proxmark3/common/lfdemod.c
marshmellow42 13d77ef964 lf t5 read plus lf demod adjustments
lf t5xx commands updated from ICEMAN
lf em410x commands updated
lf search bug fix for 2 args
test scripts from iceman
lf demod:
better ask clock detection with Strong fully clipped waves
better ask raw demod with strong fully clipped waves
fsk demod add back in skipped bits during demod
nrz demod add back in skipped bits during demod
2015-03-22 15:28:48 -04:00

1809 lines
54 KiB
C

//-----------------------------------------------------------------------------
// Copyright (C) 2014
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Low frequency demod/decode commands
//-----------------------------------------------------------------------------
#include <stdlib.h>
#include <string.h>
#include "lfdemod.h"
uint8_t justNoise(uint8_t *BitStream, size_t size)
{
static const uint8_t THRESHOLD = 123;
//test samples are not just noise
uint8_t justNoise1 = 1;
for(size_t idx=0; idx < size && justNoise1 ;idx++){
justNoise1 = BitStream[idx] < THRESHOLD;
}
return justNoise1;
}
//by marshmellow
//get high and low values of a wave with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise
int getHiLo(uint8_t *BitStream, size_t size, int *high, int *low, uint8_t fuzzHi, uint8_t fuzzLo)
{
*high=0;
*low=255;
// get high and low thresholds
for (int i=0; i < size; i++){
if (BitStream[i] > *high) *high = BitStream[i];
if (BitStream[i] < *low) *low = BitStream[i];
}
if (*high < 123) return -1; // just noise
*high = (int)(((*high-128)*(((float)fuzzHi)/100))+128);
*low = (int)(((*low-128)*(((float)fuzzLo)/100))+128);
return 1;
}
// by marshmellow
// pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType
// returns 1 if passed
uint8_t parityTest(uint32_t bits, uint8_t bitLen, uint8_t pType)
{
uint8_t ans = 0;
for (uint8_t i = 0; i < bitLen; i++){
ans ^= ((bits >> i) & 1);
}
//PrintAndLog("DEBUG: ans: %d, ptype: %d",ans,pType);
return (ans == pType);
}
//by marshmellow
//search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length
uint8_t preambleSearch(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_t *size, size_t *startIdx)
{
uint8_t foundCnt=0;
for (int idx=0; idx < *size - pLen; idx++){
if (memcmp(BitStream+idx, preamble, pLen) == 0){
//first index found
foundCnt++;
if (foundCnt == 1){
*startIdx = idx;
}
if (foundCnt == 2){
*size = idx - *startIdx;
return 1;
}
}
}
return 0;
}
//by marshmellow
//takes 1s and 0s and searches for EM410x format - output EM ID
uint8_t Em410xDecode(uint8_t *BitStream, size_t *size, size_t *startIdx, uint32_t *hi, uint64_t *lo)
{
//no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future
// otherwise could be a void with no arguments
//set defaults
uint32_t i = 0;
if (BitStream[1]>1){ //allow only 1s and 0s
// PrintAndLog("no data found");
return 0;
}
// 111111111 bit pattern represent start of frame
uint8_t preamble[] = {1,1,1,1,1,1,1,1,1};
uint32_t idx = 0;
uint32_t parityBits = 0;
uint8_t errChk = 0;
uint8_t FmtLen = 10;
*startIdx = 0;
for (uint8_t extraBitChk=0; extraBitChk<5; extraBitChk++){
errChk = preambleSearch(BitStream+extraBitChk+*startIdx, preamble, sizeof(preamble), size, startIdx);
if (errChk == 0) return 0;
if (*size>64) FmtLen = 22;
if (*size<64) return 0;
idx = *startIdx + 9;
for (i=0; i<FmtLen; i++){ //loop through 10 or 22 sets of 5 bits (50-10p = 40 bits or 88 bits)
parityBits = bytebits_to_byte(BitStream+(i*5)+idx,5);
//check even parity
if (parityTest(parityBits, 5, 0) == 0){
//parity failed try next bit (in the case of 1111111111) but last 9 = preamble
startIdx++;
errChk = 0;
break;
}
//set uint64 with ID from BitStream
for (uint8_t ii=0; ii<4; ii++){
*hi = (*hi << 1) | (*lo >> 63);
*lo = (*lo << 1) | (BitStream[(i*5)+ii+idx]);
}
}
if (errChk != 0) return 1;
//skip last 5 bit parity test for simplicity.
// *size = 64 | 128;
}
return 0;
}
//by marshmellow
//takes 3 arguments - clock, invert, maxErr as integers
//attempts to demodulate ask while decoding manchester
//prints binary found and saves in graphbuffer for further commands
int askmandemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr)
{
int i;
//int clk2=*clk;
int start = DetectASKClock(BinStream, *size, clk, 20); //clock default
if (*clk==0) return -3;
if (start < 0) return -3;
// if autodetected too low then adjust //MAY NEED ADJUSTMENT
//if (clk2==0 && *clk<8) *clk =64;
//if (clk2==0 && *clk<32) *clk=32;
if (*invert != 0 && *invert != 1) *invert=0;
uint32_t initLoopMax = 200;
if (initLoopMax > *size) initLoopMax=*size;
// Detect high and lows
// 25% fuzz in case highs and lows aren't clipped [marshmellow]
int high, low, ans;
ans = getHiLo(BinStream, initLoopMax, &high, &low, 75, 75);
if (ans<1) return -2; //just noise
// PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low);
int lastBit = 0; //set first clock check
uint32_t bitnum = 0; //output counter
int tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
if (*clk<=32) tol=1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
int iii = 0;
uint32_t gLen = *size;
if (gLen > 3000) gLen=3000;
//if 0 errors allowed then only try first 2 clock cycles as we want a low tolerance
if (!maxErr) gLen=*clk*2;
uint8_t errCnt =0;
uint16_t MaxBits = 500;
uint32_t bestStart = *size;
int bestErrCnt = maxErr+1;
// PrintAndLog("DEBUG - lastbit - %d",lastBit);
// loop to find first wave that works
for (iii=0; iii < gLen; ++iii){
if ((BinStream[iii] >= high) || (BinStream[iii] <= low)){
lastBit=iii-*clk;
errCnt=0;
// loop through to see if this start location works
for (i = iii; i < *size; ++i) {
if ((BinStream[i] >= high) && ((i-lastBit) > (*clk-tol))){
lastBit+=*clk;
} else if ((BinStream[i] <= low) && ((i-lastBit) > (*clk-tol))){
//low found and we are expecting a bar
lastBit+=*clk;
} else {
//mid value found or no bar supposed to be here
if ((i-lastBit)>(*clk+tol)){
//should have hit a high or low based on clock!!
//debug
//PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit);
errCnt++;
lastBit+=*clk;//skip over until hit too many errors
if (errCnt>(maxErr)) break; //allow 1 error for every 1000 samples else start over
}
}
if ((i-iii) >(MaxBits * *clk)) break; //got plenty of bits
}
//we got more than 64 good bits and not all errors
if ((((i-iii)/ *clk) > (64)) && (errCnt<=maxErr)) {
//possible good read
if (errCnt==0){
bestStart=iii;
bestErrCnt=errCnt;
break; //great read - finish
}
if (errCnt<bestErrCnt){ //set this as new best run
bestErrCnt=errCnt;
bestStart = iii;
}
}
}
}
if (bestErrCnt<=maxErr){
//best run is good enough set to best run and set overwrite BinStream
iii=bestStart;
lastBit = bestStart - *clk;
bitnum=0;
for (i = iii; i < *size; ++i) {
if ((BinStream[i] >= high) && ((i-lastBit) > (*clk-tol))){
lastBit += *clk;
BinStream[bitnum] = *invert;
bitnum++;
} else if ((BinStream[i] <= low) && ((i-lastBit) > (*clk-tol))){
//low found and we are expecting a bar
lastBit+=*clk;
BinStream[bitnum] = 1-*invert;
bitnum++;
} else {
//mid value found or no bar supposed to be here
if ((i-lastBit)>(*clk+tol)){
//should have hit a high or low based on clock!!
//debug
//PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit);
if (bitnum > 0){
BinStream[bitnum]=77;
bitnum++;
}
lastBit+=*clk;//skip over error
}
}
if (bitnum >=MaxBits) break;
}
*size=bitnum;
} else{
*invert=bestStart;
*clk=iii;
return -1;
}
return bestErrCnt;
}
//by marshmellow
//encode binary data into binary manchester
int ManchesterEncode(uint8_t *BitStream, size_t size)
{
size_t modIdx=20000, i=0;
if (size>modIdx) return -1;
for (size_t idx=0; idx < size; idx++){
BitStream[idx+modIdx++] = BitStream[idx];
BitStream[idx+modIdx++] = BitStream[idx]^1;
}
for (; i<(size*2); i++){
BitStream[i] = BitStream[i+20000];
}
return i;
}
//by marshmellow
//take 10 and 01 and manchester decode
//run through 2 times and take least errCnt
int manrawdecode(uint8_t * BitStream, size_t *size)
{
uint16_t bitnum=0, MaxBits = 512, errCnt = 0;
size_t i, ii;
uint16_t bestErr = 1000, bestRun = 0;
if (size == 0) return -1;
for (ii=0;ii<2;++ii){
i=0;
for (i=i+ii;i<*size-2;i+=2){
if(BitStream[i]==1 && (BitStream[i+1]==0)){
} else if((BitStream[i]==0)&& BitStream[i+1]==1){
} else {
errCnt++;
}
if(bitnum>MaxBits) break;
}
if (bestErr>errCnt){
bestErr=errCnt;
bestRun=ii;
}
errCnt=0;
}
errCnt=bestErr;
if (errCnt<20){
ii=bestRun;
i=0;
for (i=i+ii; i < *size-2; i+=2){
if(BitStream[i] == 1 && (BitStream[i+1] == 0)){
BitStream[bitnum++]=0;
} else if((BitStream[i] == 0) && BitStream[i+1] == 1){
BitStream[bitnum++]=1;
} else {
BitStream[bitnum++]=77;
//errCnt++;
}
if(bitnum>MaxBits) break;
}
*size=bitnum;
}
return errCnt;
}
//by marshmellow
//take 01 or 10 = 1 and 11 or 00 = 0
//check for phase errors - should never have 111 or 000 should be 01001011 or 10110100 for 1010
//decodes biphase or if inverted it is AKA conditional dephase encoding AKA differential manchester encoding
int BiphaseRawDecode(uint8_t *BitStream, size_t *size, int offset, int invert)
{
uint16_t bitnum=0;
uint32_t errCnt =0;
size_t i=offset;
uint16_t MaxBits=512;
//if not enough samples - error
if (*size < 51) return -1;
//check for phase change faults - skip one sample if faulty
uint8_t offsetA = 1, offsetB = 1;
for (; i<48; i+=2){
if (BitStream[i+1]==BitStream[i+2]) offsetA=0;
if (BitStream[i+2]==BitStream[i+3]) offsetB=0;
}
if (!offsetA && offsetB) offset++;
for (i=offset; i<*size-3; i+=2){
//check for phase error
if (BitStream[i+1]==BitStream[i+2]) {
BitStream[bitnum++]=77;
errCnt++;
}
if((BitStream[i]==1 && BitStream[i+1]==0) || (BitStream[i]==0 && BitStream[i+1]==1)){
BitStream[bitnum++]=1^invert;
} else if((BitStream[i]==0 && BitStream[i+1]==0) || (BitStream[i]==1 && BitStream[i+1]==1)){
BitStream[bitnum++]=invert;
} else {
BitStream[bitnum++]=77;
errCnt++;
}
if(bitnum>MaxBits) break;
}
*size=bitnum;
return errCnt;
}
//by marshmellow
void askAmp(uint8_t *BitStream, size_t size)
{
int shift = 127;
int shiftedVal=0;
for(int i = 1; i<size; i++){
if (BitStream[i]-BitStream[i-1]>=30) //large jump up
shift=127;
else if(BitStream[i]-BitStream[i-1]<=-20) //large jump down
shift=-127;
shiftedVal=BitStream[i]+shift;
if (shiftedVal>255)
shiftedVal=255;
else if (shiftedVal<0)
shiftedVal=0;
BitStream[i-1] = shiftedVal;
}
return;
}
int cleanAskRawDemod(uint8_t *BinStream, size_t *size, int clk, int invert, int high, int low)
{
size_t bitCnt=0, smplCnt=0, errCnt=0;
uint8_t waveHigh = 0;
//PrintAndLog("clk: %d", clk);
for (size_t i=0; i < *size; i++){
if (BinStream[i] >= high && waveHigh){
smplCnt++;
} else if (BinStream[i] <= low && !waveHigh){
smplCnt++;
} else { //not high or low or a transition
if (smplCnt > clk-(clk/4)) { //full clock
if (smplCnt > clk + (clk/4)) { //too many samples
errCnt++;
BinStream[bitCnt++]=77;
} else if (waveHigh) {
BinStream[bitCnt++] = invert;
BinStream[bitCnt++] = invert;
} else if (!waveHigh) {
BinStream[bitCnt++] = invert ^ 1;
BinStream[bitCnt++] = invert ^ 1;
}
waveHigh ^= 1;
smplCnt = 0;
} else if (smplCnt > (clk/2) - (clk/5)) {
if (waveHigh) {
BinStream[bitCnt++] = invert;
} else if (!waveHigh) {
BinStream[bitCnt++] = invert ^ 1;
}
waveHigh ^= 1;
smplCnt = 0;
} else if (!bitCnt) {
//first bit
waveHigh = (BinStream[i] >= high);
smplCnt = 1;
} else {
//transition bit? ignore
}
}
}
*size = bitCnt;
return errCnt;
}
//by marshmellow
//takes 3 arguments - clock, invert and maxErr as integers
//attempts to demodulate ask only
int askrawdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr, uint8_t amp)
{
uint32_t i;
if (*size==0) return -1;
int start = DetectASKClock(BinStream, *size, clk, 20); //clock default
if (*clk==0) return -1;
if (start<0) return -1;
if (*invert != 0 && *invert != 1) *invert =0;
if (amp==1) askAmp(BinStream, *size);
uint32_t initLoopMax = 200;
if (initLoopMax > *size) initLoopMax=*size;
// Detect high and lows
//25% clip in case highs and lows aren't clipped [marshmellow]
uint8_t clip = 75;
int high, low, ans;
ans = getHiLo(BinStream, initLoopMax, &high, &low, clip, clip);
if (ans<1) return -1; //just noise
if (DetectCleanAskWave(BinStream, *size, high, low)) {
//PrintAndLog("Clean");
return cleanAskRawDemod(BinStream, size, *clk, *invert, high, low);
}
//PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low);
int lastBit = 0; //set first clock check
uint32_t bitnum = 0; //output counter
uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock
// if they fall + or - this value + clock from last valid wave
if (*clk == 32) tol=0; //clock tolerance may not be needed anymore currently set to
// + or - 1 but could be increased for poor waves or removed entirely
uint32_t iii = 0;
uint32_t gLen = *size;
if (gLen > 500) gLen=500;
//if 0 errors allowed then only try first 2 clock cycles as we want a low tolerance
if (!maxErr) gLen = *clk * 2;
uint8_t errCnt =0;
uint32_t bestStart = *size;
uint32_t bestErrCnt = maxErr; //(*size/1000);
uint8_t midBit=0;
uint16_t MaxBits=1000;
//PrintAndLog("DEBUG - lastbit - %d",lastBit);
//loop to find first wave that works
for (iii=start; iii < gLen; ++iii){
if ((BinStream[iii]>=high) || (BinStream[iii]<=low)){
lastBit=iii-*clk;
errCnt=0;
//loop through to see if this start location works
for (i = iii; i < *size; ++i) {
if ((BinStream[i] >= high) && ((i-lastBit)>(*clk-tol))){
lastBit+=*clk;
midBit=0;
} else if ((BinStream[i] <= low) && ((i-lastBit)>(*clk-tol))){
//low found and we are expecting a bar
lastBit+=*clk;
midBit=0;
} else if ((BinStream[i]<=low) && (midBit==0) && ((i-lastBit)>((*clk/2)-tol))){
//mid bar?
midBit=1;
} else if ((BinStream[i]>=high) && (midBit==0) && ((i-lastBit)>((*clk/2)-tol))){
//mid bar?
midBit=1;
} else if ((i-lastBit)>((*clk/2)+tol) && (midBit==0)){
//no mid bar found
midBit=1;
} else {
//mid value found or no bar supposed to be here
if ((i-lastBit)>(*clk+tol)){
//should have hit a high or low based on clock!!
//debug
//PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit);
errCnt++;
lastBit+=*clk;//skip over until hit too many errors
if (errCnt > maxErr){
//errCnt=0;
break;
}
}
}
if ((i-iii)>(MaxBits * *clk)) break; //got enough bits
}
//we got more than 64 good bits and not all errors
if ((((i-iii)/ *clk) > (64)) && (errCnt<=maxErr)) {
//possible good read
if (errCnt==0){
bestStart=iii;
bestErrCnt=errCnt;
break; //great read - finish
}
if (errCnt<bestErrCnt){ //set this as new best run
bestErrCnt=errCnt;
bestStart = iii;
}
}
}
}
if (bestErrCnt<=maxErr){
//best run is good enough - set to best run and overwrite BinStream
iii = bestStart;
lastBit = bestStart - *clk;
bitnum=0;
for (i = iii; i < *size; ++i) {
if ((BinStream[i] >= high) && ((i-lastBit) > (*clk-tol))){
lastBit += *clk;
BinStream[bitnum] = *invert;
bitnum++;
midBit=0;
} else if ((BinStream[i] <= low) && ((i-lastBit) > (*clk-tol))){
//low found and we are expecting a bar
lastBit+=*clk;
BinStream[bitnum] = 1 - *invert;
bitnum++;
midBit=0;
} else if ((BinStream[i]<=low) && (midBit==0) && ((i-lastBit)>((*clk/2)-tol))){
//mid bar?
midBit=1;
BinStream[bitnum] = 1 - *invert;
bitnum++;
} else if ((BinStream[i]>=high) && (midBit==0) && ((i-lastBit)>((*clk/2)-tol))){
//mid bar?
midBit=1;
BinStream[bitnum] = *invert;
bitnum++;
} else if ((i-lastBit)>((*clk/2)+tol) && (midBit==0)){
//no mid bar found
midBit=1;
if (bitnum!=0) BinStream[bitnum] = BinStream[bitnum-1];
bitnum++;
} else {
//mid value found or no bar supposed to be here
if ((i-lastBit)>(*clk+tol)){
//should have hit a high or low based on clock!!
//debug
//PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit);
if (bitnum > 0){
BinStream[bitnum]=77;
bitnum++;
}
lastBit+=*clk;//skip over error
}
}
if (bitnum >= MaxBits) break;
}
*size=bitnum;
} else{
*invert=bestStart;
*clk=iii;
return -1;
}
return bestErrCnt;
}
// demod gProxIIDemod
// error returns as -x
// success returns start position in BitStream
// BitStream must contain previously askrawdemod and biphasedemoded data
int gProxII_Demod(uint8_t BitStream[], size_t *size)
{
size_t startIdx=0;
uint8_t preamble[] = {1,1,1,1,1,0};
uint8_t errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, &startIdx);
if (errChk == 0) return -3; //preamble not found
if (*size != 96) return -2; //should have found 96 bits
//check first 6 spacer bits to verify format
if (!BitStream[startIdx+5] && !BitStream[startIdx+10] && !BitStream[startIdx+15] && !BitStream[startIdx+20] && !BitStream[startIdx+25] && !BitStream[startIdx+30]){
//confirmed proper separator bits found
//return start position
return (int) startIdx;
}
return -5;
}
//translate wave to 11111100000 (1 for each short wave 0 for each long wave)
size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow)
{
uint32_t last_transition = 0;
uint32_t idx = 1;
//uint32_t maxVal=0;
if (fchigh==0) fchigh=10;
if (fclow==0) fclow=8;
//set the threshold close to 0 (graph) or 128 std to avoid static
uint8_t threshold_value = 123;
// sync to first lo-hi transition, and threshold
// Need to threshold first sample
if(dest[0] < threshold_value) dest[0] = 0;
else dest[0] = 1;
size_t numBits = 0;
// count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
// or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
// between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
for(idx = 1; idx < size; idx++) {
// threshold current value
if (dest[idx] < threshold_value) dest[idx] = 0;
else dest[idx] = 1;
// Check for 0->1 transition
if (dest[idx-1] < dest[idx]) { // 0 -> 1 transition
if ((idx-last_transition)<(fclow-2)){ //0-5 = garbage noise
//do nothing with extra garbage
} else if ((idx-last_transition) < (fchigh-1)) { //6-8 = 8 waves
dest[numBits]=1;
} else if ((idx-last_transition) > (fchigh+1) && !numBits) { //12 + and first bit = garbage
//do nothing with beginning garbage
} else { //9+ = 10 waves
dest[numBits]=0;
}
last_transition = idx;
numBits++;
}
}
return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
}
uint32_t myround2(float f)
{
if (f >= 2000) return 2000;//something bad happened
return (uint32_t) (f + (float)0.5);
}
//translate 11111100000 to 10
size_t aggregate_bits(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t maxConsequtiveBits,
uint8_t invert, uint8_t fchigh, uint8_t fclow)
{
uint8_t lastval=dest[0];
uint32_t idx=0;
size_t numBits=0;
uint32_t n=1;
float lowWaves = (((float)(rfLen))/((float)fclow));
float highWaves = (((float)(rfLen))/((float)fchigh));
for( idx=1; idx < size; idx++) {
if (dest[idx]==lastval) {
n++;
continue;
}
n++;
//if lastval was 1, we have a 1->0 crossing
if (dest[idx-1]==1) {
if (!numBits && n < (uint8_t)lowWaves) {
n=0;
lastval = dest[idx];
continue;
}
n=myround2(((float)n)/lowWaves);
} else {// 0->1 crossing
//test first bitsample too small
if (!numBits && n < (uint8_t)highWaves) {
n=0;
lastval = dest[idx];
continue;
}
n = myround2(((float)n)/highWaves); //-1 for fudge factor
}
if (n == 0) n = 1;
if(n < maxConsequtiveBits) //Consecutive
{
if(invert==0){ //invert bits
memset(dest+numBits, dest[idx-1] , n);
}else{
memset(dest+numBits, dest[idx-1]^1 , n);
}
numBits += n;
}
n=0;
lastval=dest[idx];
}//end for
// if valid extra bits at the end were all the same frequency - add them in
if (n > lowWaves && n > highWaves) {
if (dest[idx-2]==1) {
n=myround2((float)(n+1)/((float)(rfLen)/(float)fclow));
} else {
n=myround2((float)(n+1)/((float)(rfLen-1)/(float)fchigh)); //-1 for fudge factor
}
memset(dest, dest[idx-1]^invert , n);
numBits += n;
}
return numBits;
}
//by marshmellow (from holiman's base)
// full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod)
int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow)
{
// FSK demodulator
size = fsk_wave_demod(dest, size, fchigh, fclow);
size = aggregate_bits(dest, size, rfLen, 192, invert, fchigh, fclow);
return size;
}
// loop to get raw HID waveform then FSK demodulate the TAG ID from it
int HIDdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo)
{
if (justNoise(dest, *size)) return -1;
size_t numStart=0, size2=*size, startIdx=0;
// FSK demodulator
*size = fskdemod(dest, size2,50,1,10,8); //fsk2a
if (*size < 96) return -2;
// 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
uint8_t preamble[] = {0,0,0,1,1,1,0,1};
// find bitstring in array
uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
if (errChk == 0) return -3; //preamble not found
numStart = startIdx + sizeof(preamble);
// final loop, go over previously decoded FSK data and manchester decode into usable tag ID
for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){
if (dest[idx] == dest[idx+1]){
return -4; //not manchester data
}
*hi2 = (*hi2<<1)|(*hi>>31);
*hi = (*hi<<1)|(*lo>>31);
//Then, shift in a 0 or one into low
if (dest[idx] && !dest[idx+1]) // 1 0
*lo=(*lo<<1)|1;
else // 0 1
*lo=(*lo<<1)|0;
}
return (int)startIdx;
}
// loop to get raw paradox waveform then FSK demodulate the TAG ID from it
int ParadoxdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo)
{
if (justNoise(dest, *size)) return -1;
size_t numStart=0, size2=*size, startIdx=0;
// FSK demodulator
*size = fskdemod(dest, size2,50,1,10,8); //fsk2a
if (*size < 96) return -2;
// 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
uint8_t preamble[] = {0,0,0,0,1,1,1,1};
uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
if (errChk == 0) return -3; //preamble not found
numStart = startIdx + sizeof(preamble);
// final loop, go over previously decoded FSK data and manchester decode into usable tag ID
for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){
if (dest[idx] == dest[idx+1])
return -4; //not manchester data
*hi2 = (*hi2<<1)|(*hi>>31);
*hi = (*hi<<1)|(*lo>>31);
//Then, shift in a 0 or one into low
if (dest[idx] && !dest[idx+1]) // 1 0
*lo=(*lo<<1)|1;
else // 0 1
*lo=(*lo<<1)|0;
}
return (int)startIdx;
}
uint32_t bytebits_to_byte(uint8_t* src, size_t numbits)
{
uint32_t num = 0;
for(int i = 0 ; i < numbits ; i++)
{
num = (num << 1) | (*src);
src++;
}
return num;
}
int IOdemodFSK(uint8_t *dest, size_t size)
{
if (justNoise(dest, size)) return -1;
//make sure buffer has data
if (size < 66*64) return -2;
// FSK demodulator
size = fskdemod(dest, size, 64, 1, 10, 8); // FSK2a RF/64
if (size < 65) return -3; //did we get a good demod?
//Index map
//0 10 20 30 40 50 60
//| | | | | | |
//01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
//-----------------------------------------------------------------------------
//00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
//
//XSF(version)facility:codeone+codetwo
//Handle the data
size_t startIdx = 0;
uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,1};
uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), &size, &startIdx);
if (errChk == 0) return -4; //preamble not found
if (!dest[startIdx+8] && dest[startIdx+17]==1 && dest[startIdx+26]==1 && dest[startIdx+35]==1 && dest[startIdx+44]==1 && dest[startIdx+53]==1){
//confirmed proper separator bits found
//return start position
return (int) startIdx;
}
return -5;
}
// by marshmellow
// takes a array of binary values, start position, length of bits per parity (includes parity bit),
// Parity Type (1 for odd 0 for even), and binary Length (length to run)
size_t removeParity(uint8_t *BitStream, size_t startIdx, uint8_t pLen, uint8_t pType, size_t bLen)
{
uint32_t parityWd = 0;
size_t j = 0, bitCnt = 0;
for (int word = 0; word < (bLen); word+=pLen){
for (int bit=0; bit < pLen; bit++){
parityWd = (parityWd << 1) | BitStream[startIdx+word+bit];
BitStream[j++] = (BitStream[startIdx+word+bit]);
}
j--;
// if parity fails then return 0
if (parityTest(parityWd, pLen, pType) == 0) return -1;
bitCnt+=(pLen-1);
parityWd = 0;
}
// if we got here then all the parities passed
//return ID start index and size
return bitCnt;
}
// by marshmellow
// FSK Demod then try to locate an AWID ID
int AWIDdemodFSK(uint8_t *dest, size_t *size)
{
//make sure buffer has enough data
if (*size < 96*50) return -1;
if (justNoise(dest, *size)) return -2;
// FSK demodulator
*size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50
if (*size < 96) return -3; //did we get a good demod?
uint8_t preamble[] = {0,0,0,0,0,0,0,1};
size_t startIdx = 0;
uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
if (errChk == 0) return -4; //preamble not found
if (*size != 96) return -5;
return (int)startIdx;
}
// by marshmellow
// FSK Demod then try to locate an Farpointe Data (pyramid) ID
int PyramiddemodFSK(uint8_t *dest, size_t *size)
{
//make sure buffer has data
if (*size < 128*50) return -5;
//test samples are not just noise
if (justNoise(dest, *size)) return -1;
// FSK demodulator
*size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50
if (*size < 128) return -2; //did we get a good demod?
uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
size_t startIdx = 0;
uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
if (errChk == 0) return -4; //preamble not found
if (*size != 128) return -3;
return (int)startIdx;
}
uint8_t DetectCleanAskWave(uint8_t dest[], size_t size, int high, int low)
{
uint8_t allPeaks=1;
uint16_t cntPeaks=0;
for (size_t i=30; i<255; i++){
if (dest[i]>low && dest[i]<high)
allPeaks=0;
else
cntPeaks++;
}
if (allPeaks==0){
if (cntPeaks>210) return 1;
}
return allPeaks;
}
int DetectStrongAskClock(uint8_t dest[], size_t size)
{
int clk[]={0,8,16,32,40,50,64,100,128,256};
size_t idx = 40;
uint8_t high=0;
size_t cnt = 0;
size_t highCnt = 0;
size_t highCnt2 = 0;
for (;idx < size; idx++){
if (dest[idx]>128) {
if (!high){
high=1;
if (cnt > highCnt){
if (highCnt != 0) highCnt2 = highCnt;
highCnt = cnt;
} else if (cnt > highCnt2) {
highCnt2 = cnt;
}
cnt=1;
} else {
cnt++;
}
} else if (dest[idx] <= 128){
if (high) {
high=0;
if (cnt > highCnt) {
if (highCnt != 0) highCnt2 = highCnt;
highCnt = cnt;
} else if (cnt > highCnt2) {
highCnt2 = cnt;
}
cnt=1;
} else {
cnt++;
}
}
}
for (idx=8; idx>0; idx--){
if (clk[idx] >= highCnt && clk[idx] <= highCnt+2)
return clk[idx];
if (clk[idx] >= highCnt2 && clk[idx] <= highCnt2+2)
return clk[idx];
}
return -1;
}
// by marshmellow
// not perfect especially with lower clocks or VERY good antennas (heavy wave clipping)
// maybe somehow adjust peak trimming value based on samples to fix?
// return start index of best starting position for that clock and return clock (by reference)
int DetectASKClock(uint8_t dest[], size_t size, int *clock, int maxErr)
{
int i=0;
int clk[]={8,16,32,40,50,64,100,128,256};
int loopCnt = 256; //don't need to loop through entire array...
if (size == 0) return -1;
if (size<loopCnt) loopCnt = size;
//if we already have a valid clock quit
for (;i<8;++i)
if (clk[i] == *clock) return 0;
//get high and low peak
int peak, low;
getHiLo(dest, loopCnt, &peak, &low, 75, 75);
//test for large clean peaks
if (DetectCleanAskWave(dest, size, peak, low)==1){
int ans = DetectStrongAskClock(dest, size);
for (i=7; i>0; i--){
if (clk[i] == ans) {
*clock=ans;
return 0;
}
}
}
int ii;
int clkCnt;
int tol = 0;
int bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
int bestStart[]={0,0,0,0,0,0,0,0,0};
int errCnt=0;
//test each valid clock from smallest to greatest to see which lines up
for(clkCnt=0; clkCnt < 8; clkCnt++){
if (clk[clkCnt] == 32){
tol=1;
}else{
tol=0;
}
if (!maxErr) loopCnt=clk[clkCnt]*2;
bestErr[clkCnt]=1000;
//try lining up the peaks by moving starting point (try first 256)
for (ii=0; ii < loopCnt; ii++){
if ((dest[ii] >= peak) || (dest[ii] <= low)){
errCnt=0;
// now that we have the first one lined up test rest of wave array
for (i=0; i<((int)((size-ii-tol)/clk[clkCnt])-1); ++i){
if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){
}else if(dest[ii+(i*clk[clkCnt])-tol]>=peak || dest[ii+(i*clk[clkCnt])-tol]<=low){
}else if(dest[ii+(i*clk[clkCnt])+tol]>=peak || dest[ii+(i*clk[clkCnt])+tol]<=low){
}else{ //error no peak detected
errCnt++;
}
}
//if we found no errors then we can stop here
// this is correct one - return this clock
//PrintAndLog("DEBUG: clk %d, err %d, ii %d, i %d",clk[clkCnt],errCnt,ii,i);
if(errCnt==0 && clkCnt<6) {
*clock = clk[clkCnt];
return ii;
}
//if we found errors see if it is lowest so far and save it as best run
if(errCnt<bestErr[clkCnt]){
bestErr[clkCnt]=errCnt;
bestStart[clkCnt]=ii;
}
}
}
}
uint8_t iii=0;
uint8_t best=0;
for (iii=0; iii<8; ++iii){
if (bestErr[iii]<bestErr[best]){
if (bestErr[iii]==0) bestErr[iii]=1;
// current best bit to error ratio vs new bit to error ratio
if (((size/clk[best])/bestErr[best] < (size/clk[iii])/bestErr[iii]) ){
best = iii;
}
}
}
if (bestErr[best]>maxErr) return -1;
*clock=clk[best];
return bestStart[best];
}
//by marshmellow
//detect psk clock by reading each phase shift
// a phase shift is determined by measuring the sample length of each wave
int DetectPSKClock(uint8_t dest[], size_t size, int clock)
{
uint8_t clk[]={255,16,32,40,50,64,100,128,255}; //255 is not a valid clock
uint16_t loopCnt = 4096; //don't need to loop through entire array...
if (size == 0) return 0;
if (size<loopCnt) loopCnt = size;
//if we already have a valid clock quit
size_t i=1;
for (; i < 8; ++i)
if (clk[i] == clock) return clock;
size_t waveStart=0, waveEnd=0, firstFullWave=0, lastClkBit=0;
uint8_t clkCnt, fc=0, fullWaveLen=0, tol=1;
uint16_t peakcnt=0, errCnt=0, waveLenCnt=0;
uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
uint16_t peaksdet[]={0,0,0,0,0,0,0,0,0};
countFC(dest, size, &fc);
//PrintAndLog("DEBUG: FC: %d",fc);
//find first full wave
for (i=0; i<loopCnt; i++){
if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){
if (waveStart == 0) {
waveStart = i+1;
//PrintAndLog("DEBUG: waveStart: %d",waveStart);
} else {
waveEnd = i+1;
//PrintAndLog("DEBUG: waveEnd: %d",waveEnd);
waveLenCnt = waveEnd-waveStart;
if (waveLenCnt > fc){
firstFullWave = waveStart;
fullWaveLen=waveLenCnt;
break;
}
waveStart=0;
}
}
}
//PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
//test each valid clock from greatest to smallest to see which lines up
for(clkCnt=7; clkCnt >= 1 ; clkCnt--){
lastClkBit = firstFullWave; //set end of wave as clock align
waveStart = 0;
errCnt=0;
peakcnt=0;
//PrintAndLog("DEBUG: clk: %d, lastClkBit: %d",clk[clkCnt],lastClkBit);
for (i = firstFullWave+fullWaveLen-1; i < loopCnt-2; i++){
//top edge of wave = start of new wave
if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){
if (waveStart == 0) {
waveStart = i+1;
waveLenCnt=0;
} else { //waveEnd
waveEnd = i+1;
waveLenCnt = waveEnd-waveStart;
if (waveLenCnt > fc){
//if this wave is a phase shift
//PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, ii: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,ii+1,fc);
if (i+1 >= lastClkBit + clk[clkCnt] - tol){ //should be a clock bit
peakcnt++;
lastClkBit+=clk[clkCnt];
} else if (i<lastClkBit+8){
//noise after a phase shift - ignore
} else { //phase shift before supposed to based on clock
errCnt++;
}
} else if (i+1 > lastClkBit + clk[clkCnt] + tol + fc){
lastClkBit+=clk[clkCnt]; //no phase shift but clock bit
}
waveStart=i+1;
}
}
}
if (errCnt == 0){
return clk[clkCnt];
}
if (errCnt <= bestErr[clkCnt]) bestErr[clkCnt]=errCnt;
if (peakcnt > peaksdet[clkCnt]) peaksdet[clkCnt]=peakcnt;
}
//all tested with errors
//return the highest clk with the most peaks found
uint8_t best=7;
for (i=7; i>=1; i--){
if (peaksdet[i] > peaksdet[best]) {
best = i;
}
//PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best]);
}
return clk[best];
}
//by marshmellow
//detect nrz clock by reading #peaks vs no peaks(or errors)
int DetectNRZClock(uint8_t dest[], size_t size, int clock)
{
int i=0;
int clk[]={8,16,32,40,50,64,100,128,256};
int loopCnt = 4096; //don't need to loop through entire array...
if (size == 0) return 0;
if (size<loopCnt) loopCnt = size;
//if we already have a valid clock quit
for (; i < 8; ++i)
if (clk[i] == clock) return clock;
//get high and low peak
int peak, low;
getHiLo(dest, loopCnt, &peak, &low, 75, 75);
//PrintAndLog("DEBUG: peak: %d, low: %d",peak,low);
int ii;
uint8_t clkCnt;
uint8_t tol = 0;
int peakcnt=0;
int peaksdet[]={0,0,0,0,0,0,0,0};
int maxPeak=0;
//test for large clipped waves
for (i=0; i<loopCnt; i++){
if (dest[i] >= peak || dest[i] <= low){
peakcnt++;
} else {
if (peakcnt>0 && maxPeak < peakcnt){
maxPeak = peakcnt;
}
peakcnt=0;
}
}
peakcnt=0;
//test each valid clock from smallest to greatest to see which lines up
for(clkCnt=0; clkCnt < 8; ++clkCnt){
//ignore clocks smaller than largest peak
if (clk[clkCnt]<maxPeak) continue;
//try lining up the peaks by moving starting point (try first 256)
for (ii=0; ii< loopCnt; ++ii){
if ((dest[ii] >= peak) || (dest[ii] <= low)){
peakcnt=0;
// now that we have the first one lined up test rest of wave array
for (i=0; i < ((int)((size-ii-tol)/clk[clkCnt])-1); ++i){
if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){
peakcnt++;
}
}
if(peakcnt>peaksdet[clkCnt]) {
peaksdet[clkCnt]=peakcnt;
}
}
}
}
int iii=7;
int best=0;
for (iii=7; iii > 0; iii--){
if (peaksdet[iii] > peaksdet[best]){
best = iii;
}
//PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best]);
}
return clk[best];
}
// by marshmellow
// convert psk1 demod to psk2 demod
// only transition waves are 1s
void psk1TOpsk2(uint8_t *BitStream, size_t size)
{
size_t i=1;
uint8_t lastBit=BitStream[0];
for (; i<size; i++){
if (BitStream[i]==77){
//ignore errors
} else if (lastBit!=BitStream[i]){
lastBit=BitStream[i];
BitStream[i]=1;
} else {
BitStream[i]=0;
}
}
return;
}
// by marshmellow
// convert psk2 demod to psk1 demod
// from only transition waves are 1s to phase shifts change bit
void psk2TOpsk1(uint8_t *BitStream, size_t size)
{
uint8_t phase=0;
for (size_t i=0; i<size; i++){
if (BitStream[i]==1){
phase ^=1;
}
BitStream[i]=phase;
}
return;
}
// redesigned by marshmellow adjusted from existing decode functions
// indala id decoding - only tested on 26 bit tags, but attempted to make it work for more
int indala26decode(uint8_t *bitStream, size_t *size, uint8_t *invert)
{
//26 bit 40134 format (don't know other formats)
int i;
int long_wait=29;//29 leading zeros in format
int start;
int first = 0;
int first2 = 0;
int bitCnt = 0;
int ii;
// Finding the start of a UID
for (start = 0; start <= *size - 250; start++) {
first = bitStream[start];
for (i = start; i < start + long_wait; i++) {
if (bitStream[i] != first) {
break;
}
}
if (i == (start + long_wait)) {
break;
}
}
if (start == *size - 250 + 1) {
// did not find start sequence
return -1;
}
// Inverting signal if needed
if (first == 1) {
for (i = start; i < *size; i++) {
bitStream[i] = !bitStream[i];
}
*invert = 1;
}else *invert=0;
int iii;
//found start once now test length by finding next one
for (ii=start+29; ii <= *size - 250; ii++) {
first2 = bitStream[ii];
for (iii = ii; iii < ii + long_wait; iii++) {
if (bitStream[iii] != first2) {
break;
}
}
if (iii == (ii + long_wait)) {
break;
}
}
if (ii== *size - 250 + 1){
// did not find second start sequence
return -2;
}
bitCnt=ii-start;
// Dumping UID
i = start;
for (ii = 0; ii < bitCnt; ii++) {
bitStream[ii] = bitStream[i++];
}
*size=bitCnt;
return 1;
}
// by marshmellow - demodulate NRZ wave (both similar enough)
// peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak
// there probably is a much simpler way to do this....
int nrzRawDemod(uint8_t *dest, size_t *size, int *clk, int *invert, int maxErr)
{
if (justNoise(dest, *size)) return -1;
*clk = DetectNRZClock(dest, *size, *clk);
if (*clk==0) return -2;
uint32_t i;
uint32_t gLen = 4096;
if (gLen>*size) gLen = *size;
int high, low;
if (getHiLo(dest, gLen, &high, &low, 75, 75) < 1) return -3; //25% fuzz on high 25% fuzz on low
int lastBit = 0; //set first clock check
uint32_t bitnum = 0; //output counter
uint8_t tol = 1; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
uint32_t iii = 0;
uint16_t errCnt =0;
uint16_t MaxBits = 1000;
uint32_t bestErrCnt = maxErr+1;
uint32_t bestPeakCnt = 0;
uint32_t bestPeakStart=0;
uint8_t bestFirstPeakHigh=0;
uint8_t firstPeakHigh=0;
uint8_t curBit=0;
uint8_t bitHigh=0;
uint8_t errBitHigh=0;
uint16_t peakCnt=0;
uint8_t ignoreWindow=4;
uint8_t ignoreCnt=ignoreWindow; //in case of noice near peak
//loop to find first wave that works - align to clock
for (iii=0; iii < gLen; ++iii){
if ((dest[iii]>=high) || (dest[iii]<=low)){
if (dest[iii]>=high) firstPeakHigh=1;
else firstPeakHigh=0;
lastBit=iii-*clk;
peakCnt=0;
errCnt=0;
bitnum=0;
//loop through to see if this start location works
for (i = iii; i < *size; ++i) {
//if we found a high bar and we are at a clock bit
if ((dest[i]>=high ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){
bitHigh=1;
lastBit+=*clk;
bitnum++;
peakCnt++;
errBitHigh=0;
ignoreCnt=ignoreWindow;
//else if low bar found and we are at a clock point
}else if ((dest[i]<=low ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){
bitHigh=1;
lastBit+=*clk;
bitnum++;
peakCnt++;
errBitHigh=0;
ignoreCnt=ignoreWindow;
//else if no bars found
}else if(dest[i] < high && dest[i] > low) {
if (ignoreCnt==0){
bitHigh=0;
if (errBitHigh==1){
errCnt++;
}
errBitHigh=0;
} else {
ignoreCnt--;
}
//if we are past a clock point
if (i >= lastBit+*clk+tol){ //clock val
lastBit+=*clk;
bitnum++;
}
//else if bar found but we are not at a clock bit and we did not just have a clock bit
}else if ((dest[i]>=high || dest[i]<=low) && (i<lastBit+*clk-tol || i>lastBit+*clk+tol) && (bitHigh==0)){
//error bar found no clock...
errBitHigh=1;
}
if (bitnum>=MaxBits) break;
}
//we got more than 64 good bits and not all errors
if (bitnum > (64) && (errCnt <= (maxErr))) {
//possible good read
if (errCnt == 0){
//bestStart = iii;
bestFirstPeakHigh=firstPeakHigh;
bestErrCnt = errCnt;
bestPeakCnt = peakCnt;
bestPeakStart = iii;
break; //great read - finish
}
if (errCnt < bestErrCnt){ //set this as new best run
bestErrCnt = errCnt;
//bestStart = iii;
}
if (peakCnt > bestPeakCnt){
bestFirstPeakHigh=firstPeakHigh;
bestPeakCnt=peakCnt;
bestPeakStart=iii;
}
}
}
}
//PrintAndLog("DEBUG: bestErrCnt: %d, maxErr: %d, bestStart: %d, bestPeakCnt: %d, bestPeakStart: %d",bestErrCnt,maxErr,bestStart,bestPeakCnt,bestPeakStart);
if (bestErrCnt <= maxErr){
//best run is good enough set to best run and set overwrite BinStream
iii=bestPeakStart;
lastBit=bestPeakStart-*clk;
bitnum=0;
memset(dest, bestFirstPeakHigh^1, bestPeakStart / *clk);
bitnum += (bestPeakStart / *clk);
for (i = iii; i < *size; ++i) {
//if we found a high bar and we are at a clock bit
if ((dest[i] >= high ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){
bitHigh=1;
lastBit+=*clk;
curBit=1-*invert;
dest[bitnum]=curBit;
bitnum++;
errBitHigh=0;
ignoreCnt=ignoreWindow;
//else if low bar found and we are at a clock point
}else if ((dest[i]<=low ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){
bitHigh=1;
lastBit+=*clk;
curBit=*invert;
dest[bitnum]=curBit;
bitnum++;
errBitHigh=0;
ignoreCnt=ignoreWindow;
//else if no bars found
}else if(dest[i]<high && dest[i]>low) {
if (ignoreCnt==0){
bitHigh=0;
//if peak is done was it an error peak?
if (errBitHigh==1){
dest[bitnum]=77;
bitnum++;
errCnt++;
}
errBitHigh=0;
} else {
ignoreCnt--;
}
//if we are past a clock point
if (i>=lastBit+*clk+tol){ //clock val
lastBit+=*clk;
dest[bitnum]=curBit;
bitnum++;
}
//else if bar found but we are not at a clock bit and we did not just have a clock bit
}else if ((dest[i]>=high || dest[i]<=low) && ((i<lastBit+*clk-tol) || (i>lastBit+*clk+tol)) && (bitHigh==0)){
//error bar found no clock...
errBitHigh=1;
}
if (bitnum >= MaxBits) break;
}
*size=bitnum;
} else{
*size=bitnum;
return bestErrCnt;
}
if (bitnum>16){
*size=bitnum;
} else return -5;
return errCnt;
}
//by marshmellow
//detects the bit clock for FSK given the high and low Field Clocks
uint8_t detectFSKClk(uint8_t *BitStream, size_t size, uint8_t fcHigh, uint8_t fcLow)
{
uint8_t clk[] = {8,16,32,40,50,64,100,128,0};
uint16_t rfLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
uint8_t rfCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
uint8_t rfLensFnd = 0;
uint8_t lastFCcnt=0;
uint32_t fcCounter = 0;
uint16_t rfCounter = 0;
uint8_t firstBitFnd = 0;
size_t i;
if (size == 0) return 0;
uint8_t fcTol = (uint8_t)(0.5+(float)(fcHigh-fcLow)/2);
rfLensFnd=0;
fcCounter=0;
rfCounter=0;
firstBitFnd=0;
//PrintAndLog("DEBUG: fcTol: %d",fcTol);
// prime i to first up transition
for (i = 1; i < size-1; i++)
if (BitStream[i] > BitStream[i-1] && BitStream[i]>=BitStream[i+1])
break;
for (; i < size-1; i++){
if (BitStream[i] > BitStream[i-1] && BitStream[i]>=BitStream[i+1]){
// new peak
fcCounter++;
rfCounter++;
// if we got less than the small fc + tolerance then set it to the small fc
if (fcCounter < fcLow+fcTol)
fcCounter = fcLow;
else //set it to the large fc
fcCounter = fcHigh;
//look for bit clock (rf/xx)
if ((fcCounter<lastFCcnt || fcCounter>lastFCcnt)){
//not the same size as the last wave - start of new bit sequence
if (firstBitFnd>1){ //skip first wave change - probably not a complete bit
for (int ii=0; ii<15; ii++){
if (rfLens[ii]==rfCounter){
rfCnts[ii]++;
rfCounter=0;
break;
}
}
if (rfCounter>0 && rfLensFnd<15){
//PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter);
rfCnts[rfLensFnd]++;
rfLens[rfLensFnd++]=rfCounter;
}
} else {
firstBitFnd++;
}
rfCounter=0;
lastFCcnt=fcCounter;
}
fcCounter=0;
} else {
// count sample
fcCounter++;
rfCounter++;
}
}
uint8_t rfHighest=15, rfHighest2=15, rfHighest3=15;
for (i=0; i<15; i++){
//PrintAndLog("DEBUG: RF %d, cnts %d",rfLens[i], rfCnts[i]);
//get highest 2 RF values (might need to get more values to compare or compare all?)
if (rfCnts[i]>rfCnts[rfHighest]){
rfHighest3=rfHighest2;
rfHighest2=rfHighest;
rfHighest=i;
} else if(rfCnts[i]>rfCnts[rfHighest2]){
rfHighest3=rfHighest2;
rfHighest2=i;
} else if(rfCnts[i]>rfCnts[rfHighest3]){
rfHighest3=i;
}
}
// set allowed clock remainder tolerance to be 1 large field clock length+1
// we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off
uint8_t tol1 = fcHigh+1;
//PrintAndLog("DEBUG: hightest: 1 %d, 2 %d, 3 %d",rfLens[rfHighest],rfLens[rfHighest2],rfLens[rfHighest3]);
// loop to find the highest clock that has a remainder less than the tolerance
// compare samples counted divided by
int ii=7;
for (; ii>=0; ii--){
if (rfLens[rfHighest] % clk[ii] < tol1 || rfLens[rfHighest] % clk[ii] > clk[ii]-tol1){
if (rfLens[rfHighest2] % clk[ii] < tol1 || rfLens[rfHighest2] % clk[ii] > clk[ii]-tol1){
if (rfLens[rfHighest3] % clk[ii] < tol1 || rfLens[rfHighest3] % clk[ii] > clk[ii]-tol1){
break;
}
}
}
}
if (ii<0) return 0; // oops we went too far
return clk[ii];
}
//by marshmellow
//countFC is to detect the field clock lengths.
//counts and returns the 2 most common wave lengths
//mainly used for FSK field clock detection
uint16_t countFC(uint8_t *BitStream, size_t size, uint8_t *mostFC)
{
uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0};
uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0};
uint8_t fcLensFnd = 0;
uint8_t lastFCcnt=0;
uint32_t fcCounter = 0;
size_t i;
if (size == 0) return 0;
// prime i to first up transition
for (i = 1; i < size-1; i++)
if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1])
break;
for (; i < size-1; i++){
if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]){
// new up transition
fcCounter++;
//if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8)
if (lastFCcnt==5 && fcCounter==9) fcCounter--;
//if odd and not rc/5 add one (for when we get a fc 9 instead of 10)
if ((fcCounter==9 && fcCounter & 1) || fcCounter==4) fcCounter++;
// save last field clock count (fc/xx)
// find which fcLens to save it to:
for (int ii=0; ii<10; ii++){
if (fcLens[ii]==fcCounter){
fcCnts[ii]++;
fcCounter=0;
break;
}
}
if (fcCounter>0 && fcLensFnd<10){
//add new fc length
fcCnts[fcLensFnd]++;
fcLens[fcLensFnd++]=fcCounter;
}
fcCounter=0;
} else {
// count sample
fcCounter++;
}
}
uint8_t best1=9, best2=9, best3=9;
uint16_t maxCnt1=0;
// go through fclens and find which ones are bigest 2
for (i=0; i<10; i++){
// PrintAndLog("DEBUG: FC %d, Cnt %d, Errs %d",fcLens[i],fcCnts[i],errCnt);
// get the 3 best FC values
if (fcCnts[i]>maxCnt1) {
best3=best2;
best2=best1;
maxCnt1=fcCnts[i];
best1=i;
} else if(fcCnts[i]>fcCnts[best2]){
best3=best2;
best2=i;
} else if(fcCnts[i]>fcCnts[best3]){
best3=i;
}
}
uint8_t fcH=0, fcL=0;
if (fcLens[best1]>fcLens[best2]){
fcH=fcLens[best1];
fcL=fcLens[best2];
} else{
fcH=fcLens[best2];
fcL=fcLens[best1];
}
*mostFC=fcLens[best1];
// TODO: take top 3 answers and compare to known Field clocks to get top 2
uint16_t fcs = (((uint16_t)fcH)<<8) | fcL;
// PrintAndLog("DEBUG: Best %d best2 %d best3 %d",fcLens[best1],fcLens[best2],fcLens[best3]);
return fcs;
}
//by marshmellow
//countPSK_FC is to detect the psk carrier clock length.
//counts and returns the 1 most common wave length
uint8_t countPSK_FC(uint8_t *BitStream, size_t size)
{
uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0};
uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0};
uint8_t fcLensFnd = 0;
uint32_t fcCounter = 0;
size_t i;
if (size == 0) return 0;
// prime i to first up transition
for (i = 1; i < size-1; i++)
if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1])
break;
for (; i < size-1; i++){
if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]){
// new up transition
fcCounter++;
// save last field clock count (fc/xx)
// find which fcLens to save it to:
for (int ii=0; ii<10; ii++){
if (fcLens[ii]==fcCounter){
fcCnts[ii]++;
fcCounter=0;
break;
}
}
if (fcCounter>0 && fcLensFnd<10){
//add new fc length
fcCnts[fcLensFnd]++;
fcLens[fcLensFnd++]=fcCounter;
}
fcCounter=0;
} else {
// count sample
fcCounter++;
}
}
uint8_t best1=9;
uint16_t maxCnt1=0;
// go through fclens and find which ones are bigest
for (i=0; i<10; i++){
//PrintAndLog("DEBUG: FC %d, Cnt %d",fcLens[i],fcCnts[i]);
// get the best FC value
if (fcCnts[i]>maxCnt1) {
maxCnt1=fcCnts[i];
best1=i;
}
}
return fcLens[best1];
}
//by marshmellow - demodulate PSK1 wave
//uses wave lengths (# Samples)
int pskRawDemod(uint8_t dest[], size_t *size, int *clock, int *invert)
{
uint16_t loopCnt = 4096; //don't need to loop through entire array...
if (size == 0) return -1;
if (*size<loopCnt) loopCnt = *size;
uint8_t curPhase = *invert;
size_t i, waveStart=1, waveEnd=0, firstFullWave=0, lastClkBit=0;
uint8_t fc=0, fullWaveLen=0, tol=1;
uint16_t errCnt=0, waveLenCnt=0;
fc = countPSK_FC(dest, *size);
if (fc!=2 && fc!=4 && fc!=8) return -1;
//PrintAndLog("DEBUG: FC: %d",fc);
*clock = DetectPSKClock(dest, *size, *clock);
if (*clock==0) return -1;
int avgWaveVal=0, lastAvgWaveVal=0;
//find first phase shift
for (i=0; i<loopCnt; i++){
if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){
waveEnd = i+1;
//PrintAndLog("DEBUG: waveEnd: %d",waveEnd);
waveLenCnt = waveEnd-waveStart;
if (waveLenCnt > fc && waveStart > fc){ //not first peak and is a large wave
lastAvgWaveVal = avgWaveVal/(waveLenCnt);
firstFullWave = waveStart;
fullWaveLen=waveLenCnt;
//if average wave value is > graph 0 then it is an up wave or a 1
if (lastAvgWaveVal > 123) curPhase^=1; //fudge graph 0 a little 123 vs 128
break;
}
waveStart = i+1;
avgWaveVal = 0;
}
avgWaveVal+=dest[i+2];
}
//PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
lastClkBit = firstFullWave; //set start of wave as clock align
//PrintAndLog("DEBUG: clk: %d, lastClkBit: %d", *clock, lastClkBit);
waveStart = 0;
errCnt=0;
size_t numBits=0;
//set skipped bits
memset(dest,curPhase^1,firstFullWave / *clock);
numBits += (firstFullWave / *clock);
dest[numBits++] = curPhase; //set first read bit
for (i = firstFullWave+fullWaveLen-1; i < *size-3; i++){
//top edge of wave = start of new wave
if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){
if (waveStart == 0) {
waveStart = i+1;
waveLenCnt=0;
avgWaveVal = dest[i+1];
} else { //waveEnd
waveEnd = i+1;
waveLenCnt = waveEnd-waveStart;
lastAvgWaveVal = avgWaveVal/waveLenCnt;
if (waveLenCnt > fc){
//PrintAndLog("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal);
//if this wave is a phase shift
//PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc);
if (i+1 >= lastClkBit + *clock - tol){ //should be a clock bit
curPhase^=1;
dest[numBits++] = curPhase;
lastClkBit += *clock;
} else if (i<lastClkBit+10+fc){
//noise after a phase shift - ignore
} else { //phase shift before supposed to based on clock
errCnt++;
dest[numBits++] = 77;
}
} else if (i+1 > lastClkBit + *clock + tol + fc){
lastClkBit += *clock; //no phase shift but clock bit
dest[numBits++] = curPhase;
}
avgWaveVal=0;
waveStart=i+1;
}
}
avgWaveVal+=dest[i+1];
}
*size = numBits;
return errCnt;
}