proxmark3/client/cmdhflist.c
2019-04-19 09:39:11 +03:00

1287 lines
43 KiB
C

//-----------------------------------------------------------------------------
// Copyright (C) Merlok - 2017
// iceman 2018
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Command: hf mf list. It shows data from arm buffer.
//-----------------------------------------------------------------------------
#include "cmdhflist.h"
enum MifareAuthSeq {
masNone,
masNt,
masNrAr,
masAt,
masAuthComplete,
masFirstData,
masData,
masError,
};
static enum MifareAuthSeq MifareAuthState;
static TAuthData AuthData;
void ClearAuthData() {
AuthData.uid = 0;
AuthData.nt = 0;
AuthData.first_auth = true;
AuthData.ks2 = 0;
AuthData.ks3 = 0;
}
/**
* @brief iso14443A_CRC_check Checks CRC in command or response
* @param isResponse
* @param data
* @param len
* @return 0 : CRC-command, CRC not ok
* 1 : CRC-command, CRC ok
* 2 : Not crc-command
*/
uint8_t iso14443A_CRC_check(bool isResponse, uint8_t *d, uint8_t n) {
if (n < 3) return 2;
if (isResponse && (n < 6)) return 2;
if (n > 2 && d[1] == 0x50 &&
d[0] >= ISO14443A_CMD_ANTICOLL_OR_SELECT &&
d[0] <= ISO14443A_CMD_ANTICOLL_OR_SELECT_3)
return 2;
return check_crc(CRC_14443_A, d, n);
}
uint8_t mifare_CRC_check(bool isResponse, uint8_t *data, uint8_t len) {
switch (MifareAuthState) {
case masNone:
case masError:
return iso14443A_CRC_check(isResponse, data, len);
case masNt:
case masNrAr:
case masAt:
case masAuthComplete:
case masFirstData:
case masData:
break;
}
return 2;
}
/**
* @brief iso14443B_CRC_check Checks CRC
* @param data
* @param len
* @return 0 : CRC-command, CRC not ok
* 1 : CRC-command, CRC ok
* 2 : Not crc-command
*/
uint8_t iso14443B_CRC_check(uint8_t *d, uint8_t n) {
return check_crc(CRC_14443_B, d, n);
}
uint8_t iso15693_CRC_check(uint8_t *d, uint8_t n) {
return check_crc(CRC_15693, d, n);
}
/**
* @brief iclass_CRC_Ok Checks CRC in command or response
* @param isResponse
* @param data
* @param len
* @return 0 : CRC-command, CRC not ok
* 1 : CRC-command, CRC ok
* 2 : Not crc-command
*/
uint8_t iclass_CRC_check(bool isResponse, uint8_t *d, uint8_t n) {
//CRC commands (and responses) are all at least 4 bytes
if (n < 4) return 2;
//Commands to tag
//Don't include the command byte
if (!isResponse) {
/**
These commands should have CRC. Total length leftmost
4 READ
4 READ4
12 UPDATE - unsecured, ends with CRC16
14 UPDATE - secured, ends with signature instead
4 PAGESEL
**/
//Covers three of them
if (n == 4 || n == 12) {
return check_crc(CRC_ICLASS, d + 1, n - 1);
}
return 2;
}
/**
These tag responses should have CRC. Total length leftmost
10 READ data[8] crc[2]
34 READ4 data[32]crc[2]
10 UPDATE data[8] crc[2]
10 SELECT csn[8] crc[2]
10 IDENTIFY asnb[8] crc[2]
10 PAGESEL block1[8] crc[2]
10 DETECT csn[8] crc[2]
These should not
4 CHECK chip_response[4]
8 READCHECK data[8]
1 ACTALL sof[1]
1 ACT sof[1]
In conclusion, without looking at the command; any response
of length 10 or 34 should have CRC
**/
if (n != 10 && n != 34) return true;
return check_crc(CRC_ICLASS, d, n);
}
int applyIso14443a(char *exp, size_t size, uint8_t *cmd, uint8_t cmdsize) {
switch (cmd[0]) {
case ISO14443A_CMD_WUPA:
snprintf(exp, size, "WUPA");
break;
case ISO14443A_CMD_ANTICOLL_OR_SELECT: {
// 93 20 = Anticollision (usage: 9320 - answer: 4bytes UID+1byte UID-bytes-xor)
// 93 50 = Bit oriented anti-collision (usage: 9350+ up to 5bytes, 9350 answer - up to 5bytes UID+BCC)
// 93 70 = Select (usage: 9370+5bytes 9370 answer - answer: 1byte SAK)
if (cmd[1] == 0x70)
snprintf(exp, size, "SELECT_UID");
else if (cmd[1] == 0x20 || cmd[1] == 0x50)
snprintf(exp, size, "ANTICOLL");
else
snprintf(exp, size, "SELECT_XXX");
break;
}
case ISO14443A_CMD_ANTICOLL_OR_SELECT_2: {
//95 20 = Anticollision of cascade level2
//95 50 = Bit oriented anti-collision level2
//95 70 = Select of cascade level2
if (cmd[1] == 0x70)
snprintf(exp, size, "SELECT_UID-2");
else if (cmd[1] == 0x20 || cmd[1] == 0x50)
snprintf(exp, size, "ANTICOLL-2");
else
snprintf(exp, size, "SELECT_XXX-2");
break;
}
case ISO14443A_CMD_ANTICOLL_OR_SELECT_3: {
//97 20 = Anticollision of cascade level3
//97 50 = Bit oriented anti-collision level3
//97 70 = Select of cascade level3
if (cmd[1] == 0x70)
snprintf(exp, size, "SELECT_UID-3");
else if (cmd[1] == 0x20 || cmd[1] == 0x50)
snprintf(exp, size, "ANTICOLL-3");
else
snprintf(exp, size, "SELECT_XXX-3");
break;
}
case ISO14443A_CMD_REQA:
snprintf(exp, size, "REQA");
break;
case ISO14443A_CMD_READBLOCK:
snprintf(exp, size, "READBLOCK(%d)", cmd[1]);
break;
case ISO14443A_CMD_WRITEBLOCK:
snprintf(exp, size, "WRITEBLOCK(%d)", cmd[1]);
break;
case ISO14443A_CMD_HALT:
snprintf(exp, size, "HALT");
MifareAuthState = masNone;
break;
case ISO14443A_CMD_RATS:
snprintf(exp, size, "RATS");
break;
case ISO14443A_CMD_OPTS:
snprintf(exp, size, "OPTIONAL TIMESLOT");
break;
case MIFARE_CMD_INC:
snprintf(exp, size, "INC(%d)", cmd[1]);
break;
case MIFARE_CMD_DEC:
snprintf(exp, size, "DEC(%d)", cmd[1]);
break;
case MIFARE_CMD_RESTORE:
snprintf(exp, size, "RESTORE(%d)", cmd[1]);
break;
case MIFARE_CMD_TRANSFER:
snprintf(exp, size, "TRANSFER(%d)", cmd[1]);
break;
case MIFARE_AUTH_KEYA: {
if (cmdsize > 3) {
snprintf(exp, size, "AUTH-A(%d)", cmd[1]);
MifareAuthState = masNt;
} else {
// case MIFARE_ULEV1_VERSION : both 0x60.
snprintf(exp, size, "EV1 VERSION");
}
break;
}
case MIFARE_AUTH_KEYB: {
MifareAuthState = masNt;
snprintf(exp, size, "AUTH-B(%d)", cmd[1]);
break;
}
case MIFARE_MAGICWUPC1:
snprintf(exp, size, "MAGIC WUPC1");
break;
case MIFARE_MAGICWUPC2:
snprintf(exp, size, "MAGIC WUPC2");
break;
case MIFARE_MAGICWIPEC:
snprintf(exp, size, "MAGIC WIPEC");
break;
case MIFARE_ULC_AUTH_1:
snprintf(exp, size, "AUTH ");
break;
case MIFARE_ULC_AUTH_2:
snprintf(exp, size, "AUTH_ANSW");
break;
case MIFARE_ULEV1_AUTH:
if (cmdsize == 7)
snprintf(exp, size, "PWD-AUTH KEY: " _YELLOW_("0x%02x%02x%02x%02x"), cmd[1], cmd[2], cmd[3], cmd[4]);
else
snprintf(exp, size, "PWD-AUTH");
break;
case MIFARE_ULEV1_FASTREAD : {
if (cmdsize >= 3 && cmd[2] <= 0xE6)
snprintf(exp, size, "READ RANGE (%d-%d)", cmd[1], cmd[2]);
else
// outside limits, useful for some tags...
snprintf(exp, size, "READ RANGE (%d-%d) (?)", cmd[1], cmd[2]);
break;
}
case MIFARE_ULC_WRITE : {
if (cmd[1] < 0x21)
snprintf(exp, size, "WRITEBLOCK(%d)", cmd[1]);
else
// outside limits, useful for some tags...
snprintf(exp, size, "WRITEBLOCK(%d) (?)", cmd[1]);
break;
}
case MIFARE_ULEV1_READ_CNT : {
if (cmd[1] < 5)
snprintf(exp, size, "READ CNT(%d)", cmd[1]);
else
snprintf(exp, size, "?");
break;
}
case MIFARE_ULEV1_INCR_CNT : {
if (cmd[1] < 5)
snprintf(exp, size, "INCR(%d)", cmd[1]);
else
snprintf(exp, size, "?");
break;
}
case MIFARE_ULEV1_READSIG:
snprintf(exp, size, "READ_SIG");
break;
case MIFARE_ULEV1_CHECKTEAR:
snprintf(exp, size, "CHK_TEARING(%d)", cmd[1]);
break;
case MIFARE_ULEV1_VCSL:
snprintf(exp, size, "VCSL");
break;
default:
return 0;
}
return 1;
}
void annotateIso14443a(char *exp, size_t size, uint8_t *cmd, uint8_t cmdsize) {
applyIso14443a(exp, size, cmd, cmdsize);
}
void annotateIclass(char *exp, size_t size, uint8_t *cmd, uint8_t cmdsize) {
switch (cmd[0]) {
case ICLASS_CMD_ACTALL:
snprintf(exp, size, "ACTALL");
break;
case ICLASS_CMD_READ_OR_IDENTIFY: {
if (cmdsize > 1) {
snprintf(exp, size, "READ(%d)", cmd[1]);
} else {
snprintf(exp, size, "IDENTIFY");
}
break;
}
case ICLASS_CMD_SELECT:
snprintf(exp, size, "SELECT");
break;
case ICLASS_CMD_PAGESEL:
snprintf(exp, size, "PAGESEL(%d)", cmd[1]);
break;
case ICLASS_CMD_READCHECK_KC:
snprintf(exp, size, "READCHECK[Kc](%d)", cmd[1]);
break;
case ICLASS_CMD_READCHECK_KD:
snprintf(exp, size, "READCHECK[Kd](%d)", cmd[1]);
break;
case ICLASS_CMD_CHECK:
snprintf(exp, size, "CHECK");
break;
case ICLASS_CMD_DETECT:
snprintf(exp, size, "DETECT");
break;
case ICLASS_CMD_HALT:
snprintf(exp, size, "HALT");
break;
case ICLASS_CMD_UPDATE:
snprintf(exp, size, "UPDATE(%d)", cmd[1]);
break;
case ICLASS_CMD_ACT:
snprintf(exp, size, "ACT");
break;
case ICLASS_CMD_READ4:
snprintf(exp, size, "READ4(%d)", cmd[1]);
break;
default:
snprintf(exp, size, "?");
break;
}
return;
}
void annotateIso15693(char *exp, size_t size, uint8_t *cmd, uint8_t cmdsize) {
switch (cmd[1]) {
case ISO15693_INVENTORY:
snprintf(exp, size, "INVENTORY");
return;
case ISO15693_STAYQUIET:
snprintf(exp, size, "STAY_QUIET");
return;
case ISO15693_READBLOCK:
snprintf(exp, size, "READBLOCK");
return;
case ISO15693_WRITEBLOCK:
snprintf(exp, size, "WRITEBLOCK");
return;
case ISO15693_LOCKBLOCK:
snprintf(exp, size, "LOCKBLOCK");
return;
case ISO15693_READ_MULTI_BLOCK:
snprintf(exp, size, "READ_MULTI_BLOCK");
return;
case ISO15693_SELECT:
snprintf(exp, size, "SELECT");
return;
case ISO15693_RESET_TO_READY:
snprintf(exp, size, "RESET_TO_READY");
return;
case ISO15693_WRITE_AFI:
snprintf(exp, size, "WRITE_AFI");
return;
case ISO15693_LOCK_AFI:
snprintf(exp, size, "LOCK_AFI");
return;
case ISO15693_WRITE_DSFID:
snprintf(exp, size, "WRITE_DSFID");
return;
case ISO15693_LOCK_DSFID:
snprintf(exp, size, "LOCK_DSFID");
return;
case ISO15693_GET_SYSTEM_INFO:
snprintf(exp, size, "GET_SYSTEM_INFO");
return;
case ISO15693_READ_MULTI_SECSTATUS:
snprintf(exp, size, "READ_MULTI_SECSTATUS");
return;
default:
break;
}
if (cmd[1] >= 0x2D && cmd[1] <= 0x9F) snprintf(exp, size, "Optional RFU");
else if (cmd[1] >= 0xA0 && cmd[1] <= 0xDF) snprintf(exp, size, "Cust IC MFG dependent");
else if (cmd[1] >= 0xE0 && cmd[1] <= 0xFF) snprintf(exp, size, "Proprietary IC MFG dependent");
else
snprintf(exp, size, "?");
}
void annotateTopaz(char *exp, size_t size, uint8_t *cmd, uint8_t cmdsize) {
switch (cmd[0]) {
case TOPAZ_REQA:
snprintf(exp, size, "REQA");
break;
case TOPAZ_WUPA:
snprintf(exp, size, "WUPA");
break;
case TOPAZ_RID:
snprintf(exp, size, "RID");
break;
case TOPAZ_RALL:
snprintf(exp, size, "RALL");
break;
case TOPAZ_READ:
snprintf(exp, size, "READ");
break;
case TOPAZ_WRITE_E:
snprintf(exp, size, "WRITE-E");
break;
case TOPAZ_WRITE_NE:
snprintf(exp, size, "WRITE-NE");
break;
case TOPAZ_RSEG:
snprintf(exp, size, "RSEG");
break;
case TOPAZ_READ8:
snprintf(exp, size, "READ8");
break;
case TOPAZ_WRITE_E8:
snprintf(exp, size, "WRITE-E8");
break;
case TOPAZ_WRITE_NE8:
snprintf(exp, size, "WRITE-NE8");
break;
default:
snprintf(exp, size, "?");
break;
}
}
// iso 7816-3
void annotateIso7816(char *exp, size_t size, uint8_t *cmd, uint8_t cmdsize) {
// S-block
if ((cmd[0] & 0xC0) && (cmdsize == 3)) {
switch ((cmd[0] & 0x3f)) {
case 0x00 :
snprintf(exp, size, "S-block RESYNCH req");
break;
case 0x20 :
snprintf(exp, size, "S-block RESYNCH resp");
break;
case 0x01 :
snprintf(exp, size, "S-block IFS req");
break;
case 0x21 :
snprintf(exp, size, "S-block IFS resp");
break;
case 0x02 :
snprintf(exp, size, "S-block ABORT req");
break;
case 0x22 :
snprintf(exp, size, "S-block ABORT resp");
break;
case 0x03 :
snprintf(exp, size, "S-block WTX reqt");
break;
case 0x23 :
snprintf(exp, size, "S-block WTX resp");
break;
default :
snprintf(exp, size, "S-block");
break;
}
}
// R-block (ack)
else if (((cmd[0] & 0xD0) == 0x80) && (cmdsize > 2)) {
if ((cmd[0] & 0x10) == 0)
snprintf(exp, size, "R-block ACK");
else
snprintf(exp, size, "R-block NACK");
}
// I-block
else {
int pos = 0;
switch (cmd[0]) {
case 2:
case 3:
pos = 2;
break;
case 0:
pos = 1;
break;
default:
pos = 3;
break;
}
switch (cmd[pos]) {
case ISO7816_READ_BINARY:
snprintf(exp, size, "READ BIN");
break;
case ISO7816_WRITE_BINARY:
snprintf(exp, size, "WRITE BIN");
break;
case ISO7816_UPDATE_BINARY:
snprintf(exp, size, "UPDATE BIN");
break;
case ISO7816_ERASE_BINARY:
snprintf(exp, size, "ERASE BIN");
break;
case ISO7816_READ_RECORDS:
snprintf(exp, size, "READ RECORDS");
break;
case ISO7816_WRITE_RECORDS:
snprintf(exp, size, "WRITE RECORDS");
break;
case ISO7816_APPEND_RECORD:
snprintf(exp, size, "APPEND RECORD");
break;
case ISO7816_UPDATE_RECORD:
snprintf(exp, size, "UPDATE RECORD");
break;
case ISO7816_GET_DATA:
snprintf(exp, size, "GET DATA");
break;
case ISO7816_PUT_DATA:
snprintf(exp, size, "PUT DATA");
break;
case ISO7816_SELECT_FILE:
snprintf(exp, size, "SELECT FILE");
break;
case ISO7816_VERIFY:
snprintf(exp, size, "VERIFY");
break;
case ISO7816_INTERNAL_AUTHENTICATION:
snprintf(exp, size, "INTERNAL AUTH");
break;
case ISO7816_EXTERNAL_AUTHENTICATION:
snprintf(exp, size, "EXTERNAL AUTH");
break;
case ISO7816_GET_CHALLENGE:
snprintf(exp, size, "GET CHALLENGE");
break;
case ISO7816_MANAGE_CHANNEL:
snprintf(exp, size, "MANAGE CHANNEL");
break;
case ISO7816_GET_RESPONSE:
snprintf(exp, size, "GET RESPONSE");
break;
default:
snprintf(exp, size, "?");
break;
}
}
}
// MIFARE DESFire
void annotateMfDesfire(char *exp, size_t size, uint8_t *cmd, uint8_t cmdsize) {
// it's basically a ISO14443a tag, so try annotation from there
if (!applyIso14443a(exp, size, cmd, cmdsize)) {
// S-block 11xxx010
if ((cmd[0] & 0xC0) && (cmdsize == 3)) {
switch ((cmd[0] & 0x30)) {
case 0x30:
snprintf(exp, size, "S-block DESELECT");
break;
case 0x00:
snprintf(exp, size, "S-block WTX");
break;
default:
snprintf(exp, size, "S-block");
break;
}
}
// R-block (ack) 101xx01x
else if (((cmd[0] & 0xB0) == 0xA0) && (cmdsize > 2)) {
if ((cmd[0] & 0x10) == 0)
snprintf(exp, size, "R-block ACK(%d)", (cmd[0] & 0x01));
else
snprintf(exp, size, "R-block NACK(%d)", (cmd[0] & 0x01));
}
// I-block 000xCN1x
else if ((cmd[0] & 0xC0) == 0x00) {
// PCB [CID] [NAD] [INF] CRC CRC
int pos = 1;
if ((cmd[0] & 0x08) == 0x08) // cid byte following
pos = pos + 1;
if ((cmd[0] & 0x04) == 0x04) // nad byte following
pos = pos + 1;
switch (cmd[pos]) {
case MFDES_CREATE_APPLICATION:
snprintf(exp, size, "CREATE APPLICATION");
break;
case MFDES_DELETE_APPLICATION:
snprintf(exp, size, "DELETE APPLICATION");
break;
case MFDES_GET_APPLICATION_IDS:
snprintf(exp, size, "GET APPLICATION IDS");
break;
case MFDES_SELECT_APPLICATION:
snprintf(exp, size, "SELECT APPLICATION");
break;
case MFDES_FORMAT_PICC:
snprintf(exp, size, "FORMAT PICC");
break;
case MFDES_GET_VERSION:
snprintf(exp, size, "GET VERSION");
break;
case MFDES_READ_DATA:
snprintf(exp, size, "READ DATA");
break;
case MFDES_WRITE_DATA:
snprintf(exp, size, "WRITE DATA");
break;
case MFDES_GET_VALUE:
snprintf(exp, size, "GET VALUE");
break;
case MFDES_CREDIT:
snprintf(exp, size, "CREDIT");
break;
case MFDES_DEBIT:
snprintf(exp, size, "DEBIT");
break;
case MFDES_LIMITED_CREDIT:
snprintf(exp, size, "LIMITED CREDIT");
break;
case MFDES_WRITE_RECORD:
snprintf(exp, size, "WRITE RECORD");
break;
case MFDES_READ_RECORDS:
snprintf(exp, size, "READ RECORDS");
break;
case MFDES_CLEAR_RECORD_FILE:
snprintf(exp, size, "CLEAR RECORD FILE");
break;
case MFDES_COMMIT_TRANSACTION:
snprintf(exp, size, "COMMIT TRANSACTION");
break;
case MFDES_ABORT_TRANSACTION:
snprintf(exp, size, "ABORT TRANSACTION");
break;
case MFDES_GET_FREE_MEMORY:
snprintf(exp, size, "GET FREE MEMORY");
break;
case MFDES_GET_FILE_IDS:
snprintf(exp, size, "GET FILE IDS");
break;
case MFDES_GET_ISOFILE_IDS:
snprintf(exp, size, "GET ISOFILE IDS");
break;
case MFDES_GET_FILE_SETTINGS:
snprintf(exp, size, "GET FILE SETTINGS");
break;
case MFDES_CHANGE_FILE_SETTINGS:
snprintf(exp, size, "CHANGE FILE SETTINGS");
break;
case MFDES_CREATE_STD_DATA_FILE:
snprintf(exp, size, "CREATE STD DATA FILE");
break;
case MFDES_CREATE_BACKUP_DATA_FILE:
snprintf(exp, size, "CREATE BACKUP DATA FILE");
break;
case MFDES_CREATE_VALUE_FILE:
snprintf(exp, size, "CREATE VALUE FILE");
break;
case MFDES_CREATE_LINEAR_RECORD_FILE:
snprintf(exp, size, "CREATE LINEAR RECORD FILE");
break;
case MFDES_CREATE_CYCLIC_RECORD_FILE:
snprintf(exp, size, "CREATE CYCLIC RECORD FILE");
break;
case MFDES_DELETE_FILE:
snprintf(exp, size, "DELETE FILE");
break;
case MFDES_AUTHENTICATE:
snprintf(exp, size, "AUTH NATIVE (keyNo %d)", cmd[pos + 1]);
break; // AUTHENTICATE_NATIVE
case MFDES_AUTHENTICATE_ISO:
snprintf(exp, size, "AUTH ISO (keyNo %d)", cmd[pos + 1]);
break; // AUTHENTICATE_STANDARD
case MFDES_AUTHENTICATE_AES:
snprintf(exp, size, "AUTH AES (keyNo %d)", cmd[pos + 1]);
break;
case MFDES_CHANGE_KEY_SETTINGS:
snprintf(exp, size, "CHANGE KEY SETTINGS");
break;
case MFDES_GET_KEY_SETTINGS:
snprintf(exp, size, "GET KEY SETTINGS");
break;
case MFDES_CHANGE_KEY:
snprintf(exp, size, "CHANGE KEY");
break;
case MFDES_GET_KEY_VERSION:
snprintf(exp, size, "GET KEY VERSION");
break;
case MFDES_AUTHENTICATION_FRAME:
snprintf(exp, size, "AUTH FRAME / NEXT FRAME");
break;
default:
break;
}
} else {
// anything else
snprintf(exp, size, "?");
}
}
}
/**
06 00 = INITIATE
0E xx = SELECT ID (xx = Chip-ID)
0B = Get UID
08 yy = Read Block (yy = block number)
09 yy dd dd dd dd = Write Block (yy = block number; dd dd dd dd = data to be written)
0C = Reset to Inventory
0F = Completion
0A 11 22 33 44 55 66 = Authenticate (11 22 33 44 55 66 = data to authenticate)
**/
void annotateIso14443b(char *exp, size_t size, uint8_t *cmd, uint8_t cmdsize) {
switch (cmd[0]) {
case ISO14443B_REQB : {
switch (cmd[2] & 0x07) {
case 0:
snprintf(exp, size, "1 slot ");
break;
case 1:
snprintf(exp, size, "2 slots ");
break;
case 2:
snprintf(exp, size, "4 slots ");
break;
case 3:
snprintf(exp, size, "8 slots ");
break;
default:
snprintf(exp, size, "16 slots ");
break;
}
if ((cmd[2] & 0x8))
snprintf(exp, size, "WUPB");
else
snprintf(exp, size, "REQB");
break;
}
case ISO14443B_ATTRIB:
snprintf(exp, size, "ATTRIB");
break;
case ISO14443B_HALT:
snprintf(exp, size, "HALT");
break;
case ISO14443B_INITIATE:
snprintf(exp, size, "INITIATE");
break;
case ISO14443B_SELECT:
snprintf(exp, size, "SELECT(%d)", cmd[1]);
break;
case ISO14443B_GET_UID:
snprintf(exp, size, "GET UID");
break;
case ISO14443B_READ_BLK:
snprintf(exp, size, "READ_BLK(%d)", cmd[1]);
break;
case ISO14443B_WRITE_BLK:
snprintf(exp, size, "WRITE_BLK(%d)", cmd[1]);
break;
case ISO14443B_RESET:
snprintf(exp, size, "RESET");
break;
case ISO14443B_COMPLETION:
snprintf(exp, size, "COMPLETION");
break;
case ISO14443B_AUTHENTICATE:
snprintf(exp, size, "AUTHENTICATE");
break;
case ISO14443B_PING:
snprintf(exp, size, "PING");
break;
case ISO14443B_PONG:
snprintf(exp, size, "PONG");
break;
default:
snprintf(exp, size, "?");
break;
}
}
// LEGIC
// 1 = read
// 0 = write
// Quite simpel tag
void annotateLegic(char *exp, size_t size, uint8_t *cmd, uint8_t cmdsize) {
uint8_t bitsend = cmd[0];
uint8_t cmdBit = (cmd[1] & 1);
switch (bitsend) {
case 7:
snprintf(exp, size, "IV 0x%02X", cmd[1]);
break;
case 6: {
switch (cmd[1]) {
case LEGIC_MIM_22:
snprintf(exp, size, "MIM22");
break;
case LEGIC_MIM_256:
snprintf(exp, size, "MIM256");
break;
case LEGIC_MIM_1024:
snprintf(exp, size, "MIM1024");
break;
case LEGIC_ACK_22:
snprintf(exp, size, "ACK 22");
break;
case LEGIC_ACK_256:
snprintf(exp, size, "ACK 256/1024");
break;
}
break;
}
case 9:
case 11: {
uint16_t address = (cmd[2] << 7) | cmd[1] >> 1;
if (cmdBit == LEGIC_READ)
snprintf(exp, size, "READ Byte(%d)", address);
if (cmdBit == LEGIC_WRITE)
snprintf(exp, size, "WRITE Byte(%d)", address);
break;
}
case 21: {
if (cmdBit == LEGIC_WRITE) {
uint16_t address = ((cmd[2] << 7) | cmd[1] >> 1) & 0xFF;
uint8_t val = (cmd[3] & 1) << 7 | cmd[2] >> 1;
snprintf(exp, size, "WRITE Byte(%d) %02X", address, val);
}
break;
}
case 23: {
if (cmdBit == LEGIC_WRITE) {
uint16_t address = ((cmd[2] << 7) | cmd[1] >> 1) & 0x3FF;
uint8_t val = (cmd[3] & 0x7) << 5 | cmd[2] >> 3;
snprintf(exp, size, "WRITE Byte(%d) %02X", address, val);
}
break;
}
case 12:
default:
break;
}
}
void annotateFelica(char *exp, size_t size, uint8_t *cmd, uint8_t cmdsize) {
switch (cmd[0]) {
case FELICA_POLL_REQ:
snprintf(exp, size, "POLLING");
break;
case FELICA_POLL_ACK:
snprintf(exp, size, "POLL ACK");
break;
case FELICA_REQSRV_REQ:
snprintf(exp, size, "REQUEST SERVICE");
break;
case FELICA_REQSRV_ACK:
snprintf(exp, size, "REQ SERV ACK");
break;
case FELICA_REQRESP_REQ:
snprintf(exp, size, "REQUEST RESPONSE");
break;
case FELICA_REQRESP_ACK:
snprintf(exp, size, "REQ RESP ACK");
break;
case FELICA_RDBLK_REQ:
snprintf(exp, size, "READ BLK");
break;
case FELICA_RDBLK_ACK:
snprintf(exp, size, "READ BLK ACK");
break;
case FELICA_WRTBLK_REQ:
snprintf(exp, size, "WRITE BLK");
break;
case FELICA_WRTBLK_ACK:
snprintf(exp, size, "WRITE BLK ACK");
break;
case FELICA_SRCHSYSCODE_REQ:
snprintf(exp, size, "SEARCH SERVICE CODE");
break;
case FELICA_SRCHSYSCODE_ACK:
snprintf(exp, size, "SSC ACK");
break;
case FELICA_REQSYSCODE_REQ:
snprintf(exp, size, "REQUEST SYSTEM CODE");
break;
case FELICA_REQSYSCODE_ACK:
snprintf(exp, size, "RSC ACK");
break;
case FELICA_AUTH1_REQ:
snprintf(exp, size, "AUTH 1");
break;
case FELICA_AUTH1_ACK:
snprintf(exp, size, "AUTH 1 ACK");
break;
case FELICA_AUTH2_REQ:
snprintf(exp, size, "AUTH 2");
break;
case FELICA_AUTH2_ACK:
snprintf(exp, size, "AUTH 2 ACK");
break;
case FELICA_RDSEC_REQ:
snprintf(exp, size, "READ");
break;
case FELICA_RDSEC_ACK:
snprintf(exp, size, "READ ACK");
break;
case FELICA_WRTSEC_REQ:
snprintf(exp, size, "WRITE");
break;
case FELICA_WRTSEC_ACK:
snprintf(exp, size, "WRITE ACK");
break;
case FELICA_REQSRV2_REQ:
snprintf(exp, size, "REQUEST SERVICE v2");
break;
case FELICA_REQSRV2_ACK:
snprintf(exp, size, "REQ SERV v2 ACK");
break;
case FELICA_GETSTATUS_REQ:
snprintf(exp, size, "GET STATUS");
break;
case FELICA_GETSTATUS_ACK:
snprintf(exp, size, "GET STATUS ACK");
break;
case FELICA_OSVER_REQ:
snprintf(exp, size, "REQUEST SPECIFIC VERSION");
break;
case FELICA_OSVER_ACK:
snprintf(exp, size, "RSV ACK");
break;
case FELICA_RESET_MODE_REQ:
snprintf(exp, size, "RESET MODE");
break;
case FELICA_RESET_MODE_ACK:
snprintf(exp, size, "RESET MODE ACK");
break;
case FELICA_AUTH1V2_REQ:
snprintf(exp, size, "AUTH 1 v2");
break;
case FELICA_AUTH1V2_ACK:
snprintf(exp, size, "AUTH 1 v2 ACK");
break;
case FELICA_AUTH2V2_REQ:
snprintf(exp, size, "AUTH 2 v2");
break;
case FELICA_AUTH2V2_ACK:
snprintf(exp, size, "AUTH 2 v2 ACK");
break;
case FELICA_RDSECV2_REQ:
snprintf(exp, size, "READ v2");
break;
case FELICA_RDSECV2_ACK:
snprintf(exp, size, "READ v2 ACK");
break;
case FELICA_WRTSECV2_REQ:
snprintf(exp, size, "WRITE v2");
break;
case FELICA_WRTSECV2_ACK:
snprintf(exp, size, "WRITE v2 ACK");
break;
case FELICA_UPDATE_RNDID_REQ:
snprintf(exp, size, "UPDATE RANDOM ID");
break;
case FELICA_UPDATE_RNDID_ACK:
snprintf(exp, size, "URI ACK");
break;
default :
snprintf(exp, size, "?");
break;
}
}
void annotateMifare(char *exp, size_t size, uint8_t *cmd, uint8_t cmdsize, uint8_t *parity, uint8_t paritysize, bool isResponse) {
if (!isResponse && cmdsize == 1) {
switch (cmd[0]) {
case ISO14443A_CMD_WUPA:
case ISO14443A_CMD_REQA:
MifareAuthState = masNone;
break;
default:
break;
}
}
// get UID
if (MifareAuthState == masNone) {
if (cmdsize == 9 && cmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT && cmd[1] == 0x70) {
ClearAuthData();
AuthData.uid = bytes_to_num(&cmd[2], 4);
}
if (cmdsize == 9 && cmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2 && cmd[1] == 0x70) {
ClearAuthData();
AuthData.uid = bytes_to_num(&cmd[2], 4);
}
if (cmdsize == 9 && cmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_3 && cmd[1] == 0x70) {
ClearAuthData();
AuthData.uid = bytes_to_num(&cmd[2], 4);
}
}
switch (MifareAuthState) {
case masNt:
if (cmdsize == 4 && isResponse) {
snprintf(exp, size, "AUTH: nt %s", (AuthData.first_auth) ? "" : "(enc)");
MifareAuthState = masNrAr;
if (AuthData.first_auth) {
AuthData.nt = bytes_to_num(cmd, 4);
} else {
AuthData.nt_enc = bytes_to_num(cmd, 4);
AuthData.nt_enc_par = parity[0];
}
return;
} else {
MifareAuthState = masError;
}
break;
case masNrAr:
if (cmdsize == 8 && !isResponse) {
snprintf(exp, size, "AUTH: nr ar (enc)");
MifareAuthState = masAt;
AuthData.nr_enc = bytes_to_num(cmd, 4);
AuthData.ar_enc = bytes_to_num(&cmd[4], 4);
AuthData.ar_enc_par = parity[0] << 4;
return;
} else {
MifareAuthState = masError;
}
break;
case masAt:
if (cmdsize == 4 && isResponse) {
snprintf(exp, size, "AUTH: at (enc)");
MifareAuthState = masAuthComplete;
AuthData.at_enc = bytes_to_num(cmd, 4);
AuthData.at_enc_par = parity[0];
return;
} else {
MifareAuthState = masError;
}
break;
case masNone:
case masError:
case masAuthComplete:
case masFirstData:
case masData:
break;
}
if (!isResponse && ((MifareAuthState == masNone) || (MifareAuthState == masError)))
annotateIso14443a(exp, size, cmd, cmdsize);
}
bool DecodeMifareData(uint8_t *cmd, uint8_t cmdsize, uint8_t *parity, bool isResponse, uint8_t *mfData, size_t *mfDataLen) {
static struct Crypto1State *traceCrypto1;
static uint64_t mfLastKey;
*mfDataLen = 0;
if (MifareAuthState == masAuthComplete) {
if (traceCrypto1) {
crypto1_destroy(traceCrypto1);
traceCrypto1 = NULL;
}
MifareAuthState = masFirstData;
return false;
}
if (cmdsize > 32)
return false;
if (MifareAuthState == masFirstData) {
if (AuthData.first_auth) {
AuthData.ks2 = AuthData.ar_enc ^ prng_successor(AuthData.nt, 64);
AuthData.ks3 = AuthData.at_enc ^ prng_successor(AuthData.nt, 96);
mfLastKey = GetCrypto1ProbableKey(&AuthData);
PrintAndLogEx(NORMAL, " | | * |%49s %012"PRIx64" prng %s | |",
"key",
mfLastKey,
validate_prng_nonce(AuthData.nt) ? _GREEN_("WEAK") : _YELLOW_("HARD"));
AuthData.first_auth = false;
traceCrypto1 = lfsr_recovery64(AuthData.ks2, AuthData.ks3);
} else {
if (traceCrypto1) {
crypto1_destroy(traceCrypto1);
traceCrypto1 = NULL;
}
// check last used key
if (mfLastKey) {
if (NestedCheckKey(mfLastKey, &AuthData, cmd, cmdsize, parity)) {
PrintAndLogEx(NORMAL, " | | * |%60s %012"PRIx64"| |", "last used key", mfLastKey);
traceCrypto1 = lfsr_recovery64(AuthData.ks2, AuthData.ks3);
};
}
// check default keys
if (!traceCrypto1) {
for (int i = 0; i < MIFARE_DEFAULTKEYS_SIZE; i++) {
if (NestedCheckKey(g_mifare_default_keys[i], &AuthData, cmd, cmdsize, parity)) {
PrintAndLogEx(NORMAL, " | | * |%61s %012"PRIx64"| |", "key", g_mifare_default_keys[i]);
mfLastKey = g_mifare_default_keys[i];
traceCrypto1 = lfsr_recovery64(AuthData.ks2, AuthData.ks3);
break;
};
}
}
// nested
if (!traceCrypto1 && validate_prng_nonce(AuthData.nt)) {
uint32_t ntx = prng_successor(AuthData.nt, 90);
for (int i = 0; i < 16383; i++) {
ntx = prng_successor(ntx, 1);
if (NTParityChk(&AuthData, ntx)) {
uint32_t ks2 = AuthData.ar_enc ^ prng_successor(ntx, 64);
uint32_t ks3 = AuthData.at_enc ^ prng_successor(ntx, 96);
struct Crypto1State *pcs = lfsr_recovery64(ks2, ks3);
memcpy(mfData, cmd, cmdsize);
mf_crypto1_decrypt(pcs, mfData, cmdsize, 0);
crypto1_destroy(pcs);
if (CheckCrypto1Parity(cmd, cmdsize, mfData, parity) && check_crc(CRC_14443_A, mfData, cmdsize)) {
AuthData.ks2 = ks2;
AuthData.ks3 = ks3;
AuthData.nt = ntx;
mfLastKey = GetCrypto1ProbableKey(&AuthData);
PrintAndLogEx(NORMAL, " | | * | nested probable key:%012"PRIx64" ks2:%08x ks3:%08x | |",
mfLastKey,
AuthData.ks2,
AuthData.ks3);
traceCrypto1 = lfsr_recovery64(AuthData.ks2, AuthData.ks3);
break;
}
}
}
}
//hardnested
if (!traceCrypto1) {
PrintAndLogEx(NORMAL, "hardnested not implemented. uid:%x nt:%x ar_enc:%x at_enc:%x\n", AuthData.uid, AuthData.nt, AuthData.ar_enc, AuthData.at_enc);
MifareAuthState = masError;
/* TOO SLOW( needs to have more strong filter. with this filter - aprox 4 mln tests
uint32_t t = msclock();
uint32_t t1 = t;
int n = 0;
for (uint32_t i = 0; i < 0xFFFFFFFF; i++) {
if (NTParityChk(&AuthData, i)){
uint32_t ks2 = AuthData.ar_enc ^ prng_successor(i, 64);
uint32_t ks3 = AuthData.at_enc ^ prng_successor(i, 96);
struct Crypto1State *pcs = lfsr_recovery64(ks2, ks3);
n++;
if (!(n % 100000)) {
PrintAndLogEx(NORMAL, "delta=%d n=%d ks2=%x ks3=%x \n", msclock() - t1 , n, ks2, ks3);
t1 = msclock();
}
}
}
PrintAndLogEx(NORMAL, "delta=%d n=%d\n", msclock() - t, n);
*/
}
}
MifareAuthState = masData;
}
if (MifareAuthState == masData && traceCrypto1) {
memcpy(mfData, cmd, cmdsize);
mf_crypto1_decrypt(traceCrypto1, mfData, cmdsize, 0);
*mfDataLen = cmdsize;
}
return *mfDataLen > 0;
}
bool NTParityChk(TAuthData *ad, uint32_t ntx) {
if (
(oddparity8(ntx >> 8 & 0xff) ^ (ntx & 0x01) ^ ((ad->nt_enc_par >> 5) & 0x01) ^ (ad->nt_enc & 0x01)) ||
(oddparity8(ntx >> 16 & 0xff) ^ (ntx >> 8 & 0x01) ^ ((ad->nt_enc_par >> 6) & 0x01) ^ (ad->nt_enc >> 8 & 0x01)) ||
(oddparity8(ntx >> 24 & 0xff) ^ (ntx >> 16 & 0x01) ^ ((ad->nt_enc_par >> 7) & 0x01) ^ (ad->nt_enc >> 16 & 0x01))
)
return false;
uint32_t ar = prng_successor(ntx, 64);
if (
(oddparity8(ar >> 8 & 0xff) ^ (ar & 0x01) ^ ((ad->ar_enc_par >> 5) & 0x01) ^ (ad->ar_enc & 0x01)) ||
(oddparity8(ar >> 16 & 0xff) ^ (ar >> 8 & 0x01) ^ ((ad->ar_enc_par >> 6) & 0x01) ^ (ad->ar_enc >> 8 & 0x01)) ||
(oddparity8(ar >> 24 & 0xff) ^ (ar >> 16 & 0x01) ^ ((ad->ar_enc_par >> 7) & 0x01) ^ (ad->ar_enc >> 16 & 0x01))
)
return false;
uint32_t at = prng_successor(ntx, 96);
if (
(oddparity8(ar & 0xff) ^ (at >> 24 & 0x01) ^ ((ad->ar_enc_par >> 4) & 0x01) ^ (ad->at_enc >> 24 & 0x01)) ||
(oddparity8(at >> 8 & 0xff) ^ (at & 0x01) ^ ((ad->at_enc_par >> 5) & 0x01) ^ (ad->at_enc & 0x01)) ||
(oddparity8(at >> 16 & 0xff) ^ (at >> 8 & 0x01) ^ ((ad->at_enc_par >> 6) & 0x01) ^ (ad->at_enc >> 8 & 0x01)) ||
(oddparity8(at >> 24 & 0xff) ^ (at >> 16 & 0x01) ^ ((ad->at_enc_par >> 7) & 0x01) ^ (ad->at_enc >> 16 & 0x01))
)
return false;
return true;
}
bool NestedCheckKey(uint64_t key, TAuthData *ad, uint8_t *cmd, uint8_t cmdsize, uint8_t *parity) {
uint8_t buf[32] = {0};
struct Crypto1State *pcs;
AuthData.ks2 = 0;
AuthData.ks3 = 0;
pcs = crypto1_create(key);
uint32_t nt1 = crypto1_word(pcs, ad->nt_enc ^ ad->uid, 1) ^ ad->nt_enc;
uint32_t ar = prng_successor(nt1, 64);
uint32_t at = prng_successor(nt1, 96);
crypto1_word(pcs, ad->nr_enc, 1);
// uint32_t nr1 = crypto1_word(pcs, ad->nr_enc, 1) ^ ad->nr_enc; // if needs deciphered nr
uint32_t ar1 = crypto1_word(pcs, 0, 0) ^ ad->ar_enc;
uint32_t at1 = crypto1_word(pcs, 0, 0) ^ ad->at_enc;
if (!(ar == ar1 && at == at1 && NTParityChk(ad, nt1))) {
crypto1_destroy(pcs);
return false;
}
memcpy(buf, cmd, cmdsize);
mf_crypto1_decrypt(pcs, buf, cmdsize, 0);
crypto1_destroy(pcs);
if (!CheckCrypto1Parity(cmd, cmdsize, buf, parity))
return false;
if (!check_crc(CRC_14443_A, buf, cmdsize))
return false;
AuthData.nt = nt1;
AuthData.ks2 = AuthData.ar_enc ^ ar;
AuthData.ks3 = AuthData.at_enc ^ at;
return true;
}
bool CheckCrypto1Parity(uint8_t *cmd_enc, uint8_t cmdsize, uint8_t *cmd, uint8_t *parity_enc) {
for (int i = 0; i < cmdsize - 1; i++) {
if (oddparity8(cmd[i]) ^ (cmd[i + 1] & 0x01) ^ ((parity_enc[i / 8] >> (7 - i % 8)) & 0x01) ^ (cmd_enc[i + 1] & 0x01))
return false;
}
return true;
}
// Another implementation of mfkey64 attack, more "valid" than "probable"
//
uint64_t GetCrypto1ProbableKey(TAuthData *ad) {
struct Crypto1State *revstate = lfsr_recovery64(ad->ks2, ad->ks3);
lfsr_rollback_word(revstate, 0, 0);
lfsr_rollback_word(revstate, 0, 0);
lfsr_rollback_word(revstate, ad->nr_enc, 1);
lfsr_rollback_word(revstate, ad->uid ^ ad->nt, 0);
uint64_t key = 0;
crypto1_get_lfsr(revstate, &key);
crypto1_destroy(revstate);
return key;
}