//----------------------------------------------------------------------------- // Copyright (C) 2010 iZsh // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // High frequency ISO14443B commands //----------------------------------------------------------------------------- #include #include #include #include #include "iso14443crc.h" #include "proxmark3.h" #include "data.h" #include "graph.h" #include "util.h" #include "ui.h" #include "cmdparser.h" #include "cmdhf14b.h" #include "cmdmain.h" #include "cmdhf14a.h" #include "tea.h" #include "cmdhf.h" #include "prng.h" #include "sha1.h" static int CmdHelp(const char *Cmd); int CmdHF14BList(const char *Cmd) { CmdHFList("14b"); return 0; } int CmdHF14BSim(const char *Cmd) { UsbCommand c = {CMD_SIMULATE_TAG_ISO_14443B}; clearCommandBuffer(); SendCommand(&c); return 0; } int CmdHF14BSnoop(const char *Cmd) { UsbCommand c = {CMD_SNOOP_ISO_14443B}; clearCommandBuffer(); SendCommand(&c); return 0; } /* New command to read the contents of a SRI512 tag * SRI512 tags are ISO14443-B modulated memory tags, * this command just dumps the contents of the memory */ int CmdSri512Read(const char *Cmd) { UsbCommand c = {CMD_READ_SRI512_TAG, {strtol(Cmd, NULL, 0), 0, 0}}; clearCommandBuffer(); SendCommand(&c); return 0; } /* New command to read the contents of a SRIX4K tag * SRIX4K tags are ISO14443-B modulated memory tags, * this command just dumps the contents of the memory/ */ int CmdSrix4kRead(const char *Cmd) { UsbCommand c = {CMD_READ_SRIX4K_TAG, {strtol(Cmd, NULL, 0), 0, 0}}; clearCommandBuffer(); SendCommand(&c); return 0; } int rawClose(void){ UsbCommand resp; UsbCommand c = {CMD_ISO_14443B_COMMAND, {0, 0, 0}}; clearCommandBuffer(); SendCommand(&c); if (!WaitForResponseTimeout(CMD_ACK,&resp,1000)) { PrintAndLog("Command time-out"); return 1; } return 0; } int HF14BCmdRaw(bool reply, bool *crc, bool power, uint8_t *data, uint8_t *datalen, bool verbose){ if(*crc) { ComputeCrc14443(CRC_14443_B, data, *datalen, data+*datalen, data+*datalen+1); *datalen += 2; } UsbCommand c = {CMD_ISO_14443B_COMMAND, {0, 0, 0}}; // len,recv,power c.arg[0] = *datalen; c.arg[1] = reply; c.arg[2] = power; memcpy(c.d.asBytes, data, *datalen); clearCommandBuffer(); SendCommand(&c); if (!reply) return 1; UsbCommand resp; if (!WaitForResponseTimeout(CMD_ACK, &resp, 2000)) { if (verbose) PrintAndLog("timeout while waiting for reply."); return 0; } *datalen = resp.arg[0]; if (verbose) PrintAndLog("received %u octets", *datalen); if(*datalen<3) return 0; memcpy(data, resp.d.asBytes, *datalen); uint8_t first = 0, second = 0; ComputeCrc14443(CRC_14443_B, data, *datalen-2, &first, &second); *crc = ( data[*datalen-2] == first && data[*datalen-1] == second); if (verbose) PrintAndLog("[LEN %u] %s[%02X %02X] %s", *datalen, sprint_hex(data, *datalen-2), data[*datalen-2], data[*datalen-1], (*crc)?"OK":"FAIL" ); return 1; } int CmdHF14BCmdRaw (const char *Cmd) { bool reply = true; bool crc = false; bool power = false; bool select = false; bool SRx = false; char buf[5]=""; uint8_t data[USB_CMD_DATA_SIZE] = {0x00}; uint8_t datalen = 0; unsigned int temp; int i = 0; if (strlen(Cmd)<3) { PrintAndLog("Usage: hf 14b raw [-r] [-c] [-p] [-s || -ss] <0A 0B 0C ... hex>"); PrintAndLog(" -r do not read response"); PrintAndLog(" -c calculate and append CRC"); PrintAndLog(" -p leave the field on after receive"); PrintAndLog(" -s active signal field ON with select"); PrintAndLog(" -ss active signal field ON with select for SRx ST Microelectronics tags"); return 0; } // strip while (*Cmd==' ' || *Cmd=='\t') Cmd++; while (Cmd[i]!='\0') { if (Cmd[i]==' ' || Cmd[i]=='\t') { i++; continue; } if (Cmd[i]=='-') { switch (Cmd[i+1]) { case 'r': case 'R': reply = false; break; case 'c': case 'C': crc = true; break; case 'p': case 'P': power = true; break; case 's': case 'S': select = true; if (Cmd[i+2]=='s' || Cmd[i+2]=='S') { SRx = true; i++; } break; default: PrintAndLog("Invalid option"); return 0; } i+=2; continue; } if ((Cmd[i]>='0' && Cmd[i]<='9') || (Cmd[i]>='a' && Cmd[i]<='f') || (Cmd[i]>='A' && Cmd[i]<='F') ) { buf[strlen(buf)+1]=0; buf[strlen(buf)]=Cmd[i]; i++; if (strlen(buf)>=2) { sscanf(buf,"%x",&temp); data[datalen++]=(uint8_t)(temp & 0xff); *buf=0; memset(buf, 0x00, sizeof(buf)); } continue; } PrintAndLog("Invalid char on input"); return 0; } if (datalen == 0) { PrintAndLog("Missing data input"); return 0; } if (select){ //auto select 14b tag uint8_t cmd2[16]; bool crc2 = true; uint8_t cmdLen; if (SRx) { // REQ SRx cmdLen = 2; cmd2[0] = 0x06; cmd2[1] = 0x00; } else { // REQB cmdLen = 3; cmd2[0] = 0x05; cmd2[1] = 0x00; cmd2[2] = 0x08; } // REQB if (HF14BCmdRaw(true, &crc2, true, cmd2, &cmdLen, false)==0) return rawClose(); PrintAndLog("REQB : %s", sprint_hex(cmd2, cmdLen)); if ( SRx && (cmdLen != 3 || !crc2) ) return rawClose(); else if (cmd2[0] != 0x50 || cmdLen != 14 || !crc2) return rawClose(); uint8_t chipID = 0; if (SRx) { // select chipID = cmd2[0]; cmd2[0] = 0x0E; cmd2[1] = chipID; cmdLen = 2; } else { // attrib cmd2[0] = 0x1D; // UID from cmd2[1 - 4] cmd2[5] = 0x00; cmd2[6] = 0x08; cmd2[7] = 0x01; cmd2[8] = 0x00; cmdLen = 9; } // wait // attrib if (HF14BCmdRaw(true, &crc2, true, cmd2, &cmdLen, false)==0) return rawClose(); PrintAndLog("ATTRIB : %s", sprint_hex(cmd2, cmdLen)); if (cmdLen != 3 || !crc2) return rawClose(); if (SRx && cmd2[0] != chipID) return rawClose(); } return HF14BCmdRaw(reply, &crc, power, data, &datalen, true); } // print full atqb info static void print_atqb_resp(uint8_t *data){ //PrintAndLog (" UID: %s", sprint_hex(data+1,4)); PrintAndLog (" App Data: %s", sprint_hex(data+5,4)); PrintAndLog (" Protocol: %s", sprint_hex(data+9,3)); uint8_t BitRate = data[9]; if (!BitRate) PrintAndLog (" Bit Rate: 106 kbit/s only PICC <-> PCD"); if (BitRate & 0x10) PrintAndLog (" Bit Rate: 212 kbit/s PICC -> PCD supported"); if (BitRate & 0x20) PrintAndLog (" Bit Rate: 424 kbit/s PICC -> PCD supported"); if (BitRate & 0x40) PrintAndLog (" Bit Rate: 847 kbit/s PICC -> PCD supported"); if (BitRate & 0x01) PrintAndLog (" Bit Rate: 212 kbit/s PICC <- PCD supported"); if (BitRate & 0x02) PrintAndLog (" Bit Rate: 424 kbit/s PICC <- PCD supported"); if (BitRate & 0x04) PrintAndLog (" Bit Rate: 847 kbit/s PICC <- PCD supported"); if (BitRate & 0x80) PrintAndLog (" Same bit rate <-> required"); uint16_t maxFrame = data[10]>>4; if (maxFrame < 5) maxFrame = 8 * maxFrame + 16; else if (maxFrame == 5) maxFrame = 64; else if (maxFrame == 6) maxFrame = 96; else if (maxFrame == 7) maxFrame = 128; else if (maxFrame == 8) maxFrame = 256; else maxFrame = 257; PrintAndLog ("Max Frame Size: %u%s",maxFrame, (maxFrame == 257) ? "+ RFU" : ""); uint8_t protocolT = data[10] & 0xF; PrintAndLog (" Protocol Type: Protocol is %scompliant with ISO/IEC 14443-4",(protocolT) ? "" : "not " ); PrintAndLog ("Frame Wait Int: %u", data[11]>>4); PrintAndLog (" App Data Code: Application is %s",(data[11]&4) ? "Standard" : "Proprietary"); PrintAndLog (" Frame Options: NAD is %ssupported",(data[11]&2) ? "" : "not "); PrintAndLog (" Frame Options: CID is %ssupported",(data[11]&1) ? "" : "not "); PrintAndLog ("Max Buf Length: %u (MBLI) %s",data[14]>>4, (data[14] & 0xF0) ? "" : "not supported"); return; } // get SRx chip model (from UID) // from ST Microelectronics char *get_ST_Chip_Model(uint8_t data){ static char model[20]; char *retStr = model; memset(model,0, sizeof(model)); switch (data) { case 0x0: sprintf(retStr, "SRIX4K (Special)"); break; case 0x2: sprintf(retStr, "SR176"); break; case 0x3: sprintf(retStr, "SRIX4K"); break; case 0x4: sprintf(retStr, "SRIX512"); break; case 0x6: sprintf(retStr, "SRI512"); break; case 0x7: sprintf(retStr, "SRI4K"); break; case 0xC: sprintf(retStr, "SRT512"); break; default : sprintf(retStr, "Unknown"); break; } return retStr; } int print_ST_Lock_info(uint8_t model){ //assume connection open and tag selected... uint8_t data[16] = {0x00}; uint8_t datalen = 2; bool crc = true; uint8_t resplen; uint8_t blk1; data[0] = 0x08; if (model == 0x2) { //SR176 has special command: data[1] = 0xf; resplen = 4; } else { data[1] = 0xff; resplen = 6; } //std read cmd if (HF14BCmdRaw(true, &crc, true, data, &datalen, false)==0) return rawClose(); if (datalen != resplen || !crc) return rawClose(); PrintAndLog("Chip Write Protection Bits:"); // now interpret the data switch (model){ case 0x0: //fall through (SRIX4K special) case 0x3: //fall through (SRIx4K) case 0x7: // (SRI4K) //only need data[3] blk1 = 9; PrintAndLog(" raw: %s", sprint_bin(data+3, 1)); PrintAndLog(" 07/08:%slocked", (data[3] & 1) ? " not " : " " ); for (uint8_t i = 1; i<8; i++){ PrintAndLog(" %02u:%slocked", blk1, (data[3] & (1 << i)) ? " not " : " " ); blk1++; } break; case 0x4: //fall through (SRIX512) case 0x6: //fall through (SRI512) case 0xC: // (SRT512) //need data[2] and data[3] blk1 = 0; PrintAndLog(" raw: %s", sprint_bin(data+2, 2)); for (uint8_t b=2; b<4; b++){ for (uint8_t i=0; i<8; i++){ PrintAndLog(" %02u:%slocked", blk1, (data[b] & (1 << i)) ? " not " : " " ); blk1++; } } break; case 0x2: // (SR176) //need data[2] blk1 = 0; PrintAndLog(" raw: %s", sprint_bin(data+2, 1)); for (uint8_t i = 0; i<8; i++){ PrintAndLog(" %02u/%02u:%slocked", blk1, blk1+1, (data[2] & (1 << i)) ? " " : " not " ); blk1+=2; } break; default: return rawClose(); } return 1; } // print UID info from SRx chips (ST Microelectronics) static void print_st_general_info(uint8_t *data){ //uid = first 8 bytes in data PrintAndLog(" UID: %s", sprint_hex(SwapEndian64(data,8,8),8)); PrintAndLog(" MFG: %02X, %s", data[6], getTagInfo(data[6])); PrintAndLog("Chip: %02X, %s", data[5]>>2, get_ST_Chip_Model(data[5]>>2)); return; } // 14b get and print UID only (general info) int HF14BStdReader(uint8_t *data, uint8_t *datalen){ //05 00 00 = find one tag in field //1d xx xx xx xx 00 08 01 00 = attrib xx=UID (resp 10 [f9 e0]) //a3 = ? (resp 03 [e2 c2]) //02 = ? (resp 02 [6a d3]) // 022b (resp 02 67 00 [29 5b]) // 0200a40400 (resp 02 67 00 [29 5b]) // 0200a4040c07a0000002480300 (resp 02 67 00 [29 5b]) // 0200a4040c07a0000002480200 (resp 02 67 00 [29 5b]) // 0200a4040006a0000000010100 (resp 02 6a 82 [4b 4c]) // 0200a4040c09d27600002545500200 (resp 02 67 00 [29 5b]) // 0200a404000cd2760001354b414e4d30310000 (resp 02 6a 82 [4b 4c]) // 0200a404000ca000000063504b43532d313500 (resp 02 6a 82 [4b 4c]) // 0200a4040010a000000018300301000000000000000000 (resp 02 6a 82 [4b 4c]) //03 = ? (resp 03 [e3 c2]) //c2 = ? (resp c2 [66 15]) //b2 = ? (resp a3 [e9 67]) //a2 = ? (resp 02 [6a d3]) bool crc = true; *datalen = 3; //std read cmd data[0] = 0x05; data[1] = 0x00; data[2] = 0x08; if (HF14BCmdRaw(true, &crc, true, data, datalen, false)==0) return rawClose(); if (data[0] != 0x50 || *datalen != 14 || !crc) return rawClose(); PrintAndLog ("\n14443-3b tag found:"); PrintAndLog (" UID: %s", sprint_hex(data+1,4)); uint8_t cmd2[16]; uint8_t cmdLen = 3; bool crc2 = true; cmd2[0] = 0x1D; // UID from data[1 - 4] cmd2[1] = data[1]; cmd2[2] = data[2]; cmd2[3] = data[3]; cmd2[4] = data[4]; cmd2[5] = 0x00; cmd2[6] = 0x08; cmd2[7] = 0x01; cmd2[8] = 0x00; cmdLen = 9; // attrib if (HF14BCmdRaw(true, &crc2, true, cmd2, &cmdLen, false)==0) return rawClose(); if (cmdLen != 3 || !crc2) return rawClose(); // add attrib responce to data data[14] = cmd2[0]; rawClose(); return 1; } // 14b get and print Full Info (as much as we know) int HF14BStdInfo(uint8_t *data, uint8_t *datalen){ if (!HF14BStdReader(data,datalen)) return 0; //add more info here print_atqb_resp(data); return 1; } // SRx get and print general info about SRx chip from UID int HF14B_ST_Reader(uint8_t *data, uint8_t *datalen, bool closeCon){ bool crc = true; *datalen = 2; //wake cmd data[0] = 0x06; data[1] = 0x00; //leave power on // verbose on for now for testing - turn off when functional if (HF14BCmdRaw(true, &crc, true, data, datalen, false)==0) return rawClose(); if (*datalen != 3 || !crc) return rawClose(); uint8_t chipID = data[0]; // select data[0] = 0x0E; data[1] = chipID; *datalen = 2; //leave power on if (HF14BCmdRaw(true, &crc, true, data, datalen, false)==0) return rawClose(); if (*datalen != 3 || !crc || data[0] != chipID) return rawClose(); // get uid data[0] = 0x0B; *datalen = 1; //leave power on if (HF14BCmdRaw(true, &crc, true, data, datalen, false)==0) return rawClose(); if (*datalen != 10 || !crc) return rawClose(); //power off ? if (closeCon) rawClose(); PrintAndLog("\n14443-3b ST tag found:"); print_st_general_info(data); return 1; } // SRx get and print full info (needs more info...) int HF14B_ST_Info(uint8_t *data, uint8_t *datalen){ if (!HF14B_ST_Reader(data, datalen, false)) return 0; //add locking bit information here. if (print_ST_Lock_info(data[5]>>2)) rawClose(); return 1; } // test for other 14b type tags (mimic another reader - don't have tags to identify) int HF14B_Other_Reader(uint8_t *data, uint8_t *datalen){ bool crc = true; *datalen = 4; //std read cmd data[0] = 0x00; data[1] = 0x0b; data[2] = 0x3f; data[3] = 0x80; if (HF14BCmdRaw(true, &crc, true, data, datalen, false)!=0) { if (*datalen > 2 || !crc) { PrintAndLog ("\n14443-3b tag found:"); PrintAndLog ("Unknown tag type answered to a 0x000b3f80 command ans:"); PrintAndLog ("%s",sprint_hex(data,*datalen)); rawClose(); return 1; } } crc = false; *datalen = 1; data[0] = 0x0a; if (HF14BCmdRaw(true, &crc, true, data, datalen, false)!=0) { if (*datalen > 0) { PrintAndLog ("\n14443-3b tag found:"); PrintAndLog ("Unknown tag type answered to a 0x0A command ans:"); PrintAndLog ("%s",sprint_hex(data,*datalen)); rawClose(); return 1; } } crc = false; *datalen = 1; data[0] = 0x0c; if (HF14BCmdRaw(true, &crc, true, data, datalen, false)!=0) { if (*datalen > 0) { PrintAndLog ("\n14443-3b tag found:"); PrintAndLog ("Unknown tag type answered to a 0x0C command ans:"); PrintAndLog ("%s",sprint_hex(data,*datalen)); rawClose(); return 1; } } rawClose(); return 0; } // get and print all info known about any known 14b tag int HF14BInfo(bool verbose){ uint8_t data[USB_CMD_DATA_SIZE]; uint8_t datalen = 5; // try std 14b (atqb) if (HF14BStdInfo(data, &datalen)) return 1; // try st 14b if (HF14B_ST_Info(data, &datalen)) return 1; // try unknown 14b read commands (to be identified later) // could be read of calypso, CEPAS, moneo, or pico pass. if (HF14B_Other_Reader(data, &datalen)) return 1; if (verbose) PrintAndLog("no 14443B tag found"); return 0; } // menu command to get and print all info known about any known 14b tag int CmdHF14Binfo(const char *Cmd){ return HF14BInfo(true); } // get and print general info about all known 14b chips int HF14BReader(bool verbose){ uint8_t data[USB_CMD_DATA_SIZE]; uint8_t datalen = 5; // try std 14b (atqb) if (HF14BStdReader(data, &datalen)) return 1; // try st 14b if (HF14B_ST_Reader(data, &datalen, true)) return 1; // try unknown 14b read commands (to be identified later) // could be read of calypso, CEPAS, moneo, or pico pass. if (HF14B_Other_Reader(data, &datalen)) return 1; if (verbose) PrintAndLog("no 14443B tag found"); return 0; } // menu command to get and print general info about all known 14b chips int CmdHF14BReader(const char *Cmd){ return HF14BReader(true); } int CmdSriWrite( const char *Cmd){ /* * For SRIX4K blocks 00 - 7F * hf 14b raw -c -p 09 $srix4kwblock $srix4kwdata * * For SR512 blocks 00 - 0F * hf 14b raw -c -p 09 $sr512wblock $sr512wdata * * Special block FF = otp_lock_reg block. * Data len 4 bytes- */ char cmdp = param_getchar(Cmd, 0); uint8_t blockno = -1; uint8_t data[4] = {0x00}; bool isSrix4k = true; char str[20]; if (strlen(Cmd) < 1 || cmdp == 'h' || cmdp == 'H') { PrintAndLog("Usage: hf 14b write <1|2> "); PrintAndLog(" [1 = SRIX4K]"); PrintAndLog(" [2 = SRI512]"); PrintAndLog(" [BLOCK number depends on tag, special block == FF]"); PrintAndLog(" sample: hf 14b write 1 7F 11223344"); PrintAndLog(" : hf 14b write 1 FF 11223344"); PrintAndLog(" : hf 14b write 2 15 11223344"); PrintAndLog(" : hf 14b write 2 FF 11223344"); return 0; } if ( cmdp == '2' ) isSrix4k = false; //blockno = param_get8(Cmd, 1); if ( param_gethex(Cmd,1, &blockno, 2) ) { PrintAndLog("Block number must include 2 HEX symbols"); return 0; } if ( isSrix4k ){ if ( blockno > 0x7f && blockno != 0xff ){ PrintAndLog("Block number out of range"); return 0; } } else { if ( blockno > 0x0f && blockno != 0xff ){ PrintAndLog("Block number out of range"); return 0; } } if (param_gethex(Cmd, 2, data, 8)) { PrintAndLog("Data must include 8 HEX symbols"); return 0; } if ( blockno == 0xff) PrintAndLog("[%s] Write special block %02X [ %s ]", (isSrix4k)?"SRIX4K":"SRI512" , blockno, sprint_hex(data,4) ); else PrintAndLog("[%s] Write block %02X [ %s ]", (isSrix4k)?"SRIX4K":"SRI512", blockno, sprint_hex(data,4) ); sprintf(str, "-c 09 %02x %02x%02x%02x%02x", blockno, data[0], data[1], data[2], data[3]); CmdHF14BCmdRaw(str); return 0; } uint32_t srix4kEncode(uint32_t value) { /* // vv = value // pp = position // vv vv vv pp 4 bytes : 00 1A 20 01 */ #define NibbleHigh(b) ( (b & 0xF0) >> 4 ) #define NibbleLow(b) ( b & 0x0F ) #define Crumb(b,p) (((b & (0x3 << p) ) >> p ) & 0xF) // only the lower crumbs. uint8_t block = (value & 0xFF); uint8_t i = 0; uint8_t valuebytes[] = {0,0,0}; num_to_bytes(value, 3, valuebytes); // Scrambled part // Crumb swapping of value. uint8_t temp[] = {0,0}; temp[0] = (Crumb(value, 22) << 4 | Crumb(value, 14 ) << 2 | Crumb(value, 6)) << 4; temp[0] |= Crumb(value, 20) << 4 | Crumb(value, 12 ) << 2 | Crumb(value, 4); temp[1] = (Crumb(value, 18) << 4 | Crumb(value, 10 ) << 2 | Crumb(value, 2)) << 4; temp[1] |= Crumb(value, 16) << 4 | Crumb(value, 8 ) << 2 | Crumb(value, 0); // chksum part uint32_t chksum = 0xFF - block; // chksum is reduced by each nibbles of value. for (i = 0; i < 3; ++i){ chksum -= NibbleHigh(valuebytes[i]); chksum -= NibbleLow(valuebytes[i]); } // base4 conversion and left shift twice i = 3; uint8_t base4[] = {0,0,0,0}; while( chksum !=0 ){ base4[i--] = (chksum % 4 << 2); chksum /= 4; } // merge scambled and chksum parts uint32_t encvalue = ( NibbleLow ( base4[0]) << 28 ) | ( NibbleHigh( temp[0]) << 24 ) | ( NibbleLow ( base4[1]) << 20 ) | ( NibbleLow ( temp[0]) << 16 ) | ( NibbleLow ( base4[2]) << 12 ) | ( NibbleHigh( temp[1]) << 8 ) | ( NibbleLow ( base4[3]) << 4 ) | NibbleLow ( temp[1] ); PrintAndLog("ICE encoded | %08X -> %08X", value, encvalue); return encvalue; } uint32_t srix4kDecode(uint32_t value) { switch(value) { case 0xC04F42C5: return 0x003139; case 0xC1484807: return 0x002943; case 0xC0C60848: return 0x001A20; } return 0; } uint32_t srix4kDecodeCounter(uint32_t num) { uint32_t value = ~num; ++value; return value; } uint32_t srix4kGetMagicbytes( uint64_t uid, uint32_t block6, uint32_t block18, uint32_t block19 ){ #define MASK 0xFFFFFFFF; uint32_t uid32 = uid & MASK; uint32_t counter = srix4kDecodeCounter(block6); uint32_t decodedBlock18 = srix4kDecode(block18); uint32_t decodedBlock19 = srix4kDecode(block19); uint32_t doubleBlock = (decodedBlock18 << 16 | decodedBlock19) + 1; uint32_t result = (uid32 * doubleBlock * counter) & MASK; PrintAndLog("Magic bytes | %08X", result); return result; } int srix4kValid(const char *Cmd){ uint64_t uid = 0xD00202501A4532F9; uint32_t block6 = 0xFFFFFFFF; uint32_t block18 = 0xC04F42C5; uint32_t block19 = 0xC1484807; uint32_t block21 = 0xD1BCABA4; uint32_t test_b18 = 0x00313918; uint32_t test_b18_enc = srix4kEncode(test_b18); //uint32_t test_b18_dec = srix4kDecode(test_b18_enc); PrintAndLog("ENCODE & CHECKSUM | %08X -> %08X (%s)", test_b18, test_b18_enc , ""); uint32_t magic = srix4kGetMagicbytes(uid, block6, block18, block19); PrintAndLog("BLOCK 21 | %08X -> %08X (no XOR)", block21, magic ^ block21); return 0; } int CmdteaSelfTest(const char *Cmd){ uint8_t v[8], v_le[8]; memset(v, 0x00, sizeof(v)); memset(v_le, 0x00, sizeof(v_le)); uint8_t* v_ptr = v_le; uint8_t cmdlen = strlen(Cmd); cmdlen = ( sizeof(v)<<2 < cmdlen ) ? sizeof(v)<<2 : cmdlen; if ( param_gethex(Cmd, 0, v, cmdlen) > 0 ){ PrintAndLog("can't read hex chars, uneven? :: %u", cmdlen); return 1; } SwapEndian64ex(v , 8, 4, v_ptr); // ENCRYPTION KEY: uint8_t key[16] = {0x00}; uint8_t keyle[16]; uint8_t* key_ptr = keyle; SwapEndian64ex(key , sizeof(key), 4, key_ptr); PrintAndLog("TEST LE enc| %s", sprint_hex(v_ptr, 8)); tea_decrypt(v_ptr, key_ptr); PrintAndLog("TEST LE dec | %s", sprint_hex_ascii(v_ptr, 8)); tea_encrypt(v_ptr, key_ptr); tea_encrypt(v_ptr, key_ptr); PrintAndLog("TEST enc2 | %s", sprint_hex_ascii(v_ptr, 8)); return 0; } static command_t CommandTable[] = { {"help", CmdHelp, 1, "This help"}, {"info", CmdHF14Binfo, 0, "Find and print details about a 14443B tag"}, {"list", CmdHF14BList, 0, "[Deprecated] List ISO 14443B history"}, {"reader", CmdHF14BReader, 0, "Act as a 14443B reader to identify a tag"}, {"sim", CmdHF14BSim, 0, "Fake ISO 14443B tag"}, {"snoop", CmdHF14BSnoop, 0, "Eavesdrop ISO 14443B"}, {"sri512read", CmdSri512Read, 0, "Read contents of a SRI512 tag"}, {"srix4kread", CmdSrix4kRead, 0, "Read contents of a SRIX4K tag"}, {"sriwrite", CmdSriWrite, 0, "Write data to a SRI512 | SRIX4K tag"}, {"raw", CmdHF14BCmdRaw, 0, "Send raw hex data to tag"}, //{"valid", srix4kValid, 1, "srix4k checksum test"}, {"valid", CmdteaSelfTest, 1, "tea test"}, {NULL, NULL, 0, NULL} }; int CmdHF14B(const char *Cmd) { clearCommandBuffer(); CmdsParse(CommandTable, Cmd); return 0; } int CmdHelp(const char *Cmd) { CmdsHelp(CommandTable); return 0; }