//----------------------------------------------------------------------------- // Merlok, May 2011, 2012 // Many authors, whom made it possible // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Work with mifare cards. //----------------------------------------------------------------------------- #include "mifareutil.h" int MF_DBGLEVEL = MF_DBG_ALL; // crypto1 helpers void mf_crypto1_decrypt(struct Crypto1State *pcs, uint8_t *data, int len){ uint8_t bt = 0; int i; if (len != 1) { for (i = 0; i < len; i++) data[i] = crypto1_byte(pcs, 0x00, 0) ^ data[i]; } else { bt |= (crypto1_bit(pcs, 0, 0) ^ BIT(data[0], 0)) << 0; bt |= (crypto1_bit(pcs, 0, 0) ^ BIT(data[0], 1)) << 1; bt |= (crypto1_bit(pcs, 0, 0) ^ BIT(data[0], 2)) << 2; bt |= (crypto1_bit(pcs, 0, 0) ^ BIT(data[0], 3)) << 3; data[0] = bt; } return; } void mf_crypto1_encrypt(struct Crypto1State *pcs, uint8_t *data, uint16_t len, uint8_t *par) { uint8_t bt = 0; int i; par[0] = 0; for (i = 0; i < len; i++) { bt = data[i]; data[i] = crypto1_byte(pcs, 0x00, 0) ^ data[i]; if ( ( i & 0x0007 ) == 0) par[ i >> 3 ] = 0; par[ i >> 3 ] |= (((filter(pcs->odd) ^ oddparity8(bt)) & 0x01)<<(7-(i&0x0007))); } } uint8_t mf_crypto1_encrypt4bit(struct Crypto1State *pcs, uint8_t data) { uint8_t bt = 0; bt |= (crypto1_bit(pcs, 0, 0) ^ BIT(data, 0)) << 0; bt |= (crypto1_bit(pcs, 0, 0) ^ BIT(data, 1)) << 1; bt |= (crypto1_bit(pcs, 0, 0) ^ BIT(data, 2)) << 2; bt |= (crypto1_bit(pcs, 0, 0) ^ BIT(data, 3)) << 3; return bt; } // send X byte basic commands int mifare_sendcmd(uint8_t cmd, uint8_t* data, uint8_t data_size, uint8_t* answer, uint8_t *answer_parity, uint32_t *timing) { uint8_t dcmd[data_size+3]; dcmd[0] = cmd; memcpy(dcmd+1, data, data_size); AppendCrc14443a(dcmd, data_size+1); ReaderTransmit(dcmd, sizeof(dcmd), timing); int len = ReaderReceive(answer, answer_parity); if(!len) { if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("%02X Cmd failed. Card timeout.", cmd); len = ReaderReceive(answer,answer_parity); } return len; } // send 2 byte commands int mifare_sendcmd_short(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd, uint8_t data, uint8_t *answer, uint8_t *answer_parity, uint32_t *timing) { uint16_t pos, res; uint8_t dcmd[4] = {cmd, data, 0x00, 0x00}; uint8_t ecmd[4] = {0x00, 0x00, 0x00, 0x00}; uint8_t par[1] = {0x00}; // 1 Byte parity is enough here AppendCrc14443a(dcmd, 2); memcpy(ecmd, dcmd, sizeof(dcmd)); if (crypted) { par[0] = 0; for (pos = 0; pos < 4; pos++) { ecmd[pos] = crypto1_byte(pcs, 0x00, 0) ^ dcmd[pos]; par[0] |= (((filter(pcs->odd) ^ oddparity8(dcmd[pos])) & 0x01) << (7-pos)); } ReaderTransmitPar(ecmd, sizeof(ecmd), par, timing); } else { ReaderTransmit(dcmd, sizeof(dcmd), timing); } int len = ReaderReceive(answer, par); if (answer_parity) *answer_parity = par[0]; if (crypted == CRYPT_ALL) { if (len == 1) { res = 0; res |= (crypto1_bit(pcs, 0, 0) ^ BIT(answer[0], 0)) << 0; res |= (crypto1_bit(pcs, 0, 0) ^ BIT(answer[0], 1)) << 1; res |= (crypto1_bit(pcs, 0, 0) ^ BIT(answer[0], 2)) << 2; res |= (crypto1_bit(pcs, 0, 0) ^ BIT(answer[0], 3)) << 3; answer[0] = res; } else { for (pos = 0; pos < len; pos++) answer[pos] = crypto1_byte(pcs, 0x00, 0) ^ answer[pos]; } } return len; } // mifare classic commands int mifare_classic_auth(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t keyType, uint64_t ui64Key, uint8_t isNested) { return mifare_classic_authex(pcs, uid, blockNo, keyType, ui64Key, isNested, NULL, NULL); } int mifare_classic_authex(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t keyType, uint64_t ui64Key, uint8_t isNested, uint32_t *ntptr, uint32_t *timing) { int len; uint32_t pos; uint8_t par[1] = {0x00}; // "random" reader nonce: //byte_t nr[4] = {0x55, 0x41, 0x49, 0x92}; fast_prand(); byte_t nr[4]; num_to_bytes(prand(), 4, nr); //byte_t nr[4] = {0x01, 0x01, 0x01, 0x01}; uint32_t nt, ntpp; // Supplied tag nonce uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }; uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = {0x00}; uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE] = {0x00}; // Transmit MIFARE_CLASSIC_AUTH len = mifare_sendcmd_short(pcs, isNested, 0x60 + (keyType & 0x01), blockNo, receivedAnswer, receivedAnswerPar, timing); if (MF_DBGLEVEL >= 4) Dbprintf("rand tag nonce len: %x", len); if (len != 4) return 1; // Save the tag nonce (nt) nt = bytes_to_num(receivedAnswer, 4); // ----------------------------- crypto1 create if (isNested) crypto1_destroy(pcs); // Init cipher with key crypto1_create(pcs, ui64Key); if (isNested == AUTH_NESTED) { // decrypt nt with help of new key nt = crypto1_word(pcs, nt ^ uid, 1) ^ nt; } else { // Load (plain) uid^nt into the cipher crypto1_word(pcs, nt ^ uid, 0); } // some statistic if (!ntptr && (MF_DBGLEVEL >= 3)) Dbprintf("auth uid: %08x | nr: %08x | nt: %08x", uid, nr, nt); // save Nt if (ntptr) *ntptr = nt; // Generate (encrypted) nr+parity by loading it into the cipher (Nr) par[0] = 0; for (pos = 0; pos < 4; pos++) { mf_nr_ar[pos] = crypto1_byte(pcs, nr[pos], 0) ^ nr[pos]; par[0] |= (((filter(pcs->odd) ^ oddparity8(nr[pos])) & 0x01) << (7-pos)); } // Skip 32 bits in pseudo random generator nt = prng_successor(nt, 32); // ar+parity for (pos = 4; pos < 8; pos++) { nt = prng_successor(nt,8); mf_nr_ar[pos] = crypto1_byte(pcs,0x00,0) ^ (nt & 0xff); par[0] |= (((filter(pcs->odd) ^ oddparity8(nt & 0xff)) & 0x01) << (7-pos)); } // Transmit reader nonce and reader answer ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL); // Receive 4 byte tag answer len = ReaderReceive(receivedAnswer, receivedAnswerPar); if (!len) { if (MF_DBGLEVEL >= 1) Dbprintf("Authentication failed. Card timeout."); return 2; } ntpp = prng_successor(nt, 32) ^ crypto1_word(pcs, 0,0); if (ntpp != bytes_to_num(receivedAnswer, 4)) { if (MF_DBGLEVEL >= 1) Dbprintf("Authentication failed. Error card response."); return 3; } return 0; } int mifare_classic_readblock(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t *blockData) { int len; uint8_t bt[2] = {0x00, 0x00}; uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = {0x00}; uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE] = {0x00}; len = mifare_sendcmd_short(pcs, 1, ISO14443A_CMD_READBLOCK, blockNo, receivedAnswer, receivedAnswerPar, NULL); if (len == 1) { if (MF_DBGLEVEL >= 1) Dbprintf("Cmd Error: %02x", receivedAnswer[0]); return 1; } if (len != 18) { if (MF_DBGLEVEL >= 1) Dbprintf("Cmd Error: card timeout. len: %x", len); return 2; } memcpy(bt, receivedAnswer + 16, 2); AppendCrc14443a(receivedAnswer, 16); if (bt[0] != receivedAnswer[16] || bt[1] != receivedAnswer[17]) { if (MF_DBGLEVEL >= 1) Dbprintf("Cmd CRC response error."); return 3; } memcpy(blockData, receivedAnswer, 16); return 0; } // mifare ultralight commands int mifare_ul_ev1_auth(uint8_t *keybytes, uint8_t *pack){ uint16_t len = 0; uint8_t resp[4] = {0x00, 0x00, 0x00, 0x00}; uint8_t respPar[1] = {0x00}; uint8_t key[4] = {0x00, 0x00, 0x00, 0x00}; memcpy(key, keybytes, 4); if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("EV1 Auth : %02x%02x%02x%02x", key[0], key[1], key[2], key[3]); len = mifare_sendcmd(0x1B, key, sizeof(key), resp, respPar, NULL); if (len != 4) { if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("Cmd Error: %02x %u", resp[0], len); return 0; } if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("Auth Resp: %02x%02x%02x%02x", resp[0],resp[1],resp[2],resp[3]); memcpy(pack, resp, 4); return 1; } int mifare_ultra_auth(uint8_t *keybytes){ /// 3des2k uint8_t random_a[8] = {1,1,1,1,1,1,1,1}; uint8_t random_b[8] = {0x00}; uint8_t enc_random_b[8] = {0x00}; uint8_t rnd_ab[16] = {0x00}; uint8_t IV[8] = {0x00}; uint8_t key[16] = {0x00}; memcpy(key, keybytes, 16); uint16_t len = 0; uint8_t resp[19] = {0x00}; uint8_t respPar[3] = {0,0,0}; // REQUEST AUTHENTICATION len = mifare_sendcmd_short(NULL, 1, 0x1A, 0x00, resp, respPar ,NULL); if (len != 11) { if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("Cmd Error: %02x", resp[0]); return 0; } // tag nonce. memcpy(enc_random_b,resp+1,8); // decrypt nonce. tdes_2key_dec((void*)random_b, (void*)enc_random_b, sizeof(random_b), (const void*)key, IV ); rol(random_b,8); memcpy(rnd_ab ,random_a,8); memcpy(rnd_ab+8,random_b,8); if (MF_DBGLEVEL >= MF_DBG_EXTENDED) { Dbprintf("enc_B: %02x %02x %02x %02x %02x %02x %02x %02x", enc_random_b[0],enc_random_b[1],enc_random_b[2],enc_random_b[3],enc_random_b[4],enc_random_b[5],enc_random_b[6],enc_random_b[7]); Dbprintf(" B: %02x %02x %02x %02x %02x %02x %02x %02x", random_b[0],random_b[1],random_b[2],random_b[3],random_b[4],random_b[5],random_b[6],random_b[7]); Dbprintf("rnd_ab: %02x %02x %02x %02x %02x %02x %02x %02x", rnd_ab[0],rnd_ab[1],rnd_ab[2],rnd_ab[3],rnd_ab[4],rnd_ab[5],rnd_ab[6],rnd_ab[7]); Dbprintf("rnd_ab: %02x %02x %02x %02x %02x %02x %02x %02x", rnd_ab[8],rnd_ab[9],rnd_ab[10],rnd_ab[11],rnd_ab[12],rnd_ab[13],rnd_ab[14],rnd_ab[15] ); } // encrypt out, in, length, key, iv tdes_2key_enc(rnd_ab, rnd_ab, sizeof(rnd_ab), key, enc_random_b); len = mifare_sendcmd(0xAF, rnd_ab, sizeof(rnd_ab), resp, respPar, NULL); if (len != 11) { if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("Cmd Error: %02x", resp[0]); return 0; } uint8_t enc_resp[8] = { 0,0,0,0,0,0,0,0 }; uint8_t resp_random_a[8] = { 0,0,0,0,0,0,0,0 }; memcpy(enc_resp, resp+1, 8); // decrypt out, in, length, key, iv tdes_2key_dec(resp_random_a, enc_resp, 8, key, enc_random_b); if ( memcmp(resp_random_a, random_a, 8) != 0 ) { if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("failed authentication"); return 0; } if (MF_DBGLEVEL >= MF_DBG_EXTENDED) { Dbprintf("e_AB: %02x %02x %02x %02x %02x %02x %02x %02x", rnd_ab[0],rnd_ab[1],rnd_ab[2],rnd_ab[3], rnd_ab[4],rnd_ab[5],rnd_ab[6],rnd_ab[7]); Dbprintf("e_AB: %02x %02x %02x %02x %02x %02x %02x %02x", rnd_ab[8],rnd_ab[9],rnd_ab[10],rnd_ab[11], rnd_ab[12],rnd_ab[13],rnd_ab[14],rnd_ab[15]); Dbprintf("a: %02x %02x %02x %02x %02x %02x %02x %02x", random_a[0],random_a[1],random_a[2],random_a[3], random_a[4],random_a[5],random_a[6],random_a[7]); Dbprintf("b: %02x %02x %02x %02x %02x %02x %02x %02x", resp_random_a[0],resp_random_a[1],resp_random_a[2],resp_random_a[3], resp_random_a[4],resp_random_a[5],resp_random_a[6],resp_random_a[7]); } return 1; } int mifare_ultra_readblock(uint8_t blockNo, uint8_t *blockData) { uint16_t len = 0; uint8_t bt[2] = {0x00, 0x00}; uint8_t receivedAnswer[MAX_FRAME_SIZE] = {0x00}; uint8_t receivedAnswerPar[MAX_PARITY_SIZE] = {0x00}; len = mifare_sendcmd_short(NULL, 1, 0x30, blockNo, receivedAnswer, receivedAnswerPar, NULL); if (len == 1) { if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("Cmd Error: %02x", receivedAnswer[0]); return 1; } if (len != 18) { if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("Cmd Error: card timeout. len: %x", len); return 2; } memcpy(bt, receivedAnswer + 16, 2); AppendCrc14443a(receivedAnswer, 16); if (bt[0] != receivedAnswer[16] || bt[1] != receivedAnswer[17]) { if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("Cmd CRC response error."); return 3; } memcpy(blockData, receivedAnswer, 14); return 0; } int mifare_classic_writeblock(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t *blockData) { // variables uint16_t len = 0; uint32_t pos = 0; uint8_t par[3] = {0x00, 0x00, 0x00}; // enough for 18 Bytes to send byte_t res = 0; uint8_t d_block[18], d_block_enc[18]; uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = {0x00}; uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE] = {0x00}; // command MIFARE_CLASSIC_WRITEBLOCK len = mifare_sendcmd_short(pcs, 1, 0xA0, blockNo, receivedAnswer, receivedAnswerPar, NULL); if ((len != 1) || (receivedAnswer[0] != 0x0A)) { // 0x0a - ACK if (MF_DBGLEVEL >= 1) Dbprintf("Cmd Error: %02x", receivedAnswer[0]); return 1; } memcpy(d_block, blockData, 16); AppendCrc14443a(d_block, 16); // crypto for (pos = 0; pos < 18; pos++) { d_block_enc[pos] = crypto1_byte(pcs, 0x00, 0) ^ d_block[pos]; par[pos>>3] |= (((filter(pcs->odd) ^ oddparity8(d_block[pos])) & 0x01) << (7 - (pos&0x0007))); } ReaderTransmitPar(d_block_enc, sizeof(d_block_enc), par, NULL); // Receive the response len = ReaderReceive(receivedAnswer, receivedAnswerPar); res = 0; res |= (crypto1_bit(pcs, 0, 0) ^ BIT(receivedAnswer[0], 0)) << 0; res |= (crypto1_bit(pcs, 0, 0) ^ BIT(receivedAnswer[0], 1)) << 1; res |= (crypto1_bit(pcs, 0, 0) ^ BIT(receivedAnswer[0], 2)) << 2; res |= (crypto1_bit(pcs, 0, 0) ^ BIT(receivedAnswer[0], 3)) << 3; if ((len != 1) || (res != 0x0A)) { if (MF_DBGLEVEL >= 1) Dbprintf("Cmd send data2 Error: %02x", res); return 2; } return 0; } /* // command not needed, but left for future testing int mifare_ultra_writeblock_compat(uint8_t blockNo, uint8_t *blockData) { uint16_t len; uint8_t par[3] = {0}; // enough for 18 parity bits uint8_t d_block[18] = {0x00}; uint8_t receivedAnswer[MAX_FRAME_SIZE]; uint8_t receivedAnswerPar[MAX_PARITY_SIZE]; len = mifare_sendcmd_short(NULL, true, 0xA0, blockNo, receivedAnswer, receivedAnswerPar, NULL); if ((len != 1) || (receivedAnswer[0] != 0x0A)) { // 0x0a - ACK if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("Cmd Addr Error: %02x", receivedAnswer[0]); return 1; } memcpy(d_block, blockData, 16); AppendCrc14443a(d_block, 16); ReaderTransmitPar(d_block, sizeof(d_block), par, NULL); len = ReaderReceive(receivedAnswer, receivedAnswerPar); if ((len != 1) || (receivedAnswer[0] != 0x0A)) { // 0x0a - ACK if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("Cmd Data Error: %02x %d", receivedAnswer[0],len); return 2; } return 0; } */ int mifare_ultra_writeblock(uint8_t blockNo, uint8_t *blockData) { uint16_t len = 0; uint8_t block[5] = {blockNo, 0x00, 0x00, 0x00, 0x00 }; uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = {0x00}; uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE] = {0x00}; // command MIFARE_CLASSIC_WRITEBLOCK memcpy(block+1, blockData, 4); len = mifare_sendcmd( MIFARE_ULC_WRITE, block, sizeof(block), receivedAnswer, receivedAnswerPar, NULL); if (receivedAnswer[0] != 0x0A) { // 0x0a - ACK if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("Cmd Send Error: %02x %d", receivedAnswer[0],len); return 1; } return 0; } int mifare_classic_halt_ex(struct Crypto1State *pcs) { uint8_t receivedAnswer[4] = {0x00, 0x00, 0x00, 0x00}; uint16_t len = mifare_sendcmd_short(pcs, (pcs == NULL) ? CRYPT_NONE : CRYPT_ALL, 0x50, 0x00, receivedAnswer, NULL, NULL); if (len != 0) { if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("halt warning. response len: %x", len); return 1; } return 0; } int mifare_classic_halt(struct Crypto1State *pcs, uint32_t uid) { return mifare_classic_halt_ex(pcs); } int mifare_ultra_halt() { uint16_t len = 0; uint8_t receivedAnswer[4] = {0x00, 0x00, 0x00, 0x00}; len = mifare_sendcmd_short(NULL, CRYPT_NONE, 0x50, 0x00, receivedAnswer, NULL, NULL); if (len != 0) { if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("halt error. response len: %x", len); return 1; } return 0; } // Mifare Memory Structure: up to 32 Sectors with 4 blocks each (1k and 2k cards), // plus evtl. 8 sectors with 16 blocks each (4k cards) uint8_t NumBlocksPerSector(uint8_t sectorNo) { return (sectorNo < 32) ? 4 : 16; } uint8_t FirstBlockOfSector(uint8_t sectorNo) { if (sectorNo < 32) return sectorNo * 4; else return 32*4 + (sectorNo - 32) * 16; } // work with emulator memory void emlSetMem(uint8_t *data, int blockNum, int blocksCount) { emlSetMem_xt(data, blockNum, blocksCount, 16); } void emlSetMem_xt(uint8_t *data, int blockNum, int blocksCount, int blockBtWidth) { uint8_t* emCARD = BigBuf_get_EM_addr(); memcpy(emCARD + blockNum * blockBtWidth, data, blocksCount * blockBtWidth); } void emlGetMem(uint8_t *data, int blockNum, int blocksCount) { uint8_t* emCARD = BigBuf_get_EM_addr(); memcpy(data, emCARD + blockNum * 16, blocksCount * 16); } void emlGetMemBt(uint8_t *data, int bytePtr, int byteCount) { uint8_t* emCARD = BigBuf_get_EM_addr(); memcpy(data, emCARD + bytePtr, byteCount); } int emlCheckValBl(int blockNum) { uint8_t* emCARD = BigBuf_get_EM_addr(); uint8_t* data = emCARD + blockNum * 16; if ((data[0] != (data[4] ^ 0xff)) || (data[0] != data[8]) || (data[1] != (data[5] ^ 0xff)) || (data[1] != data[9]) || (data[2] != (data[6] ^ 0xff)) || (data[2] != data[10]) || (data[3] != (data[7] ^ 0xff)) || (data[3] != data[11]) || (data[12] != (data[13] ^ 0xff)) || (data[12] != data[14]) || (data[12] != (data[15] ^ 0xff)) ) return 1; return 0; } int emlGetValBl(uint32_t *blReg, uint8_t *blBlock, int blockNum) { uint8_t* emCARD = BigBuf_get_EM_addr(); uint8_t* data = emCARD + blockNum * 16; if (emlCheckValBl(blockNum)) return 1; memcpy(blReg, data, 4); *blBlock = data[12]; return 0; } int emlSetValBl(uint32_t blReg, uint8_t blBlock, int blockNum) { uint8_t* emCARD = BigBuf_get_EM_addr(); uint8_t* data = emCARD + blockNum * 16; memcpy(data + 0, &blReg, 4); memcpy(data + 8, &blReg, 4); blReg = blReg ^ 0xffffffff; memcpy(data + 4, &blReg, 4); data[12] = blBlock; data[13] = blBlock ^ 0xff; data[14] = blBlock; data[15] = blBlock ^ 0xff; return 0; } uint64_t emlGetKey(int sectorNum, int keyType) { uint8_t key[6] = {0x00}; uint8_t* emCARD = BigBuf_get_EM_addr(); memcpy(key, emCARD + 16 * (FirstBlockOfSector(sectorNum) + NumBlocksPerSector(sectorNum) - 1) + keyType * 10, 6); return bytes_to_num(key, 6); } void emlClearMem(void) { const uint8_t trailer[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x07, 0x80, 0x69, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; const uint8_t uid[] = {0xe6, 0x84, 0x87, 0xf3, 0x16, 0x88, 0x04, 0x00, 0x46, 0x8e, 0x45, 0x55, 0x4d, 0x70, 0x41, 0x04}; uint8_t* emCARD = BigBuf_get_EM_addr(); memset(emCARD, 0, CARD_MEMORY_SIZE); // fill sectors trailer data for(uint16_t b = 3; b < 256; ((b < 127) ? (b += 4) : (b += 16))) emlSetMem((uint8_t *)trailer, b, 1); // uid emlSetMem((uint8_t *)uid, 0, 1); return; } // Mifare desfire commands int mifare_sendcmd_special(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd, uint8_t* data, uint8_t* answer, uint8_t *answer_parity, uint32_t *timing) { uint8_t dcmd[5] = {cmd, data[0], data[1], 0x00, 0x00}; AppendCrc14443a(dcmd, 3); ReaderTransmit(dcmd, sizeof(dcmd), NULL); int len = ReaderReceive(answer, answer_parity); if(!len) { if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("Authentication failed. Card timeout."); return 1; } return len; } int mifare_sendcmd_special2(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd, uint8_t* data, uint8_t* answer,uint8_t *answer_parity, uint32_t *timing) { uint8_t dcmd[20] = {0x00}; dcmd[0] = cmd; memcpy(dcmd+1,data,17); AppendCrc14443a(dcmd, 18); ReaderTransmit(dcmd, sizeof(dcmd), NULL); int len = ReaderReceive(answer, answer_parity); if(!len){ if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("Authentication failed. Card timeout."); return 1; } return len; } int mifare_desfire_des_auth1(uint32_t uid, uint8_t *blockData){ int len; // load key, keynumber uint8_t data[2]={0x0a, 0x00}; uint8_t receivedAnswer[MAX_FRAME_SIZE] = {0x00}; uint8_t receivedAnswerPar[MAX_PARITY_SIZE] = {0x00}; len = mifare_sendcmd_special(NULL, 1, 0x02, data, receivedAnswer,receivedAnswerPar,NULL); if (len == 1) { if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("Cmd Error: %02x", receivedAnswer[0]); return 1; } if (len == 12) { if (MF_DBGLEVEL >= MF_DBG_EXTENDED) { Dbprintf("Auth1 Resp: %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x", receivedAnswer[0],receivedAnswer[1],receivedAnswer[2],receivedAnswer[3],receivedAnswer[4], receivedAnswer[5],receivedAnswer[6],receivedAnswer[7],receivedAnswer[8],receivedAnswer[9], receivedAnswer[10],receivedAnswer[11]); } memcpy(blockData, receivedAnswer, 12); return 0; } return 1; } int mifare_desfire_des_auth2(uint32_t uid, uint8_t *key, uint8_t *blockData){ int len; uint8_t data[17] = {0x00}; data[0] = 0xAF; memcpy(data+1,key,16); uint8_t receivedAnswer[MAX_FRAME_SIZE] = {0x00}; uint8_t receivedAnswerPar[MAX_PARITY_SIZE] = {0x00}; len = mifare_sendcmd_special2(NULL, 1, 0x03, data, receivedAnswer, receivedAnswerPar ,NULL); if ((receivedAnswer[0] == 0x03) && (receivedAnswer[1] == 0xae)) { if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("Auth Error: %02x %02x", receivedAnswer[0], receivedAnswer[1]); return 1; } if (len == 12){ if (MF_DBGLEVEL >= MF_DBG_EXTENDED) { Dbprintf("Auth2 Resp: %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x", receivedAnswer[0],receivedAnswer[1],receivedAnswer[2],receivedAnswer[3],receivedAnswer[4], receivedAnswer[5],receivedAnswer[6],receivedAnswer[7],receivedAnswer[8],receivedAnswer[9], receivedAnswer[10],receivedAnswer[11]); } memcpy(blockData, receivedAnswer, 12); return 0; } return 1; }