proxmark3/armsrc/i2c.c
iceman1001 82e7830e5b style
2023-10-30 22:20:55 +01:00

1000 lines
22 KiB
C

// //-----------------------------------------------------------------------------
// Copyright (C) Proxmark3 contributors. See AUTHORS.md for details.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// See LICENSE.txt for the text of the license.
//-----------------------------------------------------------------------------
// The main i2c code, for communications with smart card module
//-----------------------------------------------------------------------------
#include "i2c.h"
#include "proxmark3_arm.h"
#include "cmd.h"
#include "BigBuf.h"
#include "ticks.h"
#include "dbprint.h"
#include "util.h"
#include "string.h"
#define GPIO_RST AT91C_PIO_PA1
#define GPIO_SCL AT91C_PIO_PA5
#define GPIO_SDA AT91C_PIO_PA7
#define SCL_H HIGH(GPIO_SCL)
#define SCL_L LOW(GPIO_SCL)
#define SDA_H HIGH(GPIO_SDA)
#define SDA_L LOW(GPIO_SDA)
#define SCL_read ((AT91C_BASE_PIOA->PIO_PDSR & GPIO_SCL) == GPIO_SCL)
#define SDA_read ((AT91C_BASE_PIOA->PIO_PDSR & GPIO_SDA) == GPIO_SDA)
#define I2C_ERROR "I2C_WaitAck Error"
// Direct use the loop to delay. 6 instructions loop, Masterclock 48MHz,
// delay=1 is about 200kbps
// timer.
// I2CSpinDelayClk(4) = 12.31us
// I2CSpinDelayClk(1) = 3.07us
static volatile uint32_t c;
static void __attribute__((optimize("O0"))) I2CSpinDelayClk(uint16_t delay) {
for (c = delay * 2; c; c--) {};
}
#define I2C_DELAY_1CLK I2CSpinDelayClk(1)
#define I2C_DELAY_2CLK I2CSpinDelayClk(2)
#define I2C_DELAY_XCLK(x) I2CSpinDelayClk((x))
// try i2c bus recovery at 100kHz = 5us high, 5us low
void I2C_recovery(void) {
DbpString("Performing i2c bus recovery");
// reset I2C
SDA_H;
SCL_H;
//9nth cycle acts as NACK
for (int i = 0; i < 10; i++) {
SCL_H;
WaitUS(5);
SCL_L;
WaitUS(5);
}
//a STOP signal (SDA from low to high while CLK is high)
SDA_L;
WaitUS(5);
SCL_H;
WaitUS(2);
SDA_H;
WaitUS(2);
bool isok = (SCL_read && SDA_read);
if (!SDA_read)
DbpString("I2C bus recovery error: SDA still LOW");
if (!SCL_read)
DbpString("I2C bus recovery error: SCL still LOW");
if (isok)
DbpString("I2C bus recovery complete");
}
void I2C_init(bool has_ticks) {
// Configure reset pin, close up pull up, push-pull output, default high
AT91C_BASE_PIOA->PIO_PPUDR = GPIO_RST;
AT91C_BASE_PIOA->PIO_MDDR = GPIO_RST;
// Configure I2C pin, open up, open leakage
AT91C_BASE_PIOA->PIO_PPUER |= (GPIO_SCL | GPIO_SDA);
AT91C_BASE_PIOA->PIO_MDER |= (GPIO_SCL | GPIO_SDA);
// default three lines all pull up
AT91C_BASE_PIOA->PIO_SODR |= (GPIO_SCL | GPIO_SDA | GPIO_RST);
AT91C_BASE_PIOA->PIO_OER |= (GPIO_SCL | GPIO_SDA | GPIO_RST);
AT91C_BASE_PIOA->PIO_PER |= (GPIO_SCL | GPIO_SDA | GPIO_RST);
if (has_ticks) {
WaitMS(2);
}
bool isok = (SCL_read && SDA_read);
if (isok == false)
I2C_recovery();
}
// set the reset state
void I2C_SetResetStatus(uint8_t LineRST, uint8_t LineSCK, uint8_t LineSDA) {
if (LineRST)
HIGH(GPIO_RST);
else
LOW(GPIO_RST);
if (LineSCK)
HIGH(GPIO_SCL);
else
LOW(GPIO_SCL);
if (LineSDA)
HIGH(GPIO_SDA);
else
LOW(GPIO_SDA);
}
// Reset the SIM_Adapter, then enter the main program
// Note: the SIM_Adapter will not enter the main program after power up. Please run this function before use SIM_Adapter.
void I2C_Reset_EnterMainProgram(void) {
StartTicks();
I2C_init(true);
I2C_SetResetStatus(0, 0, 0);
WaitMS(30);
I2C_SetResetStatus(1, 0, 0);
WaitMS(30);
I2C_SetResetStatus(1, 1, 1);
WaitMS(10);
}
// Reset the SIM_Adapter, then enter the bootloader program
// Reserve for firmware update.
void I2C_Reset_EnterBootloader(void) {
StartTicks();
I2C_init(true);
I2C_SetResetStatus(0, 1, 1);
WaitMS(100);
I2C_SetResetStatus(1, 1, 1);
WaitMS(10);
}
// Wait for the clock to go High.
static bool WaitSCL_H_delay(uint32_t delay) {
while (delay--) {
if (SCL_read) {
return true;
}
I2C_DELAY_1CLK;
}
return false;
}
// 5000 * 3.07us = 15350 us = 15.35 ms
// 15000 * 3.07us = 46050 us = 46.05 ms
static bool WaitSCL_H(void) {
return WaitSCL_H_delay(5000);
}
static bool WaitSCL_L_delay(uint32_t delay) {
while (delay--) {
if (SCL_read == false) {
return true;
}
I2C_DELAY_1CLK;
}
return false;
}
// 5000 * 3.07us = 15350us. 15.35ms
// 15000 * 3.07us = 46050us. 46.05ms
static bool WaitSCL_L(void) {
return WaitSCL_L_delay(5000);
}
// Wait max 1800ms or until SCL goes LOW.
// It timeout reading response from card
// Which ever comes first
static bool WaitSCL_L_timeout(void) {
volatile uint32_t delay = 1200;
while (delay--) {
// exit on SCL LOW
if (SCL_read == false)
return true;
WaitMS(1);
}
return (delay == 0);
}
static bool I2C_Start(void) {
I2C_DELAY_2CLK;
I2C_DELAY_2CLK;
SDA_H;
I2C_DELAY_1CLK;
SCL_H;
if (WaitSCL_H() == false) {
return false;
}
I2C_DELAY_2CLK;
if (SCL_read == false) {
return false;
}
if (SDA_read == false) {
return false;
}
SDA_L;
I2C_DELAY_2CLK;
return true;
}
static bool I2C_WaitForSim(uint32_t wait) {
// wait for data from card
if (WaitSCL_L_timeout() == false) {
return false;
}
// 8051 speaks with smart card.
// 1000*50*3.07 = 153.5ms
// 1000*110*3.07 = 337.7ms (337700)
// 4 560 000 * 3.07 = 13999,2ms (13999200)
// 1byte transfer == 1ms with max frame being 256bytes
// fct WaitSCL_H_delay uses a I2C_DELAY_1CLK in the loop with "wait" as number of iterations.
// I2C_DELAY_1CLK == I2CSpinDelayClk(1) = 3.07us
return WaitSCL_H_delay(wait);
}
// send i2c STOP
static void I2C_Stop(void) {
SCL_L;
I2C_DELAY_2CLK;
SDA_L;
I2C_DELAY_2CLK;
SCL_H;
I2C_DELAY_2CLK;
if (WaitSCL_H() == false) {
return;
}
SDA_H;
I2C_DELAY_2CLK;
I2C_DELAY_2CLK;
I2C_DELAY_2CLK;
I2C_DELAY_2CLK;
}
// Send i2c ACK
static void I2C_Ack(void) {
SCL_L;
I2C_DELAY_2CLK;
SDA_L;
I2C_DELAY_2CLK;
SCL_H;
I2C_DELAY_2CLK;
if (WaitSCL_H() == false) {
return;
}
SCL_L;
I2C_DELAY_2CLK;
}
// Send i2c NACK
static void I2C_NoAck(void) {
SCL_L;
I2C_DELAY_2CLK;
SDA_H;
I2C_DELAY_2CLK;
SCL_H;
I2C_DELAY_2CLK;
if (WaitSCL_H() == false) {
return;
}
SCL_L;
I2C_DELAY_2CLK;
}
static bool I2C_WaitAck(void) {
SCL_L;
I2C_DELAY_1CLK;
SDA_H;
I2C_DELAY_1CLK;
SCL_H;
if (WaitSCL_H() == false) {
return false;
}
I2C_DELAY_2CLK;
I2C_DELAY_2CLK;
if (SDA_read) {
SCL_L;
return false;
}
SCL_L;
return true;
}
static void I2C_SendByte(uint8_t data) {
uint8_t bits = 8;
while (bits--) {
SCL_L;
I2C_DELAY_1CLK;
if (data & 0x80)
SDA_H;
else
SDA_L;
data <<= 1;
I2C_DELAY_1CLK;
SCL_H;
if (WaitSCL_H() == false) {
return;
}
I2C_DELAY_2CLK;
}
SCL_L;
}
static int16_t I2C_ReadByte(void) {
uint8_t bits = 8, b = 0;
SDA_H;
while (bits--) {
b <<= 1;
SCL_L;
if (WaitSCL_L() == false) {
return -2;
}
I2C_DELAY_1CLK;
SCL_H;
if (WaitSCL_H() == false) {
return -1;
}
I2C_DELAY_1CLK;
if (SDA_read) {
b |= 0x01;
}
}
SCL_L;
return b;
}
// Sends one byte (command to be written, SlaveDevice address)
bool I2C_WriteCmd(uint8_t device_cmd, uint8_t device_address) {
bool _break = true;
do {
if (I2C_Start() == false) {
return false;
}
I2C_SendByte(device_address & 0xFE);
if (I2C_WaitAck() == false) {
break;
}
I2C_SendByte(device_cmd);
if (I2C_WaitAck() == false) {
break;
}
_break = false;
} while (false);
I2C_Stop();
if (_break) {
if (g_dbglevel > 3) DbpString(I2C_ERROR);
return false;
}
return true;
}
// Sends 1 byte data (data to be written, command to be written , SlaveDevice address)
bool I2C_WriteByte(uint8_t data, uint8_t device_cmd, uint8_t device_address) {
bool _break = true;
do {
if (I2C_Start() == false) {
return false;
}
I2C_SendByte(device_address & 0xFE);
if (I2C_WaitAck() == false) {
break;
}
I2C_SendByte(device_cmd);
if (I2C_WaitAck() == false) {
break;
}
I2C_SendByte(data);
if (I2C_WaitAck() == false) {
break;
}
_break = false;
} while (false);
I2C_Stop();
if (_break) {
if (g_dbglevel > 3) DbpString(I2C_ERROR);
return false;
}
return true;
}
// Sends array of data (array, length, command to be written , SlaveDevice address)
// len = uint16 because we need to write up to 256 bytes
bool I2C_BufferWrite(const uint8_t *data, uint16_t len, uint8_t device_cmd, uint8_t device_address) {
bool _break = true;
do {
if (I2C_Start() == false) {
return false;
}
I2C_SendByte(device_address & 0xFE);
if (I2C_WaitAck() == false) {
break;
}
I2C_SendByte(device_cmd);
if (I2C_WaitAck() == false) {
break;
}
while (len) {
I2C_SendByte(*data);
if (I2C_WaitAck() == false)
break;
len--;
data++;
}
if (len == 0) {
_break = false;
}
} while (false);
I2C_Stop();
if (_break) {
if (g_dbglevel > 3) DbpString(I2C_ERROR);
return false;
}
return true;
}
// read one array of data (Data array, Readout length, command to be written , SlaveDevice address ).
// len = uint16 because we need to read up to 256bytes
int16_t I2C_BufferRead(uint8_t *data, uint16_t len, uint8_t device_cmd, uint8_t device_address) {
// sanity check
if (data == NULL || len == 0) {
return 0;
}
// uint8_t *pd = data;
// extra wait 500us (514us measured)
// 200us (xx measured)
WaitUS(600);
bool _break = true;
do {
if (I2C_Start() == false) {
return 0;
}
// 0xB0 / 0xC0 == i2c write
I2C_SendByte(device_address & 0xFE);
if (I2C_WaitAck() == false) {
break;
}
I2C_SendByte(device_cmd);
if (I2C_WaitAck() == false) {
break;
}
// 0xB1 / 0xC1 == i2c read
I2C_Start();
I2C_SendByte(device_address | 1);
if (I2C_WaitAck() == false) {
break;
}
_break = false;
} while (false);
if (_break) {
I2C_Stop();
if (g_dbglevel > 3) DbpString(I2C_ERROR);
return 0;
}
uint16_t readcount = 0;
uint16_t recv_len = 0;
while (len) {
int16_t tmp = I2C_ReadByte();
if (tmp < 0) {
return tmp;
}
*data = (uint8_t)tmp & 0xFF;
len--;
// Starting firmware v4 the length is encoded on the first two bytes.
switch (readcount) {
case 0: {
// Length (MSB)
recv_len = (*data) << 8;
break;
}
case 1: {
// Length (LSB)
recv_len += *data;
// old packages..
if (recv_len > 0x0200) {
// [0] = len
// [1] = data
recv_len >>= 8;
data++;
}
// Adjust len if needed
if (len > recv_len) {
len = recv_len;
}
break;
}
default: {
// Data byte received
data++;
break;
}
}
readcount++;
// acknowledgements. After last byte send NACK.
if (len == 0) {
I2C_NoAck();
} else {
I2C_Ack();
}
}
I2C_Stop();
// Dbprintf("rec len... %u readcount... %u", recv_len, readcount);
// Dbhexdump(readcount, pd, false);
if (readcount < 2) {
return 0;
}
// return bytecount - bytes encoding length
return readcount - 2;
}
int16_t I2C_ReadFW(uint8_t *data, uint8_t len, uint8_t msb, uint8_t lsb, uint8_t device_address) {
//START, 0xB0, 0x00, 0x00, START, 0xB1, xx, yy, zz, ......, STOP
bool _break = true;
uint8_t readcount = 0;
// sending
do {
if (I2C_Start() == false) {
return 0;
}
// 0xB0 / 0xC0 i2c write
I2C_SendByte(device_address & 0xFE);
if (I2C_WaitAck() == false)
break;
I2C_SendByte(msb);
if (I2C_WaitAck() == false) {
break;
}
I2C_SendByte(lsb);
if (I2C_WaitAck() == false) {
break;
}
// 0xB1 / 0xC1 i2c read
I2C_Start();
I2C_SendByte(device_address | 1);
if (I2C_WaitAck() == false) {
break;
}
_break = false;
} while (false);
if (_break) {
I2C_Stop();
if (g_dbglevel > 3) DbpString(I2C_ERROR);
return 0;
}
// reading
while (len) {
int16_t tmp = I2C_ReadByte();
if (tmp < 0) {
return tmp;
}
*data = (uint8_t)tmp & 0xFF;
data++;
readcount++;
len--;
// acknowledgements. After last byte send NACK.
if (len == 0)
I2C_NoAck();
else
I2C_Ack();
}
I2C_Stop();
return readcount;
}
bool I2C_WriteFW(const uint8_t *data, uint8_t len, uint8_t msb, uint8_t lsb, uint8_t device_address) {
//START, 0xB0, 0x00, 0x00, xx, yy, zz, ......, STOP
bool _break = true;
do {
if (I2C_Start() == false) {
return false;
}
// 0xB0 == i2c write
I2C_SendByte(device_address & 0xFE);
if (I2C_WaitAck() == false) {
break;
}
I2C_SendByte(msb);
if (I2C_WaitAck() == false) {
break;
}
I2C_SendByte(lsb);
if (I2C_WaitAck() == false) {
break;
}
while (len) {
I2C_SendByte(*data);
if (I2C_WaitAck() == false) {
break;
}
len--;
data++;
}
if (len == 0) {
_break = false;
}
} while (false);
I2C_Stop();
if (_break) {
if (g_dbglevel > 3) DbpString(I2C_ERROR);
return false;
}
return true;
}
void I2C_print_status(void) {
DbpString(_CYAN_("Smart card module (ISO 7816)"));
uint8_t major, minor;
if (I2C_get_version(&major, &minor) == PM3_SUCCESS) {
Dbprintf(" version................. v%d.%02d ( %s )"
, major
, minor
, ((major == 4) && (minor == 42)) ? _GREEN_("ok") : _RED_("Outdated")
);
} else {
DbpString(" version................. ( " _RED_("fail") " )");
}
}
int I2C_get_version(uint8_t *major, uint8_t *minor) {
uint8_t resp[] = {0, 0, 0, 0};
I2C_Reset_EnterMainProgram();
uint8_t len = I2C_BufferRead(resp, sizeof(resp), I2C_DEVICE_CMD_GETVERSION, I2C_DEVICE_ADDRESS_MAIN);
if (len > 1) {
*major = resp[0];
*minor = resp[1];
return PM3_SUCCESS;
}
return PM3_EDEVNOTSUPP;
}
// Will read response from smart card module, retries 3 times to get the data.
bool sc_rx_bytes(uint8_t *dest, uint16_t *destlen, uint32_t wait) {
uint8_t i = 10;
int16_t len = 0;
while (i--) {
I2C_WaitForSim(wait);
len = I2C_BufferRead(dest, *destlen, I2C_DEVICE_CMD_READ, I2C_DEVICE_ADDRESS_MAIN);
LED_C_ON();
if (len > 1) {
break;
} else if (len == 1) {
continue;
} else if (len <= 0) {
return false;
}
}
if (len < 1) {
return false;
}
*destlen = len;
return true;
}
bool GetATR(smart_card_atr_t *card_ptr, bool verbose) {
if (card_ptr == NULL) {
return false;
}
card_ptr->atr_len = 0;
memset(card_ptr->atr, 0, sizeof(card_ptr->atr));
// Send ATR
// start [C0 01] stop start C1 len aa bb cc stop]
I2C_WriteCmd(I2C_DEVICE_CMD_GENERATE_ATR, I2C_DEVICE_ADDRESS_MAIN);
// wait for sim card to answer.
// 1byte = 1ms , max frame 256bytes. Should wait 256ms atleast just in case.
if (I2C_WaitForSim(SIM_WAIT_DELAY) == false) {
return false;
}
// read bytes from module
uint16_t len = sizeof(card_ptr->atr);
if (sc_rx_bytes(card_ptr->atr, &len, SIM_WAIT_DELAY) == false) {
return false;
}
if (len > sizeof(card_ptr->atr)) {
len = sizeof(card_ptr->atr);
}
uint8_t pos_td = 1;
if ((card_ptr->atr[1] & 0x10) == 0x10) pos_td++;
if ((card_ptr->atr[1] & 0x20) == 0x20) pos_td++;
if ((card_ptr->atr[1] & 0x40) == 0x40) pos_td++;
// T0 indicate presence T=0 vs T=1. T=1 has checksum TCK
if ((card_ptr->atr[1] & 0x80) == 0x80) {
pos_td++;
// 1 == T1 , presence of checksum TCK
if ((card_ptr->atr[pos_td] & 0x01) == 0x01) {
uint8_t chksum = 0;
// xor property. will be zero when xored with chksum.
for (uint16_t i = 1; i < len; ++i)
chksum ^= card_ptr->atr[i];
if (chksum) {
if (g_dbglevel > 2) DbpString("Wrong ATR checksum");
}
}
}
card_ptr->atr_len = (uint8_t)(len & 0xff);
if (verbose) {
LogTrace(card_ptr->atr, card_ptr->atr_len, 0, 0, NULL, false);
}
return true;
}
void SmartCardAtr(void) {
LED_D_ON();
set_tracing(true);
I2C_Reset_EnterMainProgram();
smart_card_atr_t card;
if (GetATR(&card, true)) {
reply_ng(CMD_SMART_ATR, PM3_SUCCESS, (uint8_t *)&card, sizeof(smart_card_atr_t));
} else {
reply_ng(CMD_SMART_ATR, PM3_ETIMEOUT, NULL, 0);
}
set_tracing(false);
LEDsoff();
// StopTicks();
}
void SmartCardRaw(const smart_card_raw_t *p) {
LED_D_ON();
uint16_t len = 0;
uint8_t *resp = BigBuf_malloc(ISO7816_MAX_FRAME);
// check if alloacted...
smartcard_command_t flags = p->flags;
if ((flags & SC_CLEARLOG) == SC_CLEARLOG)
clear_trace();
if ((flags & SC_LOG) == SC_LOG)
set_tracing(true);
else
set_tracing(false);
if ((flags & SC_CONNECT) == SC_CONNECT) {
I2C_Reset_EnterMainProgram();
if ((flags & SC_SELECT) == SC_SELECT) {
smart_card_atr_t card;
bool gotATR = GetATR(&card, true);
//reply_old(CMD_ACK, gotATR, sizeof(smart_card_atr_t), 0, &card, sizeof(smart_card_atr_t));
if (gotATR == false) {
reply_ng(CMD_SMART_RAW, PM3_ESOFT, NULL, 0);
goto OUT;
}
}
}
if (((flags & SC_RAW) == SC_RAW) || ((flags & SC_RAW_T0) == SC_RAW_T0)) {
uint32_t wait = SIM_WAIT_DELAY;
if ((flags & SC_WAIT) == SC_WAIT) {
wait = (uint32_t)((p->wait_delay * 1000) / 3.07);
}
LogTrace(p->data, p->len, 0, 0, NULL, true);
bool res = I2C_BufferWrite(
p->data,
p->len,
(((flags & SC_RAW_T0) == SC_RAW_T0) ? I2C_DEVICE_CMD_SEND_T0 : I2C_DEVICE_CMD_SEND),
I2C_DEVICE_ADDRESS_MAIN
);
if (res == false && g_dbglevel > 3) {
DbpString(I2C_ERROR);
reply_ng(CMD_SMART_RAW, PM3_ESOFT, NULL, 0);
goto OUT;
}
// read bytes from module
len = ISO7816_MAX_FRAME;
res = sc_rx_bytes(resp, &len, wait);
if (res) {
LogTrace(resp, len, 0, 0, NULL, false);
} else {
len = 0;
}
}
reply_ng(CMD_SMART_RAW, PM3_SUCCESS, resp, len);
OUT:
BigBuf_free();
set_tracing(false);
LEDsoff();
}
void SmartCardUpgrade(uint64_t arg0) {
LED_C_ON();
#define I2C_BLOCK_SIZE 128
// write. Sector0, with 11,22,33,44
// erase is 128bytes, and takes 50ms to execute
I2C_Reset_EnterBootloader();
bool isOK = true;
uint16_t length = arg0, pos = 0;
uint8_t *fwdata = BigBuf_get_addr();
uint8_t *verfiydata = BigBuf_malloc(I2C_BLOCK_SIZE);
while (length) {
uint8_t msb = (pos >> 8) & 0xFF;
uint8_t lsb = pos & 0xFF;
Dbprintf("FW %02X%02X", msb, lsb);
size_t size = MIN(I2C_BLOCK_SIZE, length);
// write
int16_t res = I2C_WriteFW(fwdata + pos, size, msb, lsb, I2C_DEVICE_ADDRESS_BOOT);
if (!res) {
DbpString("Writing failed");
isOK = false;
break;
}
// writing takes time.
WaitMS(50);
// read
res = I2C_ReadFW(verfiydata, size, msb, lsb, I2C_DEVICE_ADDRESS_BOOT);
if (res <= 0) {
DbpString("Reading back failed");
isOK = false;
break;
}
// cmp
if (0 != memcmp(fwdata + pos, verfiydata, size)) {
DbpString("not equal data");
isOK = false;
break;
}
length -= size;
pos += size;
}
reply_ng(CMD_SMART_UPGRADE, (isOK) ? PM3_SUCCESS : PM3_ESOFT, NULL, 0);
LED_C_OFF();
BigBuf_free();
}
void SmartCardSetBaud(uint64_t arg0) {
}
void SmartCardSetClock(uint64_t arg0) {
LED_D_ON();
set_tracing(true);
I2C_Reset_EnterMainProgram();
// Send SIM CLC
// start [C0 05 xx] stop
I2C_WriteByte(arg0, I2C_DEVICE_CMD_SIM_CLC, I2C_DEVICE_ADDRESS_MAIN);
reply_ng(CMD_SMART_SETCLOCK, PM3_SUCCESS, NULL, 0);
set_tracing(false);
LEDsoff();
}