proxmark3/common/mbedtls/ecdsa.c

445 lines
14 KiB
C

/*
* Elliptic curve DSA
*
* Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
* SPDX-License-Identifier: GPL-2.0
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* This file is part of mbed TLS (https://tls.mbed.org)
*/
/*
* References:
*
* SEC1 http://www.secg.org/index.php?action=secg,docs_secg
*/
#if !defined(MBEDTLS_CONFIG_FILE)
#include "mbedtls/config.h"
#else
#include MBEDTLS_CONFIG_FILE
#endif
#if defined(MBEDTLS_ECDSA_C)
#include "mbedtls/ecdsa.h"
#include "mbedtls/asn1write.h"
#include <string.h>
#if defined(MBEDTLS_ECDSA_DETERMINISTIC)
#include "mbedtls/hmac_drbg.h"
#endif
/*
* Derive a suitable integer for group grp from a buffer of length len
* SEC1 4.1.3 step 5 aka SEC1 4.1.4 step 3
*/
static int derive_mpi(const mbedtls_ecp_group *grp, mbedtls_mpi *x,
const unsigned char *buf, size_t blen) {
int ret;
size_t n_size = (grp->nbits + 7) / 8;
size_t use_size = blen > n_size ? n_size : blen;
MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(x, buf, use_size));
if (use_size * 8 > grp->nbits)
MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(x, use_size * 8 - grp->nbits));
/* While at it, reduce modulo N */
if (mbedtls_mpi_cmp_mpi(x, &grp->N) >= 0)
MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(x, x, &grp->N));
cleanup:
return (ret);
}
#if !defined(MBEDTLS_ECDSA_SIGN_ALT)
/*
* Compute ECDSA signature of a hashed message (SEC1 4.1.3)
* Obviously, compared to SEC1 4.1.3, we skip step 4 (hash message)
*/
int mbedtls_ecdsa_sign(mbedtls_ecp_group *grp, mbedtls_mpi *r, mbedtls_mpi *s,
const mbedtls_mpi *d, const unsigned char *buf, size_t blen,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng) {
int ret, key_tries, sign_tries, blind_tries;
mbedtls_ecp_point R;
mbedtls_mpi k, e, t;
/* Fail cleanly on curves such as Curve25519 that can't be used for ECDSA */
if (grp->N.p == NULL)
return (MBEDTLS_ERR_ECP_BAD_INPUT_DATA);
/* Make sure d is in range 1..n-1 */
if (mbedtls_mpi_cmp_int(d, 1) < 0 || mbedtls_mpi_cmp_mpi(d, &grp->N) >= 0)
return (MBEDTLS_ERR_ECP_INVALID_KEY);
mbedtls_ecp_point_init(&R);
mbedtls_mpi_init(&k);
mbedtls_mpi_init(&e);
mbedtls_mpi_init(&t);
sign_tries = 0;
do {
/*
* Steps 1-3: generate a suitable ephemeral keypair
* and set r = xR mod n
*/
key_tries = 0;
do {
MBEDTLS_MPI_CHK(mbedtls_ecp_gen_keypair(grp, &k, &R, f_rng, p_rng));
MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(r, &R.X, &grp->N));
if (key_tries++ > 10) {
ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
goto cleanup;
}
} while (mbedtls_mpi_cmp_int(r, 0) == 0);
/*
* Step 5: derive MPI from hashed message
*/
MBEDTLS_MPI_CHK(derive_mpi(grp, &e, buf, blen));
/*
* Generate a random value to blind inv_mod in next step,
* avoiding a potential timing leak.
*/
blind_tries = 0;
do {
size_t n_size = (grp->nbits + 7) / 8;
MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&t, n_size, f_rng, p_rng));
MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&t, 8 * n_size - grp->nbits));
/* See mbedtls_ecp_gen_keypair() */
if (++blind_tries > 30)
return (MBEDTLS_ERR_ECP_RANDOM_FAILED);
} while (mbedtls_mpi_cmp_int(&t, 1) < 0 ||
mbedtls_mpi_cmp_mpi(&t, &grp->N) >= 0);
/*
* Step 6: compute s = (e + r * d) / k = t (e + rd) / (kt) mod n
*/
MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(s, r, d));
MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&e, &e, s));
MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&e, &e, &t));
MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&k, &k, &t));
MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(s, &k, &grp->N));
MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(s, s, &e));
MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(s, s, &grp->N));
if (sign_tries++ > 10) {
ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
goto cleanup;
}
} while (mbedtls_mpi_cmp_int(s, 0) == 0);
cleanup:
mbedtls_ecp_point_free(&R);
mbedtls_mpi_free(&k);
mbedtls_mpi_free(&e);
mbedtls_mpi_free(&t);
return (ret);
}
#endif /* MBEDTLS_ECDSA_SIGN_ALT */
#if defined(MBEDTLS_ECDSA_DETERMINISTIC)
/*
* Deterministic signature wrapper
*/
int mbedtls_ecdsa_sign_det(mbedtls_ecp_group *grp, mbedtls_mpi *r, mbedtls_mpi *s,
const mbedtls_mpi *d, const unsigned char *buf, size_t blen,
mbedtls_md_type_t md_alg) {
int ret;
mbedtls_hmac_drbg_context rng_ctx;
unsigned char data[2 * MBEDTLS_ECP_MAX_BYTES];
size_t grp_len = (grp->nbits + 7) / 8;
const mbedtls_md_info_t *md_info;
mbedtls_mpi h;
if ((md_info = mbedtls_md_info_from_type(md_alg)) == NULL)
return (MBEDTLS_ERR_ECP_BAD_INPUT_DATA);
mbedtls_mpi_init(&h);
mbedtls_hmac_drbg_init(&rng_ctx);
/* Use private key and message hash (reduced) to initialize HMAC_DRBG */
MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(d, data, grp_len));
MBEDTLS_MPI_CHK(derive_mpi(grp, &h, buf, blen));
MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&h, data + grp_len, grp_len));
mbedtls_hmac_drbg_seed_buf(&rng_ctx, md_info, data, 2 * grp_len);
ret = mbedtls_ecdsa_sign(grp, r, s, d, buf, blen,
mbedtls_hmac_drbg_random, &rng_ctx);
cleanup:
mbedtls_hmac_drbg_free(&rng_ctx);
mbedtls_mpi_free(&h);
return (ret);
}
#endif /* MBEDTLS_ECDSA_DETERMINISTIC */
#if !defined(MBEDTLS_ECDSA_VERIFY_ALT)
/*
* Verify ECDSA signature of hashed message (SEC1 4.1.4)
* Obviously, compared to SEC1 4.1.3, we skip step 2 (hash message)
*/
int mbedtls_ecdsa_verify(mbedtls_ecp_group *grp,
const unsigned char *buf, size_t blen,
const mbedtls_ecp_point *Q, const mbedtls_mpi *r, const mbedtls_mpi *s) {
int ret;
mbedtls_mpi e, s_inv, u1, u2;
mbedtls_ecp_point R;
mbedtls_ecp_point_init(&R);
mbedtls_mpi_init(&e);
mbedtls_mpi_init(&s_inv);
mbedtls_mpi_init(&u1);
mbedtls_mpi_init(&u2);
/* Fail cleanly on curves such as Curve25519 that can't be used for ECDSA */
if (grp->N.p == NULL)
return (MBEDTLS_ERR_ECP_BAD_INPUT_DATA);
/*
* Step 1: make sure r and s are in range 1..n-1
*/
if (mbedtls_mpi_cmp_int(r, 1) < 0 || mbedtls_mpi_cmp_mpi(r, &grp->N) >= 0 ||
mbedtls_mpi_cmp_int(s, 1) < 0 || mbedtls_mpi_cmp_mpi(s, &grp->N) >= 0) {
ret = MBEDTLS_ERR_ECP_VERIFY_FAILED;
goto cleanup;
}
/*
* Additional precaution: make sure Q is valid
*/
MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, Q));
/*
* Step 3: derive MPI from hashed message
*/
MBEDTLS_MPI_CHK(derive_mpi(grp, &e, buf, blen));
/*
* Step 4: u1 = e / s mod n, u2 = r / s mod n
*/
MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(&s_inv, s, &grp->N));
MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&u1, &e, &s_inv));
MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&u1, &u1, &grp->N));
MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&u2, r, &s_inv));
MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&u2, &u2, &grp->N));
/*
* Step 5: R = u1 G + u2 Q
*
* Since we're not using any secret data, no need to pass a RNG to
* mbedtls_ecp_mul() for countermesures.
*/
MBEDTLS_MPI_CHK(mbedtls_ecp_muladd(grp, &R, &u1, &grp->G, &u2, Q));
if (mbedtls_ecp_is_zero(&R)) {
ret = MBEDTLS_ERR_ECP_VERIFY_FAILED;
goto cleanup;
}
/*
* Step 6: convert xR to an integer (no-op)
* Step 7: reduce xR mod n (gives v)
*/
MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&R.X, &R.X, &grp->N));
/*
* Step 8: check if v (that is, R.X) is equal to r
*/
if (mbedtls_mpi_cmp_mpi(&R.X, r) != 0) {
ret = MBEDTLS_ERR_ECP_VERIFY_FAILED;
goto cleanup;
}
cleanup:
mbedtls_ecp_point_free(&R);
mbedtls_mpi_free(&e);
mbedtls_mpi_free(&s_inv);
mbedtls_mpi_free(&u1);
mbedtls_mpi_free(&u2);
return (ret);
}
#endif /* MBEDTLS_ECDSA_VERIFY_ALT */
/*
* Convert a signature (given by context) to ASN.1
*/
int ecdsa_signature_to_asn1(const mbedtls_mpi *r, const mbedtls_mpi *s,
unsigned char *sig, size_t *slen) {
int ret;
unsigned char buf[MBEDTLS_ECDSA_MAX_LEN] = {0};
unsigned char *p = buf + sizeof(buf) - 1;
size_t len = 0;
MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_mpi(&p, buf, s));
MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_mpi(&p, buf, r));
MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_len(&p, buf, len));
MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_tag(&p, buf, MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE));
memcpy(sig, p, len);
*slen = len;
return (0);
}
/*
* Compute and write signature
*/
int mbedtls_ecdsa_write_signature(mbedtls_ecdsa_context *ctx, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hlen,
unsigned char *sig, size_t *slen,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng) {
int ret;
mbedtls_mpi r, s;
mbedtls_mpi_init(&r);
mbedtls_mpi_init(&s);
#if defined(MBEDTLS_ECDSA_DETERMINISTIC)
(void) f_rng;
(void) p_rng;
MBEDTLS_MPI_CHK(mbedtls_ecdsa_sign_det(&ctx->grp, &r, &s, &ctx->d,
hash, hlen, md_alg));
#else
(void) md_alg;
MBEDTLS_MPI_CHK(mbedtls_ecdsa_sign(&ctx->grp, &r, &s, &ctx->d,
hash, hlen, f_rng, p_rng));
#endif
MBEDTLS_MPI_CHK(ecdsa_signature_to_asn1(&r, &s, sig, slen));
cleanup:
mbedtls_mpi_free(&r);
mbedtls_mpi_free(&s);
return (ret);
}
#if ! defined(MBEDTLS_DEPRECATED_REMOVED) && \
defined(MBEDTLS_ECDSA_DETERMINISTIC)
int mbedtls_ecdsa_write_signature_det(mbedtls_ecdsa_context *ctx,
const unsigned char *hash, size_t hlen,
unsigned char *sig, size_t *slen,
mbedtls_md_type_t md_alg) {
return (mbedtls_ecdsa_write_signature(ctx, md_alg, hash, hlen, sig, slen,
NULL, NULL));
}
#endif
/*
* Read and check signature
*/
int mbedtls_ecdsa_read_signature(mbedtls_ecdsa_context *ctx,
const unsigned char *hash, size_t hlen,
const unsigned char *sig, size_t slen) {
int ret;
unsigned char *p = (unsigned char *) sig;
const unsigned char *end = sig + slen;
size_t len;
mbedtls_mpi r, s;
mbedtls_mpi_init(&r);
mbedtls_mpi_init(&s);
if ((ret = mbedtls_asn1_get_tag(&p, end, &len,
MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE)) != 0) {
ret += MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
goto cleanup;
}
if (p + len != end) {
ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA +
MBEDTLS_ERR_ASN1_LENGTH_MISMATCH;
goto cleanup;
}
if ((ret = mbedtls_asn1_get_mpi(&p, end, &r)) != 0 ||
(ret = mbedtls_asn1_get_mpi(&p, end, &s)) != 0) {
ret += MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
goto cleanup;
}
if ((ret = mbedtls_ecdsa_verify(&ctx->grp, hash, hlen,
&ctx->Q, &r, &s)) != 0)
goto cleanup;
/* At this point we know that the buffer starts with a valid signature.
* Return 0 if the buffer just contains the signature, and a specific
* error code if the valid signature is followed by more data. */
if (p != end)
ret = MBEDTLS_ERR_ECP_SIG_LEN_MISMATCH;
cleanup:
mbedtls_mpi_free(&r);
mbedtls_mpi_free(&s);
return (ret);
}
#if !defined(MBEDTLS_ECDSA_GENKEY_ALT)
/*
* Generate key pair
*/
int mbedtls_ecdsa_genkey(mbedtls_ecdsa_context *ctx, mbedtls_ecp_group_id gid,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng) {
return (mbedtls_ecp_group_load(&ctx->grp, gid) ||
mbedtls_ecp_gen_keypair(&ctx->grp, &ctx->d, &ctx->Q, f_rng, p_rng));
}
#endif /* MBEDTLS_ECDSA_GENKEY_ALT */
/*
* Set context from an mbedtls_ecp_keypair
*/
int mbedtls_ecdsa_from_keypair(mbedtls_ecdsa_context *ctx, const mbedtls_ecp_keypair *key) {
int ret;
if ((ret = mbedtls_ecp_group_copy(&ctx->grp, &key->grp)) != 0 ||
(ret = mbedtls_mpi_copy(&ctx->d, &key->d)) != 0 ||
(ret = mbedtls_ecp_copy(&ctx->Q, &key->Q)) != 0) {
mbedtls_ecdsa_free(ctx);
}
return (ret);
}
/*
* Initialize context
*/
void mbedtls_ecdsa_init(mbedtls_ecdsa_context *ctx) {
mbedtls_ecp_keypair_init(ctx);
}
/*
* Free context
*/
void mbedtls_ecdsa_free(mbedtls_ecdsa_context *ctx) {
mbedtls_ecp_keypair_free(ctx);
}
#endif /* MBEDTLS_ECDSA_C */