mirror of
https://github.com/RfidResearchGroup/proxmark3.git
synced 2025-01-09 09:39:16 +08:00
979 lines
28 KiB
C
979 lines
28 KiB
C
//-----------------------------------------------------------------------------
|
|
// Miscellaneous routines for low frequency tag operations.
|
|
// Tags supported here so far are Texas Instruments (TI), HID
|
|
// Also routines for raw mode reading/simulating of LF waveform
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
#include <proxmark3.h>
|
|
#include "apps.h"
|
|
#include "hitag2.h"
|
|
#include "../common/crc16.c"
|
|
|
|
void AcquireRawAdcSamples125k(BOOL at134khz)
|
|
{
|
|
if(at134khz) {
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
|
|
} else {
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
|
|
}
|
|
|
|
// Connect the A/D to the peak-detected low-frequency path.
|
|
SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
|
|
|
|
// Give it a bit of time for the resonant antenna to settle.
|
|
SpinDelay(50);
|
|
|
|
// Now set up the SSC to get the ADC samples that are now streaming at us.
|
|
FpgaSetupSsc();
|
|
|
|
// Now call the acquisition routine
|
|
DoAcquisition125k(at134khz);
|
|
}
|
|
|
|
// split into two routines so we can avoid timing issues after sending commands //
|
|
void DoAcquisition125k(BOOL at134khz)
|
|
{
|
|
BYTE *dest = (BYTE *)BigBuf;
|
|
int n = sizeof(BigBuf);
|
|
int i;
|
|
|
|
memset(dest,0,n);
|
|
i = 0;
|
|
for(;;) {
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
|
|
AT91C_BASE_SSC->SSC_THR = 0x43;
|
|
LED_D_ON();
|
|
}
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
|
|
dest[i] = (BYTE)AT91C_BASE_SSC->SSC_RHR;
|
|
i++;
|
|
LED_D_OFF();
|
|
if(i >= n) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
DbpIntegers(dest[0], dest[1], at134khz);
|
|
}
|
|
|
|
void ModThenAcquireRawAdcSamples125k(int delay_off,int period_0,int period_1,BYTE *command)
|
|
{
|
|
BOOL at134khz;
|
|
|
|
/* Make sure the tag is reset */
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
SpinDelay(2500);
|
|
|
|
// see if 'h' was specified
|
|
if(command[strlen((char *) command) - 1] == 'h')
|
|
at134khz= TRUE;
|
|
else
|
|
at134khz= FALSE;
|
|
|
|
if(at134khz) {
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
|
|
} else {
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
|
|
}
|
|
|
|
// Give it a bit of time for the resonant antenna to settle.
|
|
SpinDelay(50);
|
|
// And a little more time for the tag to fully power up
|
|
SpinDelay(2000);
|
|
|
|
// Now set up the SSC to get the ADC samples that are now streaming at us.
|
|
FpgaSetupSsc();
|
|
|
|
// now modulate the reader field
|
|
while(*command != '\0' && *command != ' ')
|
|
{
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
LED_D_OFF();
|
|
SpinDelayUs(delay_off);
|
|
if(at134khz) {
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
|
|
} else {
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
|
|
}
|
|
LED_D_ON();
|
|
if(*(command++) == '0') {
|
|
SpinDelayUs(period_0);
|
|
} else {
|
|
SpinDelayUs(period_1);
|
|
}
|
|
}
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
LED_D_OFF();
|
|
SpinDelayUs(delay_off);
|
|
if(at134khz) {
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
|
|
} else {
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
|
|
}
|
|
|
|
// now do the read
|
|
DoAcquisition125k(at134khz);
|
|
}
|
|
|
|
/* blank r/w tag data stream
|
|
...0000000000000000 01111111
|
|
1010101010101010101010101010101010101010101010101010101010101010
|
|
0011010010100001
|
|
01111111
|
|
101010101010101[0]000...
|
|
|
|
[5555fe852c5555555555555555fe0000]
|
|
*/
|
|
void ReadTItag()
|
|
{
|
|
// some hardcoded initial params
|
|
// when we read a TI tag we sample the zerocross line at 2Mhz
|
|
// TI tags modulate a 1 as 16 cycles of 123.2Khz
|
|
// TI tags modulate a 0 as 16 cycles of 134.2Khz
|
|
#define FSAMPLE 2000000
|
|
#define FREQLO 123200
|
|
#define FREQHI 134200
|
|
|
|
signed char *dest = (signed char *)BigBuf;
|
|
int n = sizeof(BigBuf);
|
|
// int *dest = GraphBuffer;
|
|
// int n = GraphTraceLen;
|
|
|
|
// 128 bit shift register [shift3:shift2:shift1:shift0]
|
|
DWORD shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
|
|
|
|
int i, cycles=0, samples=0;
|
|
// how many sample points fit in 16 cycles of each frequency
|
|
DWORD sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
|
|
// when to tell if we're close enough to one freq or another
|
|
DWORD threshold = (sampleslo - sampleshi + 1)>>1;
|
|
|
|
// TI tags charge at 134.2Khz
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
|
|
|
|
// Place FPGA in passthrough mode, in this mode the CROSS_LO line
|
|
// connects to SSP_DIN and the SSP_DOUT logic level controls
|
|
// whether we're modulating the antenna (high)
|
|
// or listening to the antenna (low)
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
|
|
|
|
// get TI tag data into the buffer
|
|
AcquireTiType();
|
|
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
|
|
for (i=0; i<n-1; i++) {
|
|
// count cycles by looking for lo to hi zero crossings
|
|
if ( (dest[i]<0) && (dest[i+1]>0) ) {
|
|
cycles++;
|
|
// after 16 cycles, measure the frequency
|
|
if (cycles>15) {
|
|
cycles=0;
|
|
samples=i-samples; // number of samples in these 16 cycles
|
|
|
|
// TI bits are coming to us lsb first so shift them
|
|
// right through our 128 bit right shift register
|
|
shift0 = (shift0>>1) | (shift1 << 31);
|
|
shift1 = (shift1>>1) | (shift2 << 31);
|
|
shift2 = (shift2>>1) | (shift3 << 31);
|
|
shift3 >>= 1;
|
|
|
|
// check if the cycles fall close to the number
|
|
// expected for either the low or high frequency
|
|
if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
|
|
// low frequency represents a 1
|
|
shift3 |= (1<<31);
|
|
} else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
|
|
// high frequency represents a 0
|
|
} else {
|
|
// probably detected a gay waveform or noise
|
|
// use this as gaydar or discard shift register and start again
|
|
shift3 = shift2 = shift1 = shift0 = 0;
|
|
}
|
|
samples = i;
|
|
|
|
// for each bit we receive, test if we've detected a valid tag
|
|
|
|
// if we see 17 zeroes followed by 6 ones, we might have a tag
|
|
// remember the bits are backwards
|
|
if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
|
|
// if start and end bytes match, we have a tag so break out of the loop
|
|
if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
|
|
cycles = 0xF0B; //use this as a flag (ugly but whatever)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// if flag is set we have a tag
|
|
if (cycles!=0xF0B) {
|
|
DbpString("Info: No valid tag detected.");
|
|
} else {
|
|
// put 64 bit data into shift1 and shift0
|
|
shift0 = (shift0>>24) | (shift1 << 8);
|
|
shift1 = (shift1>>24) | (shift2 << 8);
|
|
|
|
// align 16 bit crc into lower half of shift2
|
|
shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
|
|
|
|
// if r/w tag, check ident match
|
|
if ( shift3&(1<<15) ) {
|
|
DbpString("Info: TI tag is rewriteable");
|
|
// only 15 bits compare, last bit of ident is not valid
|
|
if ( ((shift3>>16)^shift0)&0x7fff ) {
|
|
DbpString("Error: Ident mismatch!");
|
|
} else {
|
|
DbpString("Info: TI tag ident is valid");
|
|
}
|
|
} else {
|
|
DbpString("Info: TI tag is readonly");
|
|
}
|
|
|
|
// WARNING the order of the bytes in which we calc crc below needs checking
|
|
// i'm 99% sure the crc algorithm is correct, but it may need to eat the
|
|
// bytes in reverse or something
|
|
// calculate CRC
|
|
DWORD crc=0;
|
|
|
|
crc = update_crc16(crc, (shift0)&0xff);
|
|
crc = update_crc16(crc, (shift0>>8)&0xff);
|
|
crc = update_crc16(crc, (shift0>>16)&0xff);
|
|
crc = update_crc16(crc, (shift0>>24)&0xff);
|
|
crc = update_crc16(crc, (shift1)&0xff);
|
|
crc = update_crc16(crc, (shift1>>8)&0xff);
|
|
crc = update_crc16(crc, (shift1>>16)&0xff);
|
|
crc = update_crc16(crc, (shift1>>24)&0xff);
|
|
|
|
DbpString("Info: Tag data_hi, data_lo, crc = ");
|
|
DbpIntegers(shift1, shift0, shift2&0xffff);
|
|
if (crc != (shift2&0xffff)) {
|
|
DbpString("Error: CRC mismatch, expected");
|
|
DbpIntegers(0, 0, crc);
|
|
} else {
|
|
DbpString("Info: CRC is good");
|
|
}
|
|
}
|
|
}
|
|
|
|
void WriteTIbyte(BYTE b)
|
|
{
|
|
int i = 0;
|
|
|
|
// modulate 8 bits out to the antenna
|
|
for (i=0; i<8; i++)
|
|
{
|
|
if (b&(1<<i)) {
|
|
// stop modulating antenna
|
|
LOW(GPIO_SSC_DOUT);
|
|
SpinDelayUs(1000);
|
|
// modulate antenna
|
|
HIGH(GPIO_SSC_DOUT);
|
|
SpinDelayUs(1000);
|
|
} else {
|
|
// stop modulating antenna
|
|
LOW(GPIO_SSC_DOUT);
|
|
SpinDelayUs(300);
|
|
// modulate antenna
|
|
HIGH(GPIO_SSC_DOUT);
|
|
SpinDelayUs(1700);
|
|
}
|
|
}
|
|
}
|
|
|
|
void AcquireTiType(void)
|
|
{
|
|
int i, j, n;
|
|
// tag transmission is <20ms, sampling at 2M gives us 40K samples max
|
|
// each sample is 1 bit stuffed into a DWORD so we need 1250 DWORDS
|
|
#define TIBUFLEN 1250
|
|
|
|
// clear buffer
|
|
memset(BigBuf,0,sizeof(BigBuf));
|
|
|
|
// Set up the synchronous serial port
|
|
AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
|
|
AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
|
|
|
|
// steal this pin from the SSP and use it to control the modulation
|
|
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
|
|
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
|
|
|
|
AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
|
|
AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
|
|
|
|
// Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
|
|
// 48/2 = 24 MHz clock must be divided by 12
|
|
AT91C_BASE_SSC->SSC_CMR = 12;
|
|
|
|
AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
|
|
AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
|
|
AT91C_BASE_SSC->SSC_TCMR = 0;
|
|
AT91C_BASE_SSC->SSC_TFMR = 0;
|
|
|
|
LED_D_ON();
|
|
|
|
// modulate antenna
|
|
HIGH(GPIO_SSC_DOUT);
|
|
|
|
// Charge TI tag for 50ms.
|
|
SpinDelay(50);
|
|
|
|
// stop modulating antenna and listen
|
|
LOW(GPIO_SSC_DOUT);
|
|
|
|
LED_D_OFF();
|
|
|
|
i = 0;
|
|
for(;;) {
|
|
if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
|
|
BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
|
|
i++; if(i >= TIBUFLEN) break;
|
|
}
|
|
WDT_HIT();
|
|
}
|
|
|
|
// return stolen pin to SSP
|
|
AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
|
|
AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
|
|
|
|
char *dest = (char *)BigBuf;
|
|
n = TIBUFLEN*32;
|
|
// unpack buffer
|
|
for (i=TIBUFLEN-1; i>=0; i--) {
|
|
// DbpIntegers(0, 0, BigBuf[i]);
|
|
for (j=0; j<32; j++) {
|
|
if(BigBuf[i] & (1 << j)) {
|
|
dest[--n] = 1;
|
|
} else {
|
|
dest[--n] = -1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
|
|
// if crc provided, it will be written with the data verbatim (even if bogus)
|
|
// if not provided a valid crc will be computed from the data and written.
|
|
void WriteTItag(DWORD idhi, DWORD idlo, WORD crc)
|
|
{
|
|
|
|
// WARNING the order of the bytes in which we calc crc below needs checking
|
|
// i'm 99% sure the crc algorithm is correct, but it may need to eat the
|
|
// bytes in reverse or something
|
|
|
|
if(crc == 0) {
|
|
crc = update_crc16(crc, (idlo)&0xff);
|
|
crc = update_crc16(crc, (idlo>>8)&0xff);
|
|
crc = update_crc16(crc, (idlo>>16)&0xff);
|
|
crc = update_crc16(crc, (idlo>>24)&0xff);
|
|
crc = update_crc16(crc, (idhi)&0xff);
|
|
crc = update_crc16(crc, (idhi>>8)&0xff);
|
|
crc = update_crc16(crc, (idhi>>16)&0xff);
|
|
crc = update_crc16(crc, (idhi>>24)&0xff);
|
|
}
|
|
DbpString("Writing the following data to tag:");
|
|
DbpIntegers(idhi, idlo, crc);
|
|
|
|
// TI tags charge at 134.2Khz
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
|
|
// Place FPGA in passthrough mode, in this mode the CROSS_LO line
|
|
// connects to SSP_DIN and the SSP_DOUT logic level controls
|
|
// whether we're modulating the antenna (high)
|
|
// or listening to the antenna (low)
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
|
|
LED_A_ON();
|
|
|
|
// steal this pin from the SSP and use it to control the modulation
|
|
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
|
|
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
|
|
|
|
// writing algorithm:
|
|
// a high bit consists of a field off for 1ms and field on for 1ms
|
|
// a low bit consists of a field off for 0.3ms and field on for 1.7ms
|
|
// initiate a charge time of 50ms (field on) then immediately start writing bits
|
|
// start by writing 0xBB (keyword) and 0xEB (password)
|
|
// then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
|
|
// finally end with 0x0300 (write frame)
|
|
// all data is sent lsb firts
|
|
// finish with 15ms programming time
|
|
|
|
// modulate antenna
|
|
HIGH(GPIO_SSC_DOUT);
|
|
SpinDelay(50); // charge time
|
|
|
|
WriteTIbyte(0xbb); // keyword
|
|
WriteTIbyte(0xeb); // password
|
|
WriteTIbyte( (idlo )&0xff );
|
|
WriteTIbyte( (idlo>>8 )&0xff );
|
|
WriteTIbyte( (idlo>>16)&0xff );
|
|
WriteTIbyte( (idlo>>24)&0xff );
|
|
WriteTIbyte( (idhi )&0xff );
|
|
WriteTIbyte( (idhi>>8 )&0xff );
|
|
WriteTIbyte( (idhi>>16)&0xff );
|
|
WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
|
|
WriteTIbyte( (crc )&0xff ); // crc lo
|
|
WriteTIbyte( (crc>>8 )&0xff ); // crc hi
|
|
WriteTIbyte(0x00); // write frame lo
|
|
WriteTIbyte(0x03); // write frame hi
|
|
HIGH(GPIO_SSC_DOUT);
|
|
SpinDelay(50); // programming time
|
|
|
|
LED_A_OFF();
|
|
|
|
// get TI tag data into the buffer
|
|
AcquireTiType();
|
|
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
DbpString("Now use tiread to check");
|
|
}
|
|
|
|
void SimulateTagLowFrequency(int period, int ledcontrol)
|
|
{
|
|
int i;
|
|
BYTE *tab = (BYTE *)BigBuf;
|
|
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR);
|
|
|
|
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
|
|
|
|
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
|
|
AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
|
|
|
|
#define SHORT_COIL() LOW(GPIO_SSC_DOUT)
|
|
#define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
|
|
|
|
i = 0;
|
|
for(;;) {
|
|
while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
|
|
if(BUTTON_PRESS()) {
|
|
DbpString("Stopped");
|
|
return;
|
|
}
|
|
WDT_HIT();
|
|
}
|
|
|
|
if (ledcontrol)
|
|
LED_D_ON();
|
|
|
|
if(tab[i])
|
|
OPEN_COIL();
|
|
else
|
|
SHORT_COIL();
|
|
|
|
if (ledcontrol)
|
|
LED_D_OFF();
|
|
|
|
while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
|
|
if(BUTTON_PRESS()) {
|
|
DbpString("Stopped");
|
|
return;
|
|
}
|
|
WDT_HIT();
|
|
}
|
|
|
|
i++;
|
|
if(i == period) i = 0;
|
|
}
|
|
}
|
|
|
|
/* Provides a framework for bidirectional LF tag communication
|
|
* Encoding is currently Hitag2, but the general idea can probably
|
|
* be transferred to other encodings.
|
|
*
|
|
* The new FPGA code will, for the LF simulator mode, give on SSC_FRAME
|
|
* (PA15) a thresholded version of the signal from the ADC. Setting the
|
|
* ADC path to the low frequency peak detection signal, will enable a
|
|
* somewhat reasonable receiver for modulation on the carrier signal
|
|
* that is generated by the reader. The signal is low when the reader
|
|
* field is switched off, and high when the reader field is active. Due
|
|
* to the way that the signal looks like, mostly only the rising edge is
|
|
* useful, your mileage may vary.
|
|
*
|
|
* Neat perk: PA15 can not only be used as a bit-banging GPIO, but is also
|
|
* TIOA1, which can be used as the capture input for timer 1. This should
|
|
* make it possible to measure the exact edge-to-edge time, without processor
|
|
* intervention.
|
|
*
|
|
* Arguments: divisor is the divisor to be sent to the FPGA (e.g. 95 for 125kHz)
|
|
* t0 is the carrier frequency cycle duration in terms of MCK (384 for 125kHz)
|
|
*
|
|
* The following defines are in carrier periods:
|
|
*/
|
|
#define HITAG_T_0_MIN 15 /* T[0] should be 18..22 */
|
|
#define HITAG_T_1_MIN 24 /* T[1] should be 26..30 */
|
|
#define HITAG_T_EOF 40 /* T_EOF should be > 36 */
|
|
#define HITAG_T_WRESP 208 /* T_wresp should be 204..212 */
|
|
|
|
static void hitag_handle_frame(int t0, int frame_len, char *frame);
|
|
//#define DEBUG_RA_VALUES 1
|
|
#define DEBUG_FRAME_CONTENTS 1
|
|
void SimulateTagLowFrequencyBidir(int divisor, int t0)
|
|
{
|
|
#if DEBUG_RA_VALUES || DEBUG_FRAME_CONTENTS
|
|
int i = 0;
|
|
#endif
|
|
char frame[10];
|
|
int frame_pos=0;
|
|
|
|
DbpString("Starting Hitag2 emulator, press button to end");
|
|
hitag2_init();
|
|
|
|
/* Set up simulator mode, frequency divisor which will drive the FPGA
|
|
* and analog mux selection.
|
|
*/
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR);
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor);
|
|
SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
|
|
RELAY_OFF();
|
|
|
|
/* Set up Timer 1:
|
|
* Capture mode, timer source MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
|
|
* external trigger rising edge, load RA on rising edge of TIOA, load RB on rising
|
|
* edge of TIOA. Assign PA15 to TIOA1 (peripheral B)
|
|
*/
|
|
|
|
AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
|
|
AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME;
|
|
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
|
|
AT91C_BASE_TC1->TC_CMR = TC_CMR_TCCLKS_TIMER_CLOCK1 |
|
|
AT91C_TC_ETRGEDG_RISING |
|
|
AT91C_TC_ABETRG |
|
|
AT91C_TC_LDRA_RISING |
|
|
AT91C_TC_LDRB_RISING;
|
|
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN |
|
|
AT91C_TC_SWTRG;
|
|
|
|
/* calculate the new value for the carrier period in terms of TC1 values */
|
|
t0 = t0/2;
|
|
|
|
int overflow = 0;
|
|
while(!BUTTON_PRESS()) {
|
|
WDT_HIT();
|
|
if(AT91C_BASE_TC1->TC_SR & AT91C_TC_LDRAS) {
|
|
int ra = AT91C_BASE_TC1->TC_RA;
|
|
if((ra > t0*HITAG_T_EOF) | overflow) ra = t0*HITAG_T_EOF+1;
|
|
#if DEBUG_RA_VALUES
|
|
if(ra > 255 || overflow) ra = 255;
|
|
((char*)BigBuf)[i] = ra;
|
|
i = (i+1) % 8000;
|
|
#endif
|
|
|
|
if(overflow || (ra > t0*HITAG_T_EOF) || (ra < t0*HITAG_T_0_MIN)) {
|
|
/* Ignore */
|
|
} else if(ra >= t0*HITAG_T_1_MIN ) {
|
|
/* '1' bit */
|
|
if(frame_pos < 8*sizeof(frame)) {
|
|
frame[frame_pos / 8] |= 1<<( 7-(frame_pos%8) );
|
|
frame_pos++;
|
|
}
|
|
} else if(ra >= t0*HITAG_T_0_MIN) {
|
|
/* '0' bit */
|
|
if(frame_pos < 8*sizeof(frame)) {
|
|
frame[frame_pos / 8] |= 0<<( 7-(frame_pos%8) );
|
|
frame_pos++;
|
|
}
|
|
}
|
|
|
|
overflow = 0;
|
|
LED_D_ON();
|
|
} else {
|
|
if(AT91C_BASE_TC1->TC_CV > t0*HITAG_T_EOF) {
|
|
/* Minor nuisance: In Capture mode, the timer can not be
|
|
* stopped by a Compare C. There's no way to stop the clock
|
|
* in software, so we'll just have to note the fact that an
|
|
* overflow happened and the next loaded timer value might
|
|
* have wrapped. Also, this marks the end of frame, and the
|
|
* still running counter can be used to determine the correct
|
|
* time for the start of the reply.
|
|
*/
|
|
overflow = 1;
|
|
|
|
if(frame_pos > 0) {
|
|
/* Have a frame, do something with it */
|
|
#if DEBUG_FRAME_CONTENTS
|
|
((char*)BigBuf)[i++] = frame_pos;
|
|
memcpy( ((char*)BigBuf)+i, frame, 7);
|
|
i+=7;
|
|
i = i % sizeof(BigBuf);
|
|
#endif
|
|
hitag_handle_frame(t0, frame_pos, frame);
|
|
memset(frame, 0, sizeof(frame));
|
|
}
|
|
frame_pos = 0;
|
|
|
|
}
|
|
LED_D_OFF();
|
|
}
|
|
}
|
|
DbpString("All done");
|
|
}
|
|
|
|
static void hitag_send_bit(int t0, int bit) {
|
|
if(bit == 1) {
|
|
/* Manchester: Loaded, then unloaded */
|
|
LED_A_ON();
|
|
SHORT_COIL();
|
|
while(AT91C_BASE_TC1->TC_CV < t0*15);
|
|
OPEN_COIL();
|
|
while(AT91C_BASE_TC1->TC_CV < t0*31);
|
|
LED_A_OFF();
|
|
} else if(bit == 0) {
|
|
/* Manchester: Unloaded, then loaded */
|
|
LED_B_ON();
|
|
OPEN_COIL();
|
|
while(AT91C_BASE_TC1->TC_CV < t0*15);
|
|
SHORT_COIL();
|
|
while(AT91C_BASE_TC1->TC_CV < t0*31);
|
|
LED_B_OFF();
|
|
}
|
|
AT91C_BASE_TC1->TC_CCR = AT91C_TC_SWTRG; /* Reset clock for the next bit */
|
|
|
|
}
|
|
static void hitag_send_frame(int t0, int frame_len, const char const * frame, int fdt)
|
|
{
|
|
OPEN_COIL();
|
|
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
|
|
|
|
/* Wait for HITAG_T_WRESP carrier periods after the last reader bit,
|
|
* not that since the clock counts since the rising edge, but T_wresp is
|
|
* with respect to the falling edge, we need to wait actually (T_wresp - T_g)
|
|
* periods. The gap time T_g varies (4..10).
|
|
*/
|
|
while(AT91C_BASE_TC1->TC_CV < t0*(fdt-8));
|
|
|
|
int saved_cmr = AT91C_BASE_TC1->TC_CMR;
|
|
AT91C_BASE_TC1->TC_CMR &= ~AT91C_TC_ETRGEDG; /* Disable external trigger for the clock */
|
|
AT91C_BASE_TC1->TC_CCR = AT91C_TC_SWTRG; /* Reset the clock and use it for response timing */
|
|
|
|
int i;
|
|
for(i=0; i<5; i++)
|
|
hitag_send_bit(t0, 1); /* Start of frame */
|
|
|
|
for(i=0; i<frame_len; i++) {
|
|
hitag_send_bit(t0, !!(frame[i/ 8] & (1<<( 7-(i%8) ))) );
|
|
}
|
|
|
|
OPEN_COIL();
|
|
AT91C_BASE_TC1->TC_CMR = saved_cmr;
|
|
}
|
|
|
|
/* Callback structure to cleanly separate tag emulation code from the radio layer. */
|
|
static int hitag_cb(const char* response_data, const int response_length, const int fdt, void *cb_cookie)
|
|
{
|
|
hitag_send_frame(*(int*)cb_cookie, response_length, response_data, fdt);
|
|
return 0;
|
|
}
|
|
/* Frame length in bits, frame contents in MSBit first format */
|
|
static void hitag_handle_frame(int t0, int frame_len, char *frame)
|
|
{
|
|
hitag2_handle_command(frame, frame_len, hitag_cb, &t0);
|
|
}
|
|
|
|
// compose fc/8 fc/10 waveform
|
|
static void fc(int c, int *n) {
|
|
BYTE *dest = (BYTE *)BigBuf;
|
|
int idx;
|
|
|
|
// for when we want an fc8 pattern every 4 logical bits
|
|
if(c==0) {
|
|
dest[((*n)++)]=1;
|
|
dest[((*n)++)]=1;
|
|
dest[((*n)++)]=0;
|
|
dest[((*n)++)]=0;
|
|
dest[((*n)++)]=0;
|
|
dest[((*n)++)]=0;
|
|
dest[((*n)++)]=0;
|
|
dest[((*n)++)]=0;
|
|
}
|
|
// an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
|
|
if(c==8) {
|
|
for (idx=0; idx<6; idx++) {
|
|
dest[((*n)++)]=1;
|
|
dest[((*n)++)]=1;
|
|
dest[((*n)++)]=0;
|
|
dest[((*n)++)]=0;
|
|
dest[((*n)++)]=0;
|
|
dest[((*n)++)]=0;
|
|
dest[((*n)++)]=0;
|
|
dest[((*n)++)]=0;
|
|
}
|
|
}
|
|
|
|
// an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
|
|
if(c==10) {
|
|
for (idx=0; idx<5; idx++) {
|
|
dest[((*n)++)]=1;
|
|
dest[((*n)++)]=1;
|
|
dest[((*n)++)]=1;
|
|
dest[((*n)++)]=0;
|
|
dest[((*n)++)]=0;
|
|
dest[((*n)++)]=0;
|
|
dest[((*n)++)]=0;
|
|
dest[((*n)++)]=0;
|
|
dest[((*n)++)]=0;
|
|
dest[((*n)++)]=0;
|
|
}
|
|
}
|
|
}
|
|
|
|
// prepare a waveform pattern in the buffer based on the ID given then
|
|
// simulate a HID tag until the button is pressed
|
|
void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
|
|
{
|
|
int n=0, i=0;
|
|
/*
|
|
HID tag bitstream format
|
|
The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
|
|
A 1 bit is represented as 6 fc8 and 5 fc10 patterns
|
|
A 0 bit is represented as 5 fc10 and 6 fc8 patterns
|
|
A fc8 is inserted before every 4 bits
|
|
A special start of frame pattern is used consisting a0b0 where a and b are neither 0
|
|
nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
|
|
*/
|
|
|
|
if (hi>0xFFF) {
|
|
DbpString("Tags can only have 44 bits.");
|
|
return;
|
|
}
|
|
fc(0,&n);
|
|
// special start of frame marker containing invalid bit sequences
|
|
fc(8, &n); fc(8, &n); // invalid
|
|
fc(8, &n); fc(10, &n); // logical 0
|
|
fc(10, &n); fc(10, &n); // invalid
|
|
fc(8, &n); fc(10, &n); // logical 0
|
|
|
|
WDT_HIT();
|
|
// manchester encode bits 43 to 32
|
|
for (i=11; i>=0; i--) {
|
|
if ((i%4)==3) fc(0,&n);
|
|
if ((hi>>i)&1) {
|
|
fc(10, &n); fc(8, &n); // low-high transition
|
|
} else {
|
|
fc(8, &n); fc(10, &n); // high-low transition
|
|
}
|
|
}
|
|
|
|
WDT_HIT();
|
|
// manchester encode bits 31 to 0
|
|
for (i=31; i>=0; i--) {
|
|
if ((i%4)==3) fc(0,&n);
|
|
if ((lo>>i)&1) {
|
|
fc(10, &n); fc(8, &n); // low-high transition
|
|
} else {
|
|
fc(8, &n); fc(10, &n); // high-low transition
|
|
}
|
|
}
|
|
|
|
if (ledcontrol)
|
|
LED_A_ON();
|
|
SimulateTagLowFrequency(n, ledcontrol);
|
|
|
|
if (ledcontrol)
|
|
LED_A_OFF();
|
|
}
|
|
|
|
|
|
// loop to capture raw HID waveform then FSK demodulate the TAG ID from it
|
|
void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
|
|
{
|
|
BYTE *dest = (BYTE *)BigBuf;
|
|
int m=0, n=0, i=0, idx=0, found=0, lastval=0;
|
|
DWORD hi=0, lo=0;
|
|
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
|
|
|
|
// Connect the A/D to the peak-detected low-frequency path.
|
|
SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
|
|
|
|
// Give it a bit of time for the resonant antenna to settle.
|
|
SpinDelay(50);
|
|
|
|
// Now set up the SSC to get the ADC samples that are now streaming at us.
|
|
FpgaSetupSsc();
|
|
|
|
for(;;) {
|
|
WDT_HIT();
|
|
if (ledcontrol)
|
|
LED_A_ON();
|
|
if(BUTTON_PRESS()) {
|
|
DbpString("Stopped");
|
|
if (ledcontrol)
|
|
LED_A_OFF();
|
|
return;
|
|
}
|
|
|
|
i = 0;
|
|
m = sizeof(BigBuf);
|
|
memset(dest,128,m);
|
|
for(;;) {
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
|
|
AT91C_BASE_SSC->SSC_THR = 0x43;
|
|
if (ledcontrol)
|
|
LED_D_ON();
|
|
}
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
|
|
dest[i] = (BYTE)AT91C_BASE_SSC->SSC_RHR;
|
|
// we don't care about actual value, only if it's more or less than a
|
|
// threshold essentially we capture zero crossings for later analysis
|
|
if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
|
|
i++;
|
|
if (ledcontrol)
|
|
LED_D_OFF();
|
|
if(i >= m) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// FSK demodulator
|
|
|
|
// sync to first lo-hi transition
|
|
for( idx=1; idx<m; idx++) {
|
|
if (dest[idx-1]<dest[idx])
|
|
lastval=idx;
|
|
break;
|
|
}
|
|
WDT_HIT();
|
|
|
|
// count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
|
|
// or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
|
|
// between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
|
|
for( i=0; idx<m; idx++) {
|
|
if (dest[idx-1]<dest[idx]) {
|
|
dest[i]=idx-lastval;
|
|
if (dest[i] <= 8) {
|
|
dest[i]=1;
|
|
} else {
|
|
dest[i]=0;
|
|
}
|
|
|
|
lastval=idx;
|
|
i++;
|
|
}
|
|
}
|
|
m=i;
|
|
WDT_HIT();
|
|
|
|
// we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
|
|
lastval=dest[0];
|
|
idx=0;
|
|
i=0;
|
|
n=0;
|
|
for( idx=0; idx<m; idx++) {
|
|
if (dest[idx]==lastval) {
|
|
n++;
|
|
} else {
|
|
// a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents,
|
|
// an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets
|
|
// swallowed up by rounding
|
|
// expected results are 1 or 2 bits, any more and it's an invalid manchester encoding
|
|
// special start of frame markers use invalid manchester states (no transitions) by using sequences
|
|
// like 111000
|
|
if (dest[idx-1]) {
|
|
n=(n+1)/6; // fc/8 in sets of 6
|
|
} else {
|
|
n=(n+1)/5; // fc/10 in sets of 5
|
|
}
|
|
switch (n) { // stuff appropriate bits in buffer
|
|
case 0:
|
|
case 1: // one bit
|
|
dest[i++]=dest[idx-1];
|
|
break;
|
|
case 2: // two bits
|
|
dest[i++]=dest[idx-1];
|
|
dest[i++]=dest[idx-1];
|
|
break;
|
|
case 3: // 3 bit start of frame markers
|
|
dest[i++]=dest[idx-1];
|
|
dest[i++]=dest[idx-1];
|
|
dest[i++]=dest[idx-1];
|
|
break;
|
|
// When a logic 0 is immediately followed by the start of the next transmisson
|
|
// (special pattern) a pattern of 4 bit duration lengths is created.
|
|
case 4:
|
|
dest[i++]=dest[idx-1];
|
|
dest[i++]=dest[idx-1];
|
|
dest[i++]=dest[idx-1];
|
|
dest[i++]=dest[idx-1];
|
|
break;
|
|
default: // this shouldn't happen, don't stuff any bits
|
|
break;
|
|
}
|
|
n=0;
|
|
lastval=dest[idx];
|
|
}
|
|
}
|
|
m=i;
|
|
WDT_HIT();
|
|
|
|
// final loop, go over previously decoded manchester data and decode into usable tag ID
|
|
// 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
|
|
for( idx=0; idx<m-6; idx++) {
|
|
// search for a start of frame marker
|
|
if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )
|
|
{
|
|
found=1;
|
|
idx+=6;
|
|
if (found && (hi|lo)) {
|
|
DbpString("TAG ID");
|
|
DbpIntegers(hi, lo, (lo>>1)&0xffff);
|
|
/* if we're only looking for one tag */
|
|
if (findone)
|
|
{
|
|
*high = hi;
|
|
*low = lo;
|
|
return;
|
|
}
|
|
hi=0;
|
|
lo=0;
|
|
found=0;
|
|
}
|
|
}
|
|
if (found) {
|
|
if (dest[idx] && (!dest[idx+1]) ) {
|
|
hi=(hi<<1)|(lo>>31);
|
|
lo=(lo<<1)|0;
|
|
} else if ( (!dest[idx]) && dest[idx+1]) {
|
|
hi=(hi<<1)|(lo>>31);
|
|
lo=(lo<<1)|1;
|
|
} else {
|
|
found=0;
|
|
hi=0;
|
|
lo=0;
|
|
}
|
|
idx++;
|
|
}
|
|
if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )
|
|
{
|
|
found=1;
|
|
idx+=6;
|
|
if (found && (hi|lo)) {
|
|
DbpString("TAG ID");
|
|
DbpIntegers(hi, lo, (lo>>1)&0xffff);
|
|
/* if we're only looking for one tag */
|
|
if (findone)
|
|
{
|
|
*high = hi;
|
|
*low = lo;
|
|
return;
|
|
}
|
|
hi=0;
|
|
lo=0;
|
|
found=0;
|
|
}
|
|
}
|
|
}
|
|
WDT_HIT();
|
|
}
|
|
}
|