//----------------------------------------------------------------------------- // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Miscellaneous routines for low frequency tag operations. // Tags supported here so far are Texas Instruments (TI), HID // Also routines for raw mode reading/simulating of LF waveform //----------------------------------------------------------------------------- #include "proxmark3.h" #include "apps.h" #include "util.h" #include "hitag2.h" #include "crc16.h" #include "string.h" void AcquireRawAdcSamples125k(int divisor) { if ( (divisor == 1) || (divisor < 0) || (divisor > 255) ) FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz else if (divisor == 0) FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz else FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor); FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); // Connect the A/D to the peak-detected low-frequency path. SetAdcMuxFor(GPIO_MUXSEL_LOPKD); // Give it a bit of time for the resonant antenna to settle. SpinDelay(50); // Now set up the SSC to get the ADC samples that are now streaming at us. FpgaSetupSsc(); // Now call the acquisition routine DoAcquisition125k(); } // split into two routines so we can avoid timing issues after sending commands // void DoAcquisition125k(void) { uint8_t *dest = (uint8_t *)BigBuf; int n = sizeof(BigBuf); int i; memset(dest, 0, n); i = 0; for(;;) { if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { AT91C_BASE_SSC->SSC_THR = 0x43; LED_D_ON(); } if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; i++; LED_D_OFF(); if (i >= n) break; } } Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...", dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]); } void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command) { int at134khz; /* Make sure the tag is reset */ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); SpinDelay(2500); // see if 'h' was specified if (command[strlen((char *) command) - 1] == 'h') at134khz = TRUE; else at134khz = FALSE; if (at134khz) FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz else FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); // Give it a bit of time for the resonant antenna to settle. SpinDelay(50); // And a little more time for the tag to fully power up SpinDelay(2000); // Now set up the SSC to get the ADC samples that are now streaming at us. FpgaSetupSsc(); // now modulate the reader field while(*command != '\0' && *command != ' ') { FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LED_D_OFF(); SpinDelayUs(delay_off); if (at134khz) FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz else FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); LED_D_ON(); if(*(command++) == '0') SpinDelayUs(period_0); else SpinDelayUs(period_1); } FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LED_D_OFF(); SpinDelayUs(delay_off); if (at134khz) FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz else FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); // now do the read DoAcquisition125k(); } /* blank r/w tag data stream ...0000000000000000 01111111 1010101010101010101010101010101010101010101010101010101010101010 0011010010100001 01111111 101010101010101[0]000... [5555fe852c5555555555555555fe0000] */ void ReadTItag(void) { // some hardcoded initial params // when we read a TI tag we sample the zerocross line at 2Mhz // TI tags modulate a 1 as 16 cycles of 123.2Khz // TI tags modulate a 0 as 16 cycles of 134.2Khz #define FSAMPLE 2000000 #define FREQLO 123200 #define FREQHI 134200 signed char *dest = (signed char *)BigBuf; int n = sizeof(BigBuf); // int *dest = GraphBuffer; // int n = GraphTraceLen; // 128 bit shift register [shift3:shift2:shift1:shift0] uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0; int i, cycles=0, samples=0; // how many sample points fit in 16 cycles of each frequency uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI; // when to tell if we're close enough to one freq or another uint32_t threshold = (sampleslo - sampleshi + 1)>>1; // TI tags charge at 134.2Khz FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz // Place FPGA in passthrough mode, in this mode the CROSS_LO line // connects to SSP_DIN and the SSP_DOUT logic level controls // whether we're modulating the antenna (high) // or listening to the antenna (low) FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); // get TI tag data into the buffer AcquireTiType(); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); for (i=0; i0) ) { cycles++; // after 16 cycles, measure the frequency if (cycles>15) { cycles=0; samples=i-samples; // number of samples in these 16 cycles // TI bits are coming to us lsb first so shift them // right through our 128 bit right shift register shift0 = (shift0>>1) | (shift1 << 31); shift1 = (shift1>>1) | (shift2 << 31); shift2 = (shift2>>1) | (shift3 << 31); shift3 >>= 1; // check if the cycles fall close to the number // expected for either the low or high frequency if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) { // low frequency represents a 1 shift3 |= (1<<31); } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) { // high frequency represents a 0 } else { // probably detected a gay waveform or noise // use this as gaydar or discard shift register and start again shift3 = shift2 = shift1 = shift0 = 0; } samples = i; // for each bit we receive, test if we've detected a valid tag // if we see 17 zeroes followed by 6 ones, we might have a tag // remember the bits are backwards if ( ((shift0 & 0x7fffff) == 0x7e0000) ) { // if start and end bytes match, we have a tag so break out of the loop if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) { cycles = 0xF0B; //use this as a flag (ugly but whatever) break; } } } } } // if flag is set we have a tag if (cycles!=0xF0B) { DbpString("Info: No valid tag detected."); } else { // put 64 bit data into shift1 and shift0 shift0 = (shift0>>24) | (shift1 << 8); shift1 = (shift1>>24) | (shift2 << 8); // align 16 bit crc into lower half of shift2 shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff; // if r/w tag, check ident match if ( shift3&(1<<15) ) { DbpString("Info: TI tag is rewriteable"); // only 15 bits compare, last bit of ident is not valid if ( ((shift3>>16)^shift0)&0x7fff ) { DbpString("Error: Ident mismatch!"); } else { DbpString("Info: TI tag ident is valid"); } } else { DbpString("Info: TI tag is readonly"); } // WARNING the order of the bytes in which we calc crc below needs checking // i'm 99% sure the crc algorithm is correct, but it may need to eat the // bytes in reverse or something // calculate CRC uint32_t crc=0; crc = update_crc16(crc, (shift0)&0xff); crc = update_crc16(crc, (shift0>>8)&0xff); crc = update_crc16(crc, (shift0>>16)&0xff); crc = update_crc16(crc, (shift0>>24)&0xff); crc = update_crc16(crc, (shift1)&0xff); crc = update_crc16(crc, (shift1>>8)&0xff); crc = update_crc16(crc, (shift1>>16)&0xff); crc = update_crc16(crc, (shift1>>24)&0xff); Dbprintf("Info: Tag data: %x%08x, crc=%x", (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF); if (crc != (shift2&0xffff)) { Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc); } else { DbpString("Info: CRC is good"); } } } void WriteTIbyte(uint8_t b) { int i = 0; // modulate 8 bits out to the antenna for (i=0; i<8; i++) { if (b&(1<PIO_PDR = GPIO_SSC_DIN; AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN; // steal this pin from the SSP and use it to control the modulation AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST; AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN; // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long // 48/2 = 24 MHz clock must be divided by 12 AT91C_BASE_SSC->SSC_CMR = 12; AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0); AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF; AT91C_BASE_SSC->SSC_TCMR = 0; AT91C_BASE_SSC->SSC_TFMR = 0; LED_D_ON(); // modulate antenna HIGH(GPIO_SSC_DOUT); // Charge TI tag for 50ms. SpinDelay(50); // stop modulating antenna and listen LOW(GPIO_SSC_DOUT); LED_D_OFF(); i = 0; for(;;) { if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer i++; if(i >= TIBUFLEN) break; } WDT_HIT(); } // return stolen pin to SSP AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT; AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT; char *dest = (char *)BigBuf; n = TIBUFLEN*32; // unpack buffer for (i=TIBUFLEN-1; i>=0; i--) { for (j=0; j<32; j++) { if(BigBuf[i] & (1 << j)) { dest[--n] = 1; } else { dest[--n] = -1; } } } } // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc // if crc provided, it will be written with the data verbatim (even if bogus) // if not provided a valid crc will be computed from the data and written. void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc) { if(crc == 0) { crc = update_crc16(crc, (idlo)&0xff); crc = update_crc16(crc, (idlo>>8)&0xff); crc = update_crc16(crc, (idlo>>16)&0xff); crc = update_crc16(crc, (idlo>>24)&0xff); crc = update_crc16(crc, (idhi)&0xff); crc = update_crc16(crc, (idhi>>8)&0xff); crc = update_crc16(crc, (idhi>>16)&0xff); crc = update_crc16(crc, (idhi>>24)&0xff); } Dbprintf("Writing to tag: %x%08x, crc=%x", (unsigned int) idhi, (unsigned int) idlo, crc); // TI tags charge at 134.2Khz FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz // Place FPGA in passthrough mode, in this mode the CROSS_LO line // connects to SSP_DIN and the SSP_DOUT logic level controls // whether we're modulating the antenna (high) // or listening to the antenna (low) FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); LED_A_ON(); // steal this pin from the SSP and use it to control the modulation AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; // writing algorithm: // a high bit consists of a field off for 1ms and field on for 1ms // a low bit consists of a field off for 0.3ms and field on for 1.7ms // initiate a charge time of 50ms (field on) then immediately start writing bits // start by writing 0xBB (keyword) and 0xEB (password) // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer) // finally end with 0x0300 (write frame) // all data is sent lsb firts // finish with 15ms programming time // modulate antenna HIGH(GPIO_SSC_DOUT); SpinDelay(50); // charge time WriteTIbyte(0xbb); // keyword WriteTIbyte(0xeb); // password WriteTIbyte( (idlo )&0xff ); WriteTIbyte( (idlo>>8 )&0xff ); WriteTIbyte( (idlo>>16)&0xff ); WriteTIbyte( (idlo>>24)&0xff ); WriteTIbyte( (idhi )&0xff ); WriteTIbyte( (idhi>>8 )&0xff ); WriteTIbyte( (idhi>>16)&0xff ); WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo WriteTIbyte( (crc )&0xff ); // crc lo WriteTIbyte( (crc>>8 )&0xff ); // crc hi WriteTIbyte(0x00); // write frame lo WriteTIbyte(0x03); // write frame hi HIGH(GPIO_SSC_DOUT); SpinDelay(50); // programming time LED_A_OFF(); // get TI tag data into the buffer AcquireTiType(); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); DbpString("Now use tiread to check"); } void SimulateTagLowFrequency(int period, int gap, int ledcontrol) { int i; uint8_t *tab = (uint8_t *)BigBuf; FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT); AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK; AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK; #define SHORT_COIL() LOW(GPIO_SSC_DOUT) #define OPEN_COIL() HIGH(GPIO_SSC_DOUT) i = 0; for(;;) { while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) { if(BUTTON_PRESS()) { DbpString("Stopped"); return; } WDT_HIT(); } if (ledcontrol) LED_D_ON(); if(tab[i]) OPEN_COIL(); else SHORT_COIL(); if (ledcontrol) LED_D_OFF(); while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) { if(BUTTON_PRESS()) { DbpString("Stopped"); return; } WDT_HIT(); } i++; if(i == period) { i = 0; if (gap) { SHORT_COIL(); SpinDelayUs(gap); } } } } #define DEBUG_FRAME_CONTENTS 1 void SimulateTagLowFrequencyBidir(int divisor, int t0) { } // compose fc/8 fc/10 waveform static void fc(int c, int *n) { uint8_t *dest = (uint8_t *)BigBuf; int idx; // for when we want an fc8 pattern every 4 logical bits if(c==0) { dest[((*n)++)]=1; dest[((*n)++)]=1; dest[((*n)++)]=0; dest[((*n)++)]=0; dest[((*n)++)]=0; dest[((*n)++)]=0; dest[((*n)++)]=0; dest[((*n)++)]=0; } // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples if(c==8) { for (idx=0; idx<6; idx++) { dest[((*n)++)]=1; dest[((*n)++)]=1; dest[((*n)++)]=0; dest[((*n)++)]=0; dest[((*n)++)]=0; dest[((*n)++)]=0; dest[((*n)++)]=0; dest[((*n)++)]=0; } } // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples if(c==10) { for (idx=0; idx<5; idx++) { dest[((*n)++)]=1; dest[((*n)++)]=1; dest[((*n)++)]=1; dest[((*n)++)]=0; dest[((*n)++)]=0; dest[((*n)++)]=0; dest[((*n)++)]=0; dest[((*n)++)]=0; dest[((*n)++)]=0; dest[((*n)++)]=0; } } } // prepare a waveform pattern in the buffer based on the ID given then // simulate a HID tag until the button is pressed void CmdHIDsimTAG(int hi, int lo, int ledcontrol) { int n=0, i=0; /* HID tag bitstream format The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits A 1 bit is represented as 6 fc8 and 5 fc10 patterns A 0 bit is represented as 5 fc10 and 6 fc8 patterns A fc8 is inserted before every 4 bits A special start of frame pattern is used consisting a0b0 where a and b are neither 0 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10) */ if (hi>0xFFF) { DbpString("Tags can only have 44 bits."); return; } fc(0,&n); // special start of frame marker containing invalid bit sequences fc(8, &n); fc(8, &n); // invalid fc(8, &n); fc(10, &n); // logical 0 fc(10, &n); fc(10, &n); // invalid fc(8, &n); fc(10, &n); // logical 0 WDT_HIT(); // manchester encode bits 43 to 32 for (i=11; i>=0; i--) { if ((i%4)==3) fc(0,&n); if ((hi>>i)&1) { fc(10, &n); fc(8, &n); // low-high transition } else { fc(8, &n); fc(10, &n); // high-low transition } } WDT_HIT(); // manchester encode bits 31 to 0 for (i=31; i>=0; i--) { if ((i%4)==3) fc(0,&n); if ((lo>>i)&1) { fc(10, &n); fc(8, &n); // low-high transition } else { fc(8, &n); fc(10, &n); // high-low transition } } if (ledcontrol) LED_A_ON(); SimulateTagLowFrequency(n, 0, ledcontrol); if (ledcontrol) LED_A_OFF(); } // loop to capture raw HID waveform then FSK demodulate the TAG ID from it void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol) { uint8_t *dest = (uint8_t *)BigBuf; int m=0, n=0, i=0, idx=0, found=0, lastval=0; uint32_t hi2=0, hi=0, lo=0; FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); // Connect the A/D to the peak-detected low-frequency path. SetAdcMuxFor(GPIO_MUXSEL_LOPKD); // Give it a bit of time for the resonant antenna to settle. SpinDelay(50); // Now set up the SSC to get the ADC samples that are now streaming at us. FpgaSetupSsc(); for(;;) { WDT_HIT(); if (ledcontrol) LED_A_ON(); if(BUTTON_PRESS()) { DbpString("Stopped"); if (ledcontrol) LED_A_OFF(); return; } i = 0; m = sizeof(BigBuf); memset(dest,128,m); for(;;) { if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { AT91C_BASE_SSC->SSC_THR = 0x43; if (ledcontrol) LED_D_ON(); } if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; // we don't care about actual value, only if it's more or less than a // threshold essentially we capture zero crossings for later analysis if(dest[i] < 127) dest[i] = 0; else dest[i] = 1; i++; if (ledcontrol) LED_D_OFF(); if(i >= m) { break; } } } // FSK demodulator // sync to first lo-hi transition for( idx=1; idx>1) & 0xFFFF); } else { Dbprintf("TAG ID: %x%08x (%d)", (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); } /* if we're only looking for one tag */ if (findone) { *high = hi; *low = lo; return; } hi2=0; hi=0; lo=0; found=0; } } if (found) { if (dest[idx] && (!dest[idx+1]) ) { hi2=(hi2<<1)|(hi>>31); hi=(hi<<1)|(lo>>31); lo=(lo<<1)|0; } else if ( (!dest[idx]) && dest[idx+1]) { hi2=(hi2<<1)|(hi>>31); hi=(hi<<1)|(lo>>31); lo=(lo<<1)|1; } else { found=0; hi2=0; hi=0; lo=0; } idx++; } if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) ) { found=1; idx+=6; if (found && (hi|lo)) { if (hi2 != 0){ Dbprintf("TAG ID: %x%08x%08x (%d)", (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); } else { Dbprintf("TAG ID: %x%08x (%d)", (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); } /* if we're only looking for one tag */ if (findone) { *high = hi; *low = lo; return; } hi2=0; hi=0; lo=0; found=0; } } } WDT_HIT(); } } void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol) { uint8_t *dest = (uint8_t *)BigBuf; int m=0, n=0, i=0, idx=0, lastval=0; int found=0; uint32_t code=0, code2=0; //uint32_t hi2=0, hi=0, lo=0; FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); // Connect the A/D to the peak-detected low-frequency path. SetAdcMuxFor(GPIO_MUXSEL_LOPKD); // Give it a bit of time for the resonant antenna to settle. SpinDelay(50); // Now set up the SSC to get the ADC samples that are now streaming at us. FpgaSetupSsc(); for(;;) { WDT_HIT(); if (ledcontrol) LED_A_ON(); if(BUTTON_PRESS()) { DbpString("Stopped"); if (ledcontrol) LED_A_OFF(); return; } i = 0; m = sizeof(BigBuf); memset(dest,128,m); for(;;) { if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { AT91C_BASE_SSC->SSC_THR = 0x43; if (ledcontrol) LED_D_ON(); } if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; // we don't care about actual value, only if it's more or less than a // threshold essentially we capture zero crossings for later analysis if(dest[i] < 127) dest[i] = 0; else dest[i] = 1; i++; if (ledcontrol) LED_D_OFF(); if(i >= m) { break; } } } // FSK demodulator // sync to first lo-hi transition for( idx=1; idx>= 1) T55xxWriteBit(Pwd & i); } // Lock bit T55xxWriteBit(0); // Data for (i = 0x80000000; i != 0; i >>= 1) T55xxWriteBit(Data & i); // Block for (i = 0x04; i != 0; i >>= 1) T55xxWriteBit(Block & i); // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550, // so wait a little more) FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); SpinDelay(20); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); } // Read one card block in page 0 void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode) { uint8_t *dest = (uint8_t *)BigBuf; int m=0, i=0; m = sizeof(BigBuf); // Clear destination buffer before sending the command memset(dest, 128, m); // Connect the A/D to the peak-detected low-frequency path. SetAdcMuxFor(GPIO_MUXSEL_LOPKD); // Now set up the SSC to get the ADC samples that are now streaming at us. FpgaSetupSsc(); LED_D_ON(); FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); // Give it a bit of time for the resonant antenna to settle. // And for the tag to fully power up SpinDelay(150); // Now start writting FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); SpinDelayUs(START_GAP); // Opcode T55xxWriteBit(1); T55xxWriteBit(0); //Page 0 if (PwdMode == 1){ // Pwd for (i = 0x80000000; i != 0; i >>= 1) T55xxWriteBit(Pwd & i); } // Lock bit T55xxWriteBit(0); // Block for (i = 0x04; i != 0; i >>= 1) T55xxWriteBit(Block & i); // Turn field on to read the response FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); // Now do the acquisition i = 0; for(;;) { if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { AT91C_BASE_SSC->SSC_THR = 0x43; } if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; // we don't care about actual value, only if it's more or less than a // threshold essentially we capture zero crossings for later analysis // if(dest[i] < 127) dest[i] = 0; else dest[i] = 1; i++; if (i >= m) break; } } FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off LED_D_OFF(); DbpString("DONE!"); } // Read card traceability data (page 1) void T55xxReadTrace(void){ uint8_t *dest = (uint8_t *)BigBuf; int m=0, i=0; m = sizeof(BigBuf); // Clear destination buffer before sending the command memset(dest, 128, m); // Connect the A/D to the peak-detected low-frequency path. SetAdcMuxFor(GPIO_MUXSEL_LOPKD); // Now set up the SSC to get the ADC samples that are now streaming at us. FpgaSetupSsc(); LED_D_ON(); FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); // Give it a bit of time for the resonant antenna to settle. // And for the tag to fully power up SpinDelay(150); // Now start writting FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); SpinDelayUs(START_GAP); // Opcode T55xxWriteBit(1); T55xxWriteBit(1); //Page 1 // Turn field on to read the response FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); // Now do the acquisition i = 0; for(;;) { if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { AT91C_BASE_SSC->SSC_THR = 0x43; } if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; i++; if (i >= m) break; } } FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off LED_D_OFF(); DbpString("DONE!"); } /*-------------- Cloning routines -----------*/ // Copy HID id to card and setup block 0 config void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) { int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format int last_block = 0; if (longFMT){ // Ensure no more than 84 bits supplied if (hi2>0xFFFFF) { DbpString("Tags can only have 84 bits."); return; } // Build the 6 data blocks for supplied 84bit ID last_block = 6; data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded) for (int i=0;i<4;i++) { if (hi2 & (1<<(19-i))) data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10 else data1 |= (1<<((3-i)*2)); // 0 -> 01 } data2 = 0; for (int i=0;i<16;i++) { if (hi2 & (1<<(15-i))) data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10 else data2 |= (1<<((15-i)*2)); // 0 -> 01 } data3 = 0; for (int i=0;i<16;i++) { if (hi & (1<<(31-i))) data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10 else data3 |= (1<<((15-i)*2)); // 0 -> 01 } data4 = 0; for (int i=0;i<16;i++) { if (hi & (1<<(15-i))) data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10 else data4 |= (1<<((15-i)*2)); // 0 -> 01 } data5 = 0; for (int i=0;i<16;i++) { if (lo & (1<<(31-i))) data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10 else data5 |= (1<<((15-i)*2)); // 0 -> 01 } data6 = 0; for (int i=0;i<16;i++) { if (lo & (1<<(15-i))) data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10 else data6 |= (1<<((15-i)*2)); // 0 -> 01 } } else { // Ensure no more than 44 bits supplied if (hi>0xFFF) { DbpString("Tags can only have 44 bits."); return; } // Build the 3 data blocks for supplied 44bit ID last_block = 3; data1 = 0x1D000000; // load preamble for (int i=0;i<12;i++) { if (hi & (1<<(11-i))) data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10 else data1 |= (1<<((11-i)*2)); // 0 -> 01 } data2 = 0; for (int i=0;i<16;i++) { if (lo & (1<<(31-i))) data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10 else data2 |= (1<<((15-i)*2)); // 0 -> 01 } data3 = 0; for (int i=0;i<16;i++) { if (lo & (1<<(15-i))) data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10 else data3 |= (1<<((15-i)*2)); // 0 -> 01 } } LED_D_ON(); // Program the data blocks for supplied ID // and the block 0 for HID format T55xxWriteBlock(data1,1,0,0); T55xxWriteBlock(data2,2,0,0); T55xxWriteBlock(data3,3,0,0); if (longFMT) { // if long format there are 6 blocks T55xxWriteBlock(data4,4,0,0); T55xxWriteBlock(data5,5,0,0); T55xxWriteBlock(data6,6,0,0); } // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long) T55xxWriteBlock(T55x7_BITRATE_RF_50 | T55x7_MODULATION_FSK2a | last_block << T55x7_MAXBLOCK_SHIFT, 0,0,0); LED_D_OFF(); DbpString("DONE!"); } void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT) { int data1=0, data2=0; //up to six blocks for long format data1 = hi; // load preamble data2 = lo; LED_D_ON(); // Program the data blocks for supplied ID // and the block 0 for HID format T55xxWriteBlock(data1,1,0,0); T55xxWriteBlock(data2,2,0,0); //Config Block T55xxWriteBlock(0x00147040,0,0,0); LED_D_OFF(); DbpString("DONE!"); } // Define 9bit header for EM410x tags #define EM410X_HEADER 0x1FF #define EM410X_ID_LENGTH 40 void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) { int i, id_bit; uint64_t id = EM410X_HEADER; uint64_t rev_id = 0; // reversed ID int c_parity[4]; // column parity int r_parity = 0; // row parity uint32_t clock = 0; // Reverse ID bits given as parameter (for simpler operations) for (i = 0; i < EM410X_ID_LENGTH; ++i) { if (i < 32) { rev_id = (rev_id << 1) | (id_lo & 1); id_lo >>= 1; } else { rev_id = (rev_id << 1) | (id_hi & 1); id_hi >>= 1; } } for (i = 0; i < EM410X_ID_LENGTH; ++i) { id_bit = rev_id & 1; if (i % 4 == 0) { // Don't write row parity bit at start of parsing if (i) id = (id << 1) | r_parity; // Start counting parity for new row r_parity = id_bit; } else { // Count row parity r_parity ^= id_bit; } // First elements in column? if (i < 4) // Fill out first elements c_parity[i] = id_bit; else // Count column parity c_parity[i % 4] ^= id_bit; // Insert ID bit id = (id << 1) | id_bit; rev_id >>= 1; } // Insert parity bit of last row id = (id << 1) | r_parity; // Fill out column parity at the end of tag for (i = 0; i < 4; ++i) id = (id << 1) | c_parity[i]; // Add stop bit id <<= 1; Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555"); LED_D_ON(); // Write EM410x ID T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0); T55xxWriteBlock((uint32_t)id, 2, 0, 0); // Config for EM410x (RF/64, Manchester, Maxblock=2) if (card) { // Clock rate is stored in bits 8-15 of the card value clock = (card & 0xFF00) >> 8; Dbprintf("Clock rate: %d", clock); switch (clock) { case 32: clock = T55x7_BITRATE_RF_32; break; case 16: clock = T55x7_BITRATE_RF_16; break; case 0: // A value of 0 is assumed to be 64 for backwards-compatibility // Fall through... case 64: clock = T55x7_BITRATE_RF_64; break; default: Dbprintf("Invalid clock rate: %d", clock); return; } // Writing configuration for T55x7 tag T55xxWriteBlock(clock | T55x7_MODULATION_MANCHESTER | 2 << T55x7_MAXBLOCK_SHIFT, 0, 0, 0); } else // Writing configuration for T5555(Q5) tag T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT | T5555_MODULATION_MANCHESTER | 2 << T5555_MAXBLOCK_SHIFT, 0, 0, 0); LED_D_OFF(); Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555", (uint32_t)(id >> 32), (uint32_t)id); } // Clone Indala 64-bit tag by UID to T55x7 void CopyIndala64toT55x7(int hi, int lo) { //Program the 2 data blocks for supplied 64bit UID // and the block 0 for Indala64 format T55xxWriteBlock(hi,1,0,0); T55xxWriteBlock(lo,2,0,0); //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2) T55xxWriteBlock(T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | 2 << T55x7_MAXBLOCK_SHIFT, 0, 0, 0); //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data) // T5567WriteBlock(0x603E1042,0); DbpString("DONE!"); } void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7) { //Program the 7 data blocks for supplied 224bit UID // and the block 0 for Indala224 format T55xxWriteBlock(uid1,1,0,0); T55xxWriteBlock(uid2,2,0,0); T55xxWriteBlock(uid3,3,0,0); T55xxWriteBlock(uid4,4,0,0); T55xxWriteBlock(uid5,5,0,0); T55xxWriteBlock(uid6,6,0,0); T55xxWriteBlock(uid7,7,0,0); //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7) T55xxWriteBlock(T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | 7 << T55x7_MAXBLOCK_SHIFT, 0,0,0); //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data) // T5567WriteBlock(0x603E10E2,0); DbpString("DONE!"); } #define abs(x) ( ((x)<0) ? -(x) : (x) ) #define max(x,y) ( x GraphBuffer[0]) { while(i < GraphTraceLen) { if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax) break; i++; } dir = 0; } else { while(i < GraphTraceLen) { if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin) break; i++; } dir = 1; } lastval = i++; half_switch = 0; pmc = 0; block_done = 0; for (bitidx = 0; i < GraphTraceLen; i++) { if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin)) { lc = i - lastval; lastval = i; // Switch depending on lc length: // Tolerance is 1/8 of clock rate (arbitrary) if (abs(lc-clock/4) < tolerance) { // 16T0 if((i - pmc) == lc) { /* 16T0 was previous one */ /* It's a PMC ! */ i += (128+127+16+32+33+16)-1; lastval = i; pmc = 0; block_done = 1; } else { pmc = i; } } else if (abs(lc-clock/2) < tolerance) { // 32TO if((i - pmc) == lc) { /* 16T0 was previous one */ /* It's a PMC ! */ i += (128+127+16+32+33)-1; lastval = i; pmc = 0; block_done = 1; } else if(half_switch == 1) { BitStream[bitidx++] = 0; half_switch = 0; } else half_switch++; } else if (abs(lc-clock) < tolerance) { // 64TO BitStream[bitidx++] = 1; } else { // Error warnings++; if (warnings > 10) { Dbprintf("Error: too many detection errors, aborting."); return 0; } } if(block_done == 1) { if(bitidx == 128) { for(j=0; j<16; j++) { Blocks[num_blocks][j] = 128*BitStream[j*8+7]+ 64*BitStream[j*8+6]+ 32*BitStream[j*8+5]+ 16*BitStream[j*8+4]+ 8*BitStream[j*8+3]+ 4*BitStream[j*8+2]+ 2*BitStream[j*8+1]+ BitStream[j*8]; } num_blocks++; } bitidx = 0; block_done = 0; half_switch = 0; } if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0; else dir = 1; } if(bitidx==255) bitidx=0; warnings = 0; if(num_blocks == 4) break; } memcpy(outBlocks, Blocks, 16*num_blocks); return num_blocks; } int IsBlock0PCF7931(uint8_t *Block) { // Assume RFU means 0 :) if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled return 1; if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ? return 1; return 0; } int IsBlock1PCF7931(uint8_t *Block) { // Assume RFU means 0 :) if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0) if((Block[14] & 0x7f) <= 9 && Block[15] <= 9) return 1; return 0; } #define ALLOC 16 void ReadPCF7931() { uint8_t Blocks[8][17]; uint8_t tmpBlocks[4][16]; int i, j, ind, ind2, n; int num_blocks = 0; int max_blocks = 8; int ident = 0; int error = 0; int tries = 0; memset(Blocks, 0, 8*17*sizeof(uint8_t)); do { memset(tmpBlocks, 0, 4*16*sizeof(uint8_t)); n = DemodPCF7931((uint8_t**)tmpBlocks); if(!n) error++; if(error==10 && num_blocks == 0) { Dbprintf("Error, no tag or bad tag"); return; } else if (tries==20 || error==10) { Dbprintf("Error reading the tag"); Dbprintf("Here is the partial content"); goto end; } for(i=0; i= 0; ind--,ind2--) { if(ind2 < 0) ind2 = max_blocks; if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found // Dbprintf("Tmp %d -> Block %d", ind, ind2); memcpy(Blocks[ind2], tmpBlocks[ind], 16); Blocks[ind2][ALLOC] = 1; num_blocks++; if(num_blocks == max_blocks) goto end; } } for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) { if(ind2 > max_blocks) ind2 = 0; if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found // Dbprintf("Tmp %d -> Block %d", ind, ind2); memcpy(Blocks[ind2], tmpBlocks[ind], 16); Blocks[ind2][ALLOC] = 1; num_blocks++; if(num_blocks == max_blocks) goto end; } } } } } } } tries++; if (BUTTON_PRESS()) return; } while (num_blocks != max_blocks); end: Dbprintf("-----------------------------------------"); Dbprintf("Memory content:"); Dbprintf("-----------------------------------------"); for(i=0; i", i); } Dbprintf("-----------------------------------------"); return ; } //----------------------------------- // EM4469 / EM4305 routines //----------------------------------- #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored #define FWD_CMD_WRITE 0xA #define FWD_CMD_READ 0x9 #define FWD_CMD_DISABLE 0x5 uint8_t forwardLink_data[64]; //array of forwarded bits uint8_t * forward_ptr; //ptr for forward message preparation uint8_t fwd_bit_sz; //forwardlink bit counter uint8_t * fwd_write_ptr; //forwardlink bit pointer //==================================================================== // prepares command bits // see EM4469 spec //==================================================================== //-------------------------------------------------------------------- uint8_t Prepare_Cmd( uint8_t cmd ) { //-------------------------------------------------------------------- *forward_ptr++ = 0; //start bit *forward_ptr++ = 0; //second pause for 4050 code *forward_ptr++ = cmd; cmd >>= 1; *forward_ptr++ = cmd; cmd >>= 1; *forward_ptr++ = cmd; cmd >>= 1; *forward_ptr++ = cmd; return 6; //return number of emited bits } //==================================================================== // prepares address bits // see EM4469 spec //==================================================================== //-------------------------------------------------------------------- uint8_t Prepare_Addr( uint8_t addr ) { //-------------------------------------------------------------------- register uint8_t line_parity; uint8_t i; line_parity = 0; for(i=0;i<6;i++) { *forward_ptr++ = addr; line_parity ^= addr; addr >>= 1; } *forward_ptr++ = (line_parity & 1); return 7; //return number of emited bits } //==================================================================== // prepares data bits intreleaved with parity bits // see EM4469 spec //==================================================================== //-------------------------------------------------------------------- uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) { //-------------------------------------------------------------------- register uint8_t line_parity; register uint8_t column_parity; register uint8_t i, j; register uint16_t data; data = data_low; column_parity = 0; for(i=0; i<4; i++) { line_parity = 0; for(j=0; j<8; j++) { line_parity ^= data; column_parity ^= (data & 1) << j; *forward_ptr++ = data; data >>= 1; } *forward_ptr++ = line_parity; if(i == 1) data = data_hi; } for(j=0; j<8; j++) { *forward_ptr++ = column_parity; column_parity >>= 1; } *forward_ptr = 0; return 45; //return number of emited bits } //==================================================================== // Forward Link send function // Requires: forwarLink_data filled with valid bits (1 bit per byte) // fwd_bit_count set with number of bits to be sent //==================================================================== void SendForward(uint8_t fwd_bit_count) { fwd_write_ptr = forwardLink_data; fwd_bit_sz = fwd_bit_count; LED_D_ON(); //Field on FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); // Give it a bit of time for the resonant antenna to settle. // And for the tag to fully power up SpinDelay(150); // force 1st mod pulse (start gap must be longer for 4305) fwd_bit_sz--; //prepare next bit modulation fwd_write_ptr++; FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off SpinDelayUs(55*8); //55 cycles off (8us each)for 4305 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);//field on SpinDelayUs(16*8); //16 cycles on (8us each) // now start writting while(fwd_bit_sz-- > 0) { //prepare next bit modulation if(((*fwd_write_ptr++) & 1) == 1) SpinDelayUs(32*8); //32 cycles at 125Khz (8us each) else { //These timings work for 4469/4269/4305 (with the 55*8 above) FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off SpinDelayUs(23*8); //16-4 cycles off (8us each) FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);//field on SpinDelayUs(9*8); //16 cycles on (8us each) } } } void EM4xLogin(uint32_t Password) { uint8_t fwd_bit_count; forward_ptr = forwardLink_data; fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN ); fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 ); SendForward(fwd_bit_count); //Wait for command to complete SpinDelay(20); } void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) { uint8_t fwd_bit_count; uint8_t *dest = (uint8_t *)BigBuf; int m=0, i=0; //If password mode do login if (PwdMode == 1) EM4xLogin(Pwd); forward_ptr = forwardLink_data; fwd_bit_count = Prepare_Cmd( FWD_CMD_READ ); fwd_bit_count += Prepare_Addr( Address ); m = sizeof(BigBuf); // Clear destination buffer before sending the command memset(dest, 128, m); // Connect the A/D to the peak-detected low-frequency path. SetAdcMuxFor(GPIO_MUXSEL_LOPKD); // Now set up the SSC to get the ADC samples that are now streaming at us. FpgaSetupSsc(); SendForward(fwd_bit_count); // Now do the acquisition i = 0; for(;;) { if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { AT91C_BASE_SSC->SSC_THR = 0x43; } if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; i++; if (i >= m) break; } } FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off LED_D_OFF(); } void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) { uint8_t fwd_bit_count; //If password mode do login if (PwdMode == 1) EM4xLogin(Pwd); forward_ptr = forwardLink_data; fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE ); fwd_bit_count += Prepare_Addr( Address ); fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 ); SendForward(fwd_bit_count); //Wait for write to complete SpinDelay(20); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off LED_D_OFF(); }