC_CHAN_HF)) >> 10; if (vHf > MF_MINFIELDV) { cardSTATE_TO_IDLE(); LED_A_ON(); } button_pushed = BUTTON_PRESS(); continue; } //Now, get data int res = EmGetCmd(receivedCmd, &receivedCmd_len, receivedCmd_par); if (res == 2) { //Field is off! LEDsoff(); cardSTATE = MFEMUL_NOFIELD; if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("cardSTATE = MFEMUL_NOFIELD"); continue; } else if (res == 1) { // button pressed button_pushed = true; if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("Button pressed"); break; } // WUPA in HALTED state or REQA or WUPA in any other state if (receivedCmd_len == 1 && ((receivedCmd[0] == ISO14443A_CMD_REQA && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == ISO14443A_CMD_WUPA)) { selTimer = GetTickCount(); if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("EmSendPrecompiledCmd(&responses[ATQA]);"); EmSendPrecompiledCmd(&responses[ATQA]); // init crypto block crypto1_destroy(pcs); cardAUTHKEY = AUTHKEYNONE; nonce = prng_successor(selTimer, 32); // prepare NT for nested authentication num_to_bytes(nonce, 4, rAUTH_NT); num_to_bytes(cuid ^ nonce, 4, rAUTH_NT_keystream); LED_B_OFF(); LED_C_OFF(); cardSTATE = MFEMUL_SELECT; continue; } switch (cardSTATE) { case MFEMUL_NOFIELD: if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("MFEMUL_NOFIELD"); case MFEMUL_HALTED: if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("MFEMUL_HALTED"); case MFEMUL_IDLE: { LogTrace(uart->output, uart->len, uart->startTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->endTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->parity, true); if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("MFEMUL_IDLE"); break; } // The anti-collision sequence, which is a mandatory part of the card activation sequence. // It auto with 4-byte UID (= Single Size UID), // 7 -byte UID (= Double Size UID) or 10-byte UID (= Triple Size UID). // For details see chapter 2 of AN10927.pdf // // This case is used for all Cascade Levels, because: // 1) Any devices (under Android for example) after full select procedure completed, // when UID is known, uses "fast-selection" method. In this case reader ignores // first cascades and tries to select tag by last bytes of UID of last cascade // 2) Any readers (like ACR122U) uses bit oriented anti-collision frames during selectin, // same as multiple tags. For details see chapter 6.1.5.3 of ISO/IEC 14443-3 case MFEMUL_SELECT: { int uid_index = -1; // Extract cascade level if (receivedCmd_len >= 2) { switch (receivedCmd[0]) { case ISO14443A_CMD_ANTICOLL_OR_SELECT: uid_index = UIDBCC1; break; case ISO14443A_CMD_ANTICOLL_OR_SELECT_2: uid_index = UIDBCC2; break; case ISO14443A_CMD_ANTICOLL_OR_SELECT_3: uid_index = UIDBCC3; break; } } if (uid_index < 0) { LogTrace(uart->output, uart->len, uart->startTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->endTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->parity, true); cardSTATE_TO_IDLE(); if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("[MFEMUL_SELECT] Incorrect cascade level received"); break; } // Incoming SELECT ALL for any cascade level if (receivedCmd_len == 2 && receivedCmd[1] == 0x20) { EmSendPrecompiledCmd(&responses[uid_index]); if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("SELECT ALL - EmSendPrecompiledCmd(%02x)", &responses[uid_index]); break; } // Incoming SELECT CLx for any cascade level if (receivedCmd_len == 9 && receivedCmd[1] == 0x70) { if (memcmp(&receivedCmd[2], responses[uid_index].response, 4) == 0) { bool finished = (uid_len == 4 && uid_index == UIDBCC1) || (uid_len == 7 && uid_index == UIDBCC2) || (uid_len == 10 && uid_index == UIDBCC3); EmSendPrecompiledCmd(&responses[finished ? SAK : SAKuid]); if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("SELECT CLx %02x%02x%02x%02x received", receivedCmd[2], receivedCmd[3], receivedCmd[4], receivedCmd[5]); if (finished) { LED_B_ON(); cardSTATE = MFEMUL_WORK; if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("[MFEMUL_SELECT] cardSTATE = MFEMUL_WORK"); } } else { // IDLE, not our UID LogTrace(uart->output, uart->len, uart->startTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->endTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->parity, true); cardSTATE_TO_IDLE(); if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("[MFEMUL_SELECT] cardSTATE = MFEMUL_IDLE"); } break; } // Incoming anti-collision frame if (receivedCmd_len >= 2 && receivedCmd_len <= 6 && receivedCmd[1] == 0x50) { // we can process only full-byte frame anti-collision procedure if (memcmp(&receivedCmd[2], responses[uid_index].response, receivedCmd_len - 2) == 0) { // response missing part of UID via relative array index EmSendPrecompiledCmd(&responses[uid_index + receivedCmd_len - 2]); if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("SELECT ANTICOLLISION - EmSendPrecompiledCmd(%02x)", &responses[uid_index]); } else { // IDLE, not our UID or split-byte frame anti-collision (not supports) LogTrace(uart->output, uart->len, uart->startTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->endTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->parity, true); cardSTATE_TO_IDLE(); if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("[MFEMUL_SELECT] cardSTATE = MFEMUL_IDLE"); } break; } // Unknown selection procedure LogTrace(uart->output, uart->len, uart->startTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->endTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->parity, true); cardSTATE_TO_IDLE(); if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("[MFEMUL_SELECT] Unknown selection procedure"); break; } // WORK case MFEMUL_WORK: { if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] Enter in case"); if (receivedCmd_len == 0) { if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] NO CMD received"); break; } encrypted_data = (cardAUTHKEY != AUTHKEYNONE); if (encrypted_data) { // decrypt seqence mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, receivedCmd_dec); if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] Decrypt seqence"); } else { // Data in clear memcpy(receivedCmd_dec, receivedCmd, receivedCmd_len); } if (!CheckCrc14A(receivedCmd_dec, receivedCmd_len)) { // all commands must have a valid CRC EmSend4bit(encrypted_data ? mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA) : CARD_NACK_NA); if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] All commands must have a valid CRC %02X (%d)", receivedCmd_dec, receivedCmd_len); break; } if (receivedCmd_len == 4 && (receivedCmd_dec[0] == MIFARE_AUTH_KEYA || receivedCmd_dec[0] == MIFARE_AUTH_KEYB)) { // Reader asks for AUTH: 6X XX // RCV: 60 XX => Using KEY A // RCV: 61 XX => Using KEY B // XX: Block number // if authenticating to a block that shouldn't exist - as long as we are not doing the reader attack if (receivedCmd_dec[1] > MIFARE_4K_MAXBLOCK && !((flags & FLAG_NR_AR_ATTACK) == FLAG_NR_AR_ATTACK)) { EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("Reader tried to operate (0x%02x) on out of range block: %d (0x%02x), nacking", receivedCmd_dec[0], receivedCmd_dec[1], receivedCmd_dec[1]); break; } authTimer = GetTickCount(); // received block num -> sector // Example: 6X [00] // 4K tags have 16 blocks per sector 32..39 cardAUTHSC = MifareBlockToSector(receivedCmd_dec[1]); // cardAUTHKEY: 60 => Auth use Key A // cardAUTHKEY: 61 => Auth use Key B cardAUTHKEY = receivedCmd_dec[0] & 0x01; if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] KEY %c: %012" PRIx64, (cardAUTHKEY == 0) ? 'A' : 'B', emlGetKey(cardAUTHSC, cardAUTHKEY)); // first authentication crypto1_destroy(pcs); // Load key into crypto crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY)); if (!encrypted_data) { // Receive Cmd in clear txt // Update crypto state (UID ^ NONCE) crypto1_word(pcs, cuid ^ nonce, 0); // rAUTH_NT contains prepared nonce for authenticate EmSendCmd(rAUTH_NT, sizeof(rAUTH_NT)); if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] Reader authenticating for block %d (0x%02x) with key %c - nonce: %02X - ciud: %02X", receivedCmd_dec[1], receivedCmd_dec[1], (cardAUTHKEY == 0) ? 'A' : 'B', rAUTH_AT, cuid); } else { // nested authentication /* ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0); num_to_bytes(ans, 4, rAUTH_AT); */ // rAUTH_NT, rAUTH_NT_keystream contains prepared nonce and keystream for nested authentication // we need calculate parity bits for non-encrypted sequence mf_crypto1_encryptEx(pcs, rAUTH_NT, rAUTH_NT_keystream, response, 4, response_par); EmSendCmdPar(response, 4, response_par); if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] Reader doing nested authentication for block %d (0x%02x) with key %c", receivedCmd_dec[1], receivedCmd_dec[1], (cardAUTHKEY == 0) ? 'A' : 'B'); } cardSTATE = MFEMUL_AUTH1; if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] cardSTATE = MFEMUL_AUTH1 - rAUTH_NT: %02X", rAUTH_NT); break; } // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued // BUT... ACK --> NACK if (receivedCmd_len == 1 && receivedCmd_dec[0] == CARD_ACK) { EmSend4bit(encrypted_data ? mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA) : CARD_NACK_NA); break; } // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK) if (receivedCmd_len == 1 && receivedCmd_dec[0] == CARD_NACK_NA) { EmSend4bit(encrypted_data ? mf_crypto1_encrypt4bit(pcs, CARD_ACK) : CARD_ACK); break; } // case MFEMUL_WORK => if Cmd is Read, Write, Inc, Dec, Restore, Transfert if (receivedCmd_len == 4 && (receivedCmd_dec[0] == ISO14443A_CMD_READBLOCK || receivedCmd_dec[0] == ISO14443A_CMD_WRITEBLOCK || receivedCmd_dec[0] == MIFARE_CMD_INC || receivedCmd_dec[0] == MIFARE_CMD_DEC || receivedCmd_dec[0] == MIFARE_CMD_RESTORE || receivedCmd_dec[0] == MIFARE_CMD_TRANSFER)) { // all other commands must be encrypted (authenticated) if (!encrypted_data) { EmSend4bit(CARD_NACK_NA); if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] Commands must be encrypted (authenticated)"); break; } // Check if Block num is not too far if (receivedCmd_dec[1] > MIFARE_4K_MAXBLOCK) { EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("[MFEMUL_WORK] Reader tried to operate (0x%02x) on out of range block: %d (0x%02x), nacking", receivedCmd_dec[0], receivedCmd_dec[1], receivedCmd_dec[1]); break; } if (MifareBlockToSector(receivedCmd_dec[1]) != cardAUTHSC) { EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("[MFEMUL_WORK] Reader tried to operate (0x%02x) on block (0x%02x) not authenticated for (0x%02x), nacking", receivedCmd_dec[0], receivedCmd_dec[1], cardAUTHSC); break; } } // case MFEMUL_WORK => CMD READ block if (receivedCmd_len == 4 && receivedCmd_dec[0] == ISO14443A_CMD_READBLOCK) { blockNo = receivedCmd_dec[1]; if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] Reader reading block %d (0x%02x)", blockNo, blockNo); emlGetMem(response, blockNo, 1); if (MF_DBGLEVEL >= MF_DBG_EXTENDED) { Dbprintf("[MFEMUL_WORK - ISO14443A_CMD_READBLOCK] Data Block[%d]: %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x", blockNo, response[0], response[1], response[2], response[3], response[4], response[5], response[6], response[7], response[8], response[9], response[10], response[11], response[12], response[13], response[14], response[15]); } // Access permission managment: // // Sector Trailer: // - KEY A access // - KEY B access // - AC bits access // // Data block: // - Data access // If permission is not allowed, data is cleared (00) in emulator memeory. // ex: a0a1a2a3a4a561e789c1b0b1b2b3b4b5 => 00000000000061e789c1b0b1b2b3b4b5 // Check if selected Block is a Sector Trailer if (IsSectorTrailer(blockNo)) { if (!IsAccessAllowed(blockNo, cardAUTHKEY, AC_KEYA_READ)) { memset(response, 0x00, 6); // keyA can never be read if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("[MFEMUL_WORK - IsSectorTrailer] keyA can never be read - block %d (0x%02x)", blockNo, blockNo); } if (!IsAccessAllowed(blockNo, cardAUTHKEY, AC_KEYB_READ)) { memset(response + 10, 0x00, 6); // keyB cannot be read if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("[MFEMUL_WORK - IsSectorTrailer] keyB cannot be read - block %d (0x%02x)", blockNo, blockNo); } if (!IsAccessAllowed(blockNo, cardAUTHKEY, AC_AC_READ)) { memset(response + 6, 0x00, 4); // AC bits cannot be read if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("[MFEMUL_WORK - IsAccessAllowed] AC bits cannot be read - block %d (0x%02x)", blockNo, blockNo); } } else { if (!IsAccessAllowed(blockNo, cardAUTHKEY, AC_DATA_READ)) { memset(response, 0x00, 16); // datablock cannot be read if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("[MFEMUL_WORK - IsAccessAllowed] Data block %d (0x%02x) cannot be read", blockNo, blockNo); } } AddCrc14A(response, 16); mf_crypto1_encrypt(pcs, response, MAX_MIFARE_FRAME_SIZE, response_par); EmSendCmdPar(response, MAX_MIFARE_FRAME_SIZE, response_par); if (MF_DBGLEVEL >= MF_DBG_EXTENDED) { Dbprintf("[MFEMUL_WORK - EmSendCmdPar] Data Block[%d]: %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x", blockNo, response[0], response[1], response[2], response[3], response[4], response[5], response[6], response[7], response[8], response[9], response[10], response[11], response[12], response[13], response[14], response[15]); } numReads++; if (exitAfterNReads > 0 && numReads == exitAfterNReads) { Dbprintf("[MFEMUL_WORK] %d reads done, exiting", numReads); finished = true; } break; } // End receivedCmd_dec[0] == ISO14443A_CMD_READBLOCK // case MFEMUL_WORK => CMD WRITEBLOCK if (receivedCmd_len == 4 && receivedCmd_dec[0] == ISO14443A_CMD_WRITEBLOCK) { blockNo = receivedCmd_dec[1]; if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] RECV 0xA0 write block %d (%02x)", blockNo, blockNo); EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); cardWRBL = blockNo; cardSTATE = MFEMUL_WRITEBL2; if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] cardSTATE = MFEMUL_WRITEBL2"); break; } // case MFEMUL_WORK => CMD INC/DEC/REST if (receivedCmd_len == 4 && (receivedCmd_dec[0] == MIFARE_CMD_INC || receivedCmd_dec[0] == MIFARE_CMD_DEC || receivedCmd_dec[0] == MIFARE_CMD_RESTORE)) { blockNo = receivedCmd_dec[1]; if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)", receivedCmd_dec[0], blockNo, blockNo); if (emlCheckValBl(blockNo)) { if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("[MFEMUL_WORK] Reader tried to operate on block, but emlCheckValBl failed, nacking"); EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); break; } EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); cardWRBL = blockNo; // INC if (receivedCmd_dec[0] == MIFARE_CMD_INC) { cardSTATE = MFEMUL_INTREG_INC; if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] cardSTATE = MFEMUL_INTREG_INC"); } // DEC if (receivedCmd_dec[0] == MIFARE_CMD_DEC) { cardSTATE = MFEMUL_INTREG_DEC; if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] cardSTATE = MFEMUL_INTREG_DEC"); } // REST if (receivedCmd_dec[0] == MIFARE_CMD_RESTORE) { cardSTATE = MFEMUL_INTREG_REST; if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] cardSTATE = MFEMUL_INTREG_REST"); } break; } // End case MFEMUL_WORK => CMD INC/DEC/REST // case MFEMUL_WORK => CMD TRANSFER if (receivedCmd_len == 4 && receivedCmd_dec[0] == MIFARE_CMD_TRANSFER) { blockNo = receivedCmd_dec[1]; if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] RECV 0x%02x transfer block %d (%02x)", receivedCmd_dec[0], blockNo, blockNo); if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd_dec[1])) EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); else EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); break; } // case MFEMUL_WORK => CMD HALT if (receivedCmd_len > 1 && receivedCmd_dec[0] == ISO14443A_CMD_HALT && receivedCmd_dec[1] == 0x00) { LogTrace(uart->output, uart->len, uart->startTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->endTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->parity, true); LED_B_OFF(); LED_C_OFF(); cardSTATE = MFEMUL_HALTED; cardAUTHKEY = AUTHKEYNONE; if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] cardSTATE = MFEMUL_HALTED"); break; } // case MFEMUL_WORK => CMD RATS if (receivedCmd_len == 4 && receivedCmd_dec[0] == ISO14443A_CMD_RATS && receivedCmd_dec[1] == 0x80) { if (rats && rats_len) { if (encrypted_data) { memcpy(response, rats, rats_len); mf_crypto1_encrypt(pcs, response, rats_len, response_par); EmSendCmdPar(response, rats_len, response_par); } else EmSendCmd(rats, rats_len); if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] RCV RATS => ACK"); } else { EmSend4bit(encrypted_data ? mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA) : CARD_NACK_NA); if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] RCV RATS => NACK"); } break; } // case MFEMUL_WORK => ISO14443A_CMD_NXP_DESELECT if (receivedCmd_len == 3 && receivedCmd_dec[0] == ISO14443A_CMD_NXP_DESELECT) { if (rats && rats_len) { // response back NXP_DESELECT if (encrypted_data) { memcpy(response, receivedCmd_dec, receivedCmd_len); mf_crypto1_encrypt(pcs, response, receivedCmd_len, response_par); EmSendCmdPar(response, receivedCmd_len, response_par); } else EmSendCmd(receivedCmd_dec, receivedCmd_len); if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] RCV NXP DESELECT => ACK"); } else { EmSend4bit(encrypted_data ? mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA) : CARD_NACK_NA); if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] RCV NXP DESELECT => NACK"); } break; } // case MFEMUL_WORK => command not allowed if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("Received command not allowed, nacking"); EmSend4bit(encrypted_data ? mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA) : CARD_NACK_NA); break; } // AUTH1 case MFEMUL_AUTH1: { if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("[MFEMUL_AUTH1] Enter case"); if (receivedCmd_len != 8) { cardSTATE_TO_IDLE(); LogTrace(uart->output, uart->len, uart->startTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->endTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->parity, true); if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("MFEMUL_AUTH1: receivedCmd_len != 8 (%d) => cardSTATE_TO_IDLE())", receivedCmd_len); break; } nr = bytes_to_num(receivedCmd, 4); ar = bytes_to_num(&receivedCmd[4], 4); // Collect AR/NR per keytype & sector if ((flags & FLAG_NR_AR_ATTACK) == FLAG_NR_AR_ATTACK) { if (MF_DBGLEVEL >= 0) Dbprintf("FLAG_NR_AR_ATTACK"); for (uint8_t i = 0; i < ATTACK_KEY_COUNT; i++) { if (ar_nr_collected[i + mM] == 0 || ((cardAUTHSC == ar_nr_resp[i + mM].sector) && (cardAUTHKEY == ar_nr_resp[i + mM].keytype) && (ar_nr_collected[i + mM] > 0))) { // if first auth for sector, or matches sector and keytype of previous auth if (ar_nr_collected[i + mM] < 2) { // if we haven't already collected 2 nonces for this sector if (ar_nr_resp[ar_nr_collected[i + mM]].ar != ar) { // Avoid duplicates... probably not necessary, ar should vary. if (ar_nr_collected[i + mM] == 0) { // first nonce collect ar_nr_resp[i + mM].cuid = cuid; ar_nr_resp[i + mM].sector = cardAUTHSC; ar_nr_resp[i + mM].keytype = cardAUTHKEY; ar_nr_resp[i + mM].nonce = nonce; ar_nr_resp[i + mM].nr = nr; ar_nr_resp[i + mM].ar = ar; nonce1_count++; // add this nonce to first moebius nonce ar_nr_resp[i + ATTACK_KEY_COUNT].cuid = cuid; ar_nr_resp[i + ATTACK_KEY_COUNT].sector = cardAUTHSC; ar_nr_resp[i + ATTACK_KEY_COUNT].keytype = cardAUTHKEY; ar_nr_resp[i + ATTACK_KEY_COUNT].nonce = nonce; ar_nr_resp[i + ATTACK_KEY_COUNT].nr = nr; ar_nr_resp[i + ATTACK_KEY_COUNT].ar = ar; ar_nr_collected[i + ATTACK_KEY_COUNT]++; } else { // second nonce collect (std and moebius) ar_nr_resp[i + mM].nonce2 = nonce; ar_nr_resp[i + mM].nr2 = nr; ar_nr_resp[i + mM].ar2 = ar; if (!gettingMoebius) { nonce2_count++; // check if this was the last second nonce we need for std attack if (nonce2_count == nonce1_count) { // done collecting std test switch to moebius // first finish incrementing last sample ar_nr_collected[i + mM]++; // switch to moebius collection gettingMoebius = true; mM = ATTACK_KEY_COUNT; nonce = nonce * 7; break; } } else { moebius_n_count++; // if we've collected all the nonces we need - finish. if (nonce1_count == moebius_n_count) finished = true; } } ar_nr_collected[i + mM]++; } } // we found right spot for this nonce stop looking break; } } } // --- crypto crypto1_word(pcs, nr, 1); cardRr = ar ^ crypto1_word(pcs, 0, 0); // test if auth KO if (cardRr != prng_successor(nonce, 64)) { if (MF_DBGLEVEL >= MF_DBG_EXTENDED) { Dbprintf("[MFEMUL_AUTH1] AUTH FAILED for sector %d with key %c. [nr=%08x cardRr=%08x] [nt=%08x succ=%08x]" , cardAUTHSC , (cardAUTHKEY == 0) ? 'A' : 'B' , nr , cardRr , nonce // nt , prng_successor(nonce, 64) ); } cardAUTHKEY = AUTHKEYNONE; // not authenticated EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); cardSTATE_TO_IDLE(); break; } ans = prng_successor(nonce, 96); num_to_bytes(ans, 4, rAUTH_AT); mf_crypto1_encrypt(pcs, rAUTH_AT, 4, response_par); EmSendCmdPar(rAUTH_AT, 4, response_par); if (MF_DBGLEVEL >= MF_DBG_EXTENDED) { Dbprintf("[MFEMUL_AUTH1] AUTH COMPLETED for sector %d with key %c. time=%d", cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B', GetTickCount() - authTimer ); } LED_C_ON(); cardSTATE = MFEMUL_WORK; if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("[MFEMUL_AUTH1] cardSTATE = MFEMUL_WORK"); break; } // WRITE BL2 case MFEMUL_WRITEBL2: { if (receivedCmd_len == MAX_MIFARE_FRAME_SIZE) { mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, receivedCmd_dec); if (CheckCrc14A(receivedCmd_dec, receivedCmd_len)) { if (IsSectorTrailer(cardWRBL)) { emlGetMem(response, cardWRBL, 1); if (!IsAccessAllowed(cardWRBL, cardAUTHKEY, AC_KEYA_WRITE)) { memcpy(receivedCmd_dec, response, 6); // don't change KeyA } if (!IsAccessAllowed(cardWRBL, cardAUTHKEY, AC_KEYB_WRITE)) { memcpy(receivedCmd_dec + 10, response + 10, 6); // don't change KeyA } if (!IsAccessAllowed(cardWRBL, cardAUTHKEY, AC_AC_WRITE)) { memcpy(receivedCmd_dec + 6, response + 6, 4); // don't change AC bits } } else { if (!IsAccessAllowed(cardWRBL, cardAUTHKEY, AC_DATA_WRITE)) { memcpy(receivedCmd_dec, response, 16); // don't change anything } } emlSetMem(receivedCmd_dec, cardWRBL, 1); EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); // always ACK? cardSTATE = MFEMUL_WORK; if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("[MFEMUL_WRITEBL2] cardSTATE = MFEMUL_WORK"); break; } } cardSTATE_TO_IDLE(); if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("[MFEMUL_WRITEBL2] cardSTATE = MFEMUL_IDLE"); LogTrace(uart->output, uart->len, uart->startTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->endTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->parity, true); break; } // INC case MFEMUL_INTREG_INC: { if (receivedCmd_len == 6) { mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, (uint8_t *)&ans); if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) { EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); cardSTATE_TO_IDLE(); break; } LogTrace(uart->output, uart->len, uart->startTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->endTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->parity, true); cardINTREG = cardINTREG + ans; cardSTATE = MFEMUL_WORK; if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("[MFEMUL_INTREG_INC] cardSTATE = MFEMUL_WORK"); break; } } // DEC case MFEMUL_INTREG_DEC: { if (receivedCmd_len == 6) { // Data is encrypted // Decrypted cmd mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, (uint8_t *)&ans); if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) { EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); cardSTATE_TO_IDLE(); break; } } LogTrace(uart->output, uart->len, uart->startTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->endTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->parity, true); cardINTREG = cardINTREG - ans; cardSTATE = MFEMUL_WORK; if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("[MFEMUL_INTREG_DEC] cardSTATE = MFEMUL_WORK"); break; } // REST case MFEMUL_INTREG_REST: { mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, (uint8_t *)&ans); if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) { EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); cardSTATE_TO_IDLE(); break; } LogTrace(uart->output, uart->len, uart->startTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->endTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->parity, true); cardSTATE = MFEMUL_WORK; if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("[MFEMUL_INTREG_REST] cardSTATE = MFEMUL_WORK"); break; } } // End Switch Loop button_pushed = BUTTON_PRESS(); } // End While Loop // NR AR ATTACK if (((flags & FLAG_NR_AR_ATTACK) == FLAG_NR_AR_ATTACK) && (MF_DBGLEVEL >= 1)) { for (uint8_t i = 0; i < ATTACK_KEY_COUNT; i++) { if (ar_nr_collected[i] == 2) { Dbprintf("Collected two pairs of AR/NR which can be used to extract %s from reader for sector %d:", (i < ATTACK_KEY_COUNT / 2) ? "keyA" : "keyB", ar_nr_resp[i].sector); Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x", ar_nr_resp[i].cuid, //UID ar_nr_resp[i].nonce, //NT ar_nr_resp[i].nr, //NR1 ar_nr_resp[i].ar, //AR1 ar_nr_resp[i].nr2, //NR2 ar_nr_resp[i].ar2 //AR2 ); } } } for (uint8_t i = ATTACK_KEY_COUNT; i < ATTACK_KEY_COUNT * 2; i++) { if (ar_nr_collected[i] == 2) { Dbprintf("Collected two pairs of AR/NR which can be used to extract %s from reader for sector %d:", (i < ATTACK_KEY_COUNT / 2) ? "keyA" : "keyB", ar_nr_resp[i].sector); Dbprintf("../tools/mfkey/mfkey32v2 %08x %08x %08x %08x %08x %08x %08x", ar_nr_resp[i].cuid, //UID ar_nr_resp[i].nonce, //NT ar_nr_resp[i].nr, //NR1 ar_nr_resp[i].ar, //AR1 ar_nr_resp[i].nonce2,//NT2 ar_nr_resp[i].nr2, //NR2 ar_nr_resp[i].ar2 //AR2 ); } } if (MF_DBGLEVEL >= 1) { Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", get_tracing(), BigBuf_get_traceLen()); } if ((flags & FLAG_INTERACTIVE) == FLAG_INTERACTIVE) { // Interactive mode flag, means we need to send ACK //Send the collected ar_nr in the response reply_old(CMD_ACK, CMD_SIMULATE_MIFARE_CARD, button_pushed, 0, &ar_nr_resp, sizeof(ar_nr_resp)); } FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); set_tracing(false); BigBuf_free_keep_EM(); }