mirror of
https://github.com/RfidResearchGroup/proxmark3.git
synced 2024-12-26 18:12:34 +08:00
e67b06b706
* Modified commands (lf em4x): em410xwatch ['h'] -- Watches for EM410x 125/134 kHz tags (option 'h' for 134) em410xwrite <UID> <'0' T5555> <'1' T55x7> [clock rate] -- Write EM410x UID to T5555(Q5) or T55x7 tag, optionally setting clock rate * Better option checking for em410xwrite & fix for uninitialized vars * Increased samples from 2000 to 4000 in em410xwatch (2000 is OK for clock=64, but too few for clock=32)
1796 lines
48 KiB
C
1796 lines
48 KiB
C
//-----------------------------------------------------------------------------
|
|
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
|
|
// at your option, any later version. See the LICENSE.txt file for the text of
|
|
// the license.
|
|
//-----------------------------------------------------------------------------
|
|
// Miscellaneous routines for low frequency tag operations.
|
|
// Tags supported here so far are Texas Instruments (TI), HID
|
|
// Also routines for raw mode reading/simulating of LF waveform
|
|
//-----------------------------------------------------------------------------
|
|
|
|
#include "proxmark3.h"
|
|
#include "apps.h"
|
|
#include "util.h"
|
|
#include "hitag2.h"
|
|
#include "crc16.h"
|
|
#include "string.h"
|
|
|
|
void AcquireRawAdcSamples125k(int at134khz)
|
|
{
|
|
if (at134khz)
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
|
|
else
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
|
|
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
|
|
|
|
// Connect the A/D to the peak-detected low-frequency path.
|
|
SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
|
|
|
|
// Give it a bit of time for the resonant antenna to settle.
|
|
SpinDelay(50);
|
|
|
|
// Now set up the SSC to get the ADC samples that are now streaming at us.
|
|
FpgaSetupSsc();
|
|
|
|
// Now call the acquisition routine
|
|
DoAcquisition125k();
|
|
}
|
|
|
|
// split into two routines so we can avoid timing issues after sending commands //
|
|
void DoAcquisition125k(void)
|
|
{
|
|
uint8_t *dest = (uint8_t *)BigBuf;
|
|
int n = sizeof(BigBuf);
|
|
int i;
|
|
|
|
memset(dest, 0, n);
|
|
i = 0;
|
|
for(;;) {
|
|
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
|
|
AT91C_BASE_SSC->SSC_THR = 0x43;
|
|
LED_D_ON();
|
|
}
|
|
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
|
|
dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
|
|
i++;
|
|
LED_D_OFF();
|
|
if (i >= n) break;
|
|
}
|
|
}
|
|
Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
|
|
dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]);
|
|
}
|
|
|
|
void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command)
|
|
{
|
|
int at134khz;
|
|
|
|
/* Make sure the tag is reset */
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
SpinDelay(2500);
|
|
|
|
// see if 'h' was specified
|
|
if (command[strlen((char *) command) - 1] == 'h')
|
|
at134khz = TRUE;
|
|
else
|
|
at134khz = FALSE;
|
|
|
|
if (at134khz)
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
|
|
else
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
|
|
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
|
|
|
|
// Give it a bit of time for the resonant antenna to settle.
|
|
SpinDelay(50);
|
|
// And a little more time for the tag to fully power up
|
|
SpinDelay(2000);
|
|
|
|
// Now set up the SSC to get the ADC samples that are now streaming at us.
|
|
FpgaSetupSsc();
|
|
|
|
// now modulate the reader field
|
|
while(*command != '\0' && *command != ' ') {
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
LED_D_OFF();
|
|
SpinDelayUs(delay_off);
|
|
if (at134khz)
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
|
|
else
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
|
|
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
|
|
LED_D_ON();
|
|
if(*(command++) == '0')
|
|
SpinDelayUs(period_0);
|
|
else
|
|
SpinDelayUs(period_1);
|
|
}
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
LED_D_OFF();
|
|
SpinDelayUs(delay_off);
|
|
if (at134khz)
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
|
|
else
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
|
|
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
|
|
|
|
// now do the read
|
|
DoAcquisition125k();
|
|
}
|
|
|
|
/* blank r/w tag data stream
|
|
...0000000000000000 01111111
|
|
1010101010101010101010101010101010101010101010101010101010101010
|
|
0011010010100001
|
|
01111111
|
|
101010101010101[0]000...
|
|
|
|
[5555fe852c5555555555555555fe0000]
|
|
*/
|
|
void ReadTItag(void)
|
|
{
|
|
// some hardcoded initial params
|
|
// when we read a TI tag we sample the zerocross line at 2Mhz
|
|
// TI tags modulate a 1 as 16 cycles of 123.2Khz
|
|
// TI tags modulate a 0 as 16 cycles of 134.2Khz
|
|
#define FSAMPLE 2000000
|
|
#define FREQLO 123200
|
|
#define FREQHI 134200
|
|
|
|
signed char *dest = (signed char *)BigBuf;
|
|
int n = sizeof(BigBuf);
|
|
// int *dest = GraphBuffer;
|
|
// int n = GraphTraceLen;
|
|
|
|
// 128 bit shift register [shift3:shift2:shift1:shift0]
|
|
uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
|
|
|
|
int i, cycles=0, samples=0;
|
|
// how many sample points fit in 16 cycles of each frequency
|
|
uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
|
|
// when to tell if we're close enough to one freq or another
|
|
uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
|
|
|
|
// TI tags charge at 134.2Khz
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
|
|
|
|
// Place FPGA in passthrough mode, in this mode the CROSS_LO line
|
|
// connects to SSP_DIN and the SSP_DOUT logic level controls
|
|
// whether we're modulating the antenna (high)
|
|
// or listening to the antenna (low)
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
|
|
|
|
// get TI tag data into the buffer
|
|
AcquireTiType();
|
|
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
|
|
for (i=0; i<n-1; i++) {
|
|
// count cycles by looking for lo to hi zero crossings
|
|
if ( (dest[i]<0) && (dest[i+1]>0) ) {
|
|
cycles++;
|
|
// after 16 cycles, measure the frequency
|
|
if (cycles>15) {
|
|
cycles=0;
|
|
samples=i-samples; // number of samples in these 16 cycles
|
|
|
|
// TI bits are coming to us lsb first so shift them
|
|
// right through our 128 bit right shift register
|
|
shift0 = (shift0>>1) | (shift1 << 31);
|
|
shift1 = (shift1>>1) | (shift2 << 31);
|
|
shift2 = (shift2>>1) | (shift3 << 31);
|
|
shift3 >>= 1;
|
|
|
|
// check if the cycles fall close to the number
|
|
// expected for either the low or high frequency
|
|
if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
|
|
// low frequency represents a 1
|
|
shift3 |= (1<<31);
|
|
} else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
|
|
// high frequency represents a 0
|
|
} else {
|
|
// probably detected a gay waveform or noise
|
|
// use this as gaydar or discard shift register and start again
|
|
shift3 = shift2 = shift1 = shift0 = 0;
|
|
}
|
|
samples = i;
|
|
|
|
// for each bit we receive, test if we've detected a valid tag
|
|
|
|
// if we see 17 zeroes followed by 6 ones, we might have a tag
|
|
// remember the bits are backwards
|
|
if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
|
|
// if start and end bytes match, we have a tag so break out of the loop
|
|
if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
|
|
cycles = 0xF0B; //use this as a flag (ugly but whatever)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// if flag is set we have a tag
|
|
if (cycles!=0xF0B) {
|
|
DbpString("Info: No valid tag detected.");
|
|
} else {
|
|
// put 64 bit data into shift1 and shift0
|
|
shift0 = (shift0>>24) | (shift1 << 8);
|
|
shift1 = (shift1>>24) | (shift2 << 8);
|
|
|
|
// align 16 bit crc into lower half of shift2
|
|
shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
|
|
|
|
// if r/w tag, check ident match
|
|
if ( shift3&(1<<15) ) {
|
|
DbpString("Info: TI tag is rewriteable");
|
|
// only 15 bits compare, last bit of ident is not valid
|
|
if ( ((shift3>>16)^shift0)&0x7fff ) {
|
|
DbpString("Error: Ident mismatch!");
|
|
} else {
|
|
DbpString("Info: TI tag ident is valid");
|
|
}
|
|
} else {
|
|
DbpString("Info: TI tag is readonly");
|
|
}
|
|
|
|
// WARNING the order of the bytes in which we calc crc below needs checking
|
|
// i'm 99% sure the crc algorithm is correct, but it may need to eat the
|
|
// bytes in reverse or something
|
|
// calculate CRC
|
|
uint32_t crc=0;
|
|
|
|
crc = update_crc16(crc, (shift0)&0xff);
|
|
crc = update_crc16(crc, (shift0>>8)&0xff);
|
|
crc = update_crc16(crc, (shift0>>16)&0xff);
|
|
crc = update_crc16(crc, (shift0>>24)&0xff);
|
|
crc = update_crc16(crc, (shift1)&0xff);
|
|
crc = update_crc16(crc, (shift1>>8)&0xff);
|
|
crc = update_crc16(crc, (shift1>>16)&0xff);
|
|
crc = update_crc16(crc, (shift1>>24)&0xff);
|
|
|
|
Dbprintf("Info: Tag data: %x%08x, crc=%x",
|
|
(unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
|
|
if (crc != (shift2&0xffff)) {
|
|
Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
|
|
} else {
|
|
DbpString("Info: CRC is good");
|
|
}
|
|
}
|
|
}
|
|
|
|
void WriteTIbyte(uint8_t b)
|
|
{
|
|
int i = 0;
|
|
|
|
// modulate 8 bits out to the antenna
|
|
for (i=0; i<8; i++)
|
|
{
|
|
if (b&(1<<i)) {
|
|
// stop modulating antenna
|
|
LOW(GPIO_SSC_DOUT);
|
|
SpinDelayUs(1000);
|
|
// modulate antenna
|
|
HIGH(GPIO_SSC_DOUT);
|
|
SpinDelayUs(1000);
|
|
} else {
|
|
// stop modulating antenna
|
|
LOW(GPIO_SSC_DOUT);
|
|
SpinDelayUs(300);
|
|
// modulate antenna
|
|
HIGH(GPIO_SSC_DOUT);
|
|
SpinDelayUs(1700);
|
|
}
|
|
}
|
|
}
|
|
|
|
void AcquireTiType(void)
|
|
{
|
|
int i, j, n;
|
|
// tag transmission is <20ms, sampling at 2M gives us 40K samples max
|
|
// each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
|
|
#define TIBUFLEN 1250
|
|
|
|
// clear buffer
|
|
memset(BigBuf,0,sizeof(BigBuf));
|
|
|
|
// Set up the synchronous serial port
|
|
AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
|
|
AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
|
|
|
|
// steal this pin from the SSP and use it to control the modulation
|
|
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
|
|
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
|
|
|
|
AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
|
|
AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
|
|
|
|
// Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
|
|
// 48/2 = 24 MHz clock must be divided by 12
|
|
AT91C_BASE_SSC->SSC_CMR = 12;
|
|
|
|
AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
|
|
AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
|
|
AT91C_BASE_SSC->SSC_TCMR = 0;
|
|
AT91C_BASE_SSC->SSC_TFMR = 0;
|
|
|
|
LED_D_ON();
|
|
|
|
// modulate antenna
|
|
HIGH(GPIO_SSC_DOUT);
|
|
|
|
// Charge TI tag for 50ms.
|
|
SpinDelay(50);
|
|
|
|
// stop modulating antenna and listen
|
|
LOW(GPIO_SSC_DOUT);
|
|
|
|
LED_D_OFF();
|
|
|
|
i = 0;
|
|
for(;;) {
|
|
if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
|
|
BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
|
|
i++; if(i >= TIBUFLEN) break;
|
|
}
|
|
WDT_HIT();
|
|
}
|
|
|
|
// return stolen pin to SSP
|
|
AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
|
|
AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
|
|
|
|
char *dest = (char *)BigBuf;
|
|
n = TIBUFLEN*32;
|
|
// unpack buffer
|
|
for (i=TIBUFLEN-1; i>=0; i--) {
|
|
for (j=0; j<32; j++) {
|
|
if(BigBuf[i] & (1 << j)) {
|
|
dest[--n] = 1;
|
|
} else {
|
|
dest[--n] = -1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
|
|
// if crc provided, it will be written with the data verbatim (even if bogus)
|
|
// if not provided a valid crc will be computed from the data and written.
|
|
void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
|
|
{
|
|
if(crc == 0) {
|
|
crc = update_crc16(crc, (idlo)&0xff);
|
|
crc = update_crc16(crc, (idlo>>8)&0xff);
|
|
crc = update_crc16(crc, (idlo>>16)&0xff);
|
|
crc = update_crc16(crc, (idlo>>24)&0xff);
|
|
crc = update_crc16(crc, (idhi)&0xff);
|
|
crc = update_crc16(crc, (idhi>>8)&0xff);
|
|
crc = update_crc16(crc, (idhi>>16)&0xff);
|
|
crc = update_crc16(crc, (idhi>>24)&0xff);
|
|
}
|
|
Dbprintf("Writing to tag: %x%08x, crc=%x",
|
|
(unsigned int) idhi, (unsigned int) idlo, crc);
|
|
|
|
// TI tags charge at 134.2Khz
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
|
|
// Place FPGA in passthrough mode, in this mode the CROSS_LO line
|
|
// connects to SSP_DIN and the SSP_DOUT logic level controls
|
|
// whether we're modulating the antenna (high)
|
|
// or listening to the antenna (low)
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
|
|
LED_A_ON();
|
|
|
|
// steal this pin from the SSP and use it to control the modulation
|
|
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
|
|
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
|
|
|
|
// writing algorithm:
|
|
// a high bit consists of a field off for 1ms and field on for 1ms
|
|
// a low bit consists of a field off for 0.3ms and field on for 1.7ms
|
|
// initiate a charge time of 50ms (field on) then immediately start writing bits
|
|
// start by writing 0xBB (keyword) and 0xEB (password)
|
|
// then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
|
|
// finally end with 0x0300 (write frame)
|
|
// all data is sent lsb firts
|
|
// finish with 15ms programming time
|
|
|
|
// modulate antenna
|
|
HIGH(GPIO_SSC_DOUT);
|
|
SpinDelay(50); // charge time
|
|
|
|
WriteTIbyte(0xbb); // keyword
|
|
WriteTIbyte(0xeb); // password
|
|
WriteTIbyte( (idlo )&0xff );
|
|
WriteTIbyte( (idlo>>8 )&0xff );
|
|
WriteTIbyte( (idlo>>16)&0xff );
|
|
WriteTIbyte( (idlo>>24)&0xff );
|
|
WriteTIbyte( (idhi )&0xff );
|
|
WriteTIbyte( (idhi>>8 )&0xff );
|
|
WriteTIbyte( (idhi>>16)&0xff );
|
|
WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
|
|
WriteTIbyte( (crc )&0xff ); // crc lo
|
|
WriteTIbyte( (crc>>8 )&0xff ); // crc hi
|
|
WriteTIbyte(0x00); // write frame lo
|
|
WriteTIbyte(0x03); // write frame hi
|
|
HIGH(GPIO_SSC_DOUT);
|
|
SpinDelay(50); // programming time
|
|
|
|
LED_A_OFF();
|
|
|
|
// get TI tag data into the buffer
|
|
AcquireTiType();
|
|
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
DbpString("Now use tiread to check");
|
|
}
|
|
|
|
void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
|
|
{
|
|
int i;
|
|
uint8_t *tab = (uint8_t *)BigBuf;
|
|
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
|
|
|
|
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
|
|
|
|
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
|
|
AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
|
|
|
|
#define SHORT_COIL() LOW(GPIO_SSC_DOUT)
|
|
#define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
|
|
|
|
i = 0;
|
|
for(;;) {
|
|
while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
|
|
if(BUTTON_PRESS()) {
|
|
DbpString("Stopped");
|
|
return;
|
|
}
|
|
WDT_HIT();
|
|
}
|
|
|
|
if (ledcontrol)
|
|
LED_D_ON();
|
|
|
|
if(tab[i])
|
|
OPEN_COIL();
|
|
else
|
|
SHORT_COIL();
|
|
|
|
if (ledcontrol)
|
|
LED_D_OFF();
|
|
|
|
while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
|
|
if(BUTTON_PRESS()) {
|
|
DbpString("Stopped");
|
|
return;
|
|
}
|
|
WDT_HIT();
|
|
}
|
|
|
|
i++;
|
|
if(i == period) {
|
|
i = 0;
|
|
if (gap) {
|
|
SHORT_COIL();
|
|
SpinDelayUs(gap);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#define DEBUG_FRAME_CONTENTS 1
|
|
void SimulateTagLowFrequencyBidir(int divisor, int t0)
|
|
{
|
|
}
|
|
|
|
// compose fc/8 fc/10 waveform
|
|
static void fc(int c, int *n) {
|
|
uint8_t *dest = (uint8_t *)BigBuf;
|
|
int idx;
|
|
|
|
// for when we want an fc8 pattern every 4 logical bits
|
|
if(c==0) {
|
|
dest[((*n)++)]=1;
|
|
dest[((*n)++)]=1;
|
|
dest[((*n)++)]=0;
|
|
dest[((*n)++)]=0;
|
|
dest[((*n)++)]=0;
|
|
dest[((*n)++)]=0;
|
|
dest[((*n)++)]=0;
|
|
dest[((*n)++)]=0;
|
|
}
|
|
// an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
|
|
if(c==8) {
|
|
for (idx=0; idx<6; idx++) {
|
|
dest[((*n)++)]=1;
|
|
dest[((*n)++)]=1;
|
|
dest[((*n)++)]=0;
|
|
dest[((*n)++)]=0;
|
|
dest[((*n)++)]=0;
|
|
dest[((*n)++)]=0;
|
|
dest[((*n)++)]=0;
|
|
dest[((*n)++)]=0;
|
|
}
|
|
}
|
|
|
|
// an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
|
|
if(c==10) {
|
|
for (idx=0; idx<5; idx++) {
|
|
dest[((*n)++)]=1;
|
|
dest[((*n)++)]=1;
|
|
dest[((*n)++)]=1;
|
|
dest[((*n)++)]=0;
|
|
dest[((*n)++)]=0;
|
|
dest[((*n)++)]=0;
|
|
dest[((*n)++)]=0;
|
|
dest[((*n)++)]=0;
|
|
dest[((*n)++)]=0;
|
|
dest[((*n)++)]=0;
|
|
}
|
|
}
|
|
}
|
|
|
|
// prepare a waveform pattern in the buffer based on the ID given then
|
|
// simulate a HID tag until the button is pressed
|
|
void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
|
|
{
|
|
int n=0, i=0;
|
|
/*
|
|
HID tag bitstream format
|
|
The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
|
|
A 1 bit is represented as 6 fc8 and 5 fc10 patterns
|
|
A 0 bit is represented as 5 fc10 and 6 fc8 patterns
|
|
A fc8 is inserted before every 4 bits
|
|
A special start of frame pattern is used consisting a0b0 where a and b are neither 0
|
|
nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
|
|
*/
|
|
|
|
if (hi>0xFFF) {
|
|
DbpString("Tags can only have 44 bits.");
|
|
return;
|
|
}
|
|
fc(0,&n);
|
|
// special start of frame marker containing invalid bit sequences
|
|
fc(8, &n); fc(8, &n); // invalid
|
|
fc(8, &n); fc(10, &n); // logical 0
|
|
fc(10, &n); fc(10, &n); // invalid
|
|
fc(8, &n); fc(10, &n); // logical 0
|
|
|
|
WDT_HIT();
|
|
// manchester encode bits 43 to 32
|
|
for (i=11; i>=0; i--) {
|
|
if ((i%4)==3) fc(0,&n);
|
|
if ((hi>>i)&1) {
|
|
fc(10, &n); fc(8, &n); // low-high transition
|
|
} else {
|
|
fc(8, &n); fc(10, &n); // high-low transition
|
|
}
|
|
}
|
|
|
|
WDT_HIT();
|
|
// manchester encode bits 31 to 0
|
|
for (i=31; i>=0; i--) {
|
|
if ((i%4)==3) fc(0,&n);
|
|
if ((lo>>i)&1) {
|
|
fc(10, &n); fc(8, &n); // low-high transition
|
|
} else {
|
|
fc(8, &n); fc(10, &n); // high-low transition
|
|
}
|
|
}
|
|
|
|
if (ledcontrol)
|
|
LED_A_ON();
|
|
SimulateTagLowFrequency(n, 0, ledcontrol);
|
|
|
|
if (ledcontrol)
|
|
LED_A_OFF();
|
|
}
|
|
|
|
|
|
// loop to capture raw HID waveform then FSK demodulate the TAG ID from it
|
|
void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
|
|
{
|
|
uint8_t *dest = (uint8_t *)BigBuf;
|
|
int m=0, n=0, i=0, idx=0, found=0, lastval=0;
|
|
uint32_t hi2=0, hi=0, lo=0;
|
|
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
|
|
|
|
// Connect the A/D to the peak-detected low-frequency path.
|
|
SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
|
|
|
|
// Give it a bit of time for the resonant antenna to settle.
|
|
SpinDelay(50);
|
|
|
|
// Now set up the SSC to get the ADC samples that are now streaming at us.
|
|
FpgaSetupSsc();
|
|
|
|
for(;;) {
|
|
WDT_HIT();
|
|
if (ledcontrol)
|
|
LED_A_ON();
|
|
if(BUTTON_PRESS()) {
|
|
DbpString("Stopped");
|
|
if (ledcontrol)
|
|
LED_A_OFF();
|
|
return;
|
|
}
|
|
|
|
i = 0;
|
|
m = sizeof(BigBuf);
|
|
memset(dest,128,m);
|
|
for(;;) {
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
|
|
AT91C_BASE_SSC->SSC_THR = 0x43;
|
|
if (ledcontrol)
|
|
LED_D_ON();
|
|
}
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
|
|
dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
|
|
// we don't care about actual value, only if it's more or less than a
|
|
// threshold essentially we capture zero crossings for later analysis
|
|
if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
|
|
i++;
|
|
if (ledcontrol)
|
|
LED_D_OFF();
|
|
if(i >= m) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// FSK demodulator
|
|
|
|
// sync to first lo-hi transition
|
|
for( idx=1; idx<m; idx++) {
|
|
if (dest[idx-1]<dest[idx])
|
|
lastval=idx;
|
|
break;
|
|
}
|
|
WDT_HIT();
|
|
|
|
// count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
|
|
// or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
|
|
// between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
|
|
for( i=0; idx<m; idx++) {
|
|
if (dest[idx-1]<dest[idx]) {
|
|
dest[i]=idx-lastval;
|
|
if (dest[i] <= 8) {
|
|
dest[i]=1;
|
|
} else {
|
|
dest[i]=0;
|
|
}
|
|
|
|
lastval=idx;
|
|
i++;
|
|
}
|
|
}
|
|
m=i;
|
|
WDT_HIT();
|
|
|
|
// we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
|
|
lastval=dest[0];
|
|
idx=0;
|
|
i=0;
|
|
n=0;
|
|
for( idx=0; idx<m; idx++) {
|
|
if (dest[idx]==lastval) {
|
|
n++;
|
|
} else {
|
|
// a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents,
|
|
// an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets
|
|
// swallowed up by rounding
|
|
// expected results are 1 or 2 bits, any more and it's an invalid manchester encoding
|
|
// special start of frame markers use invalid manchester states (no transitions) by using sequences
|
|
// like 111000
|
|
if (dest[idx-1]) {
|
|
n=(n+1)/6; // fc/8 in sets of 6
|
|
} else {
|
|
n=(n+1)/5; // fc/10 in sets of 5
|
|
}
|
|
switch (n) { // stuff appropriate bits in buffer
|
|
case 0:
|
|
case 1: // one bit
|
|
dest[i++]=dest[idx-1];
|
|
break;
|
|
case 2: // two bits
|
|
dest[i++]=dest[idx-1];
|
|
dest[i++]=dest[idx-1];
|
|
break;
|
|
case 3: // 3 bit start of frame markers
|
|
dest[i++]=dest[idx-1];
|
|
dest[i++]=dest[idx-1];
|
|
dest[i++]=dest[idx-1];
|
|
break;
|
|
// When a logic 0 is immediately followed by the start of the next transmisson
|
|
// (special pattern) a pattern of 4 bit duration lengths is created.
|
|
case 4:
|
|
dest[i++]=dest[idx-1];
|
|
dest[i++]=dest[idx-1];
|
|
dest[i++]=dest[idx-1];
|
|
dest[i++]=dest[idx-1];
|
|
break;
|
|
default: // this shouldn't happen, don't stuff any bits
|
|
break;
|
|
}
|
|
n=0;
|
|
lastval=dest[idx];
|
|
}
|
|
}
|
|
m=i;
|
|
WDT_HIT();
|
|
|
|
// final loop, go over previously decoded manchester data and decode into usable tag ID
|
|
// 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
|
|
for( idx=0; idx<m-6; idx++) {
|
|
// search for a start of frame marker
|
|
if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )
|
|
{
|
|
found=1;
|
|
idx+=6;
|
|
if (found && (hi2|hi|lo)) {
|
|
if (hi2 != 0){
|
|
Dbprintf("TAG ID: %x%08x%08x (%d)",
|
|
(unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
|
|
}
|
|
else {
|
|
Dbprintf("TAG ID: %x%08x (%d)",
|
|
(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
|
|
}
|
|
/* if we're only looking for one tag */
|
|
if (findone)
|
|
{
|
|
*high = hi;
|
|
*low = lo;
|
|
return;
|
|
}
|
|
hi2=0;
|
|
hi=0;
|
|
lo=0;
|
|
found=0;
|
|
}
|
|
}
|
|
if (found) {
|
|
if (dest[idx] && (!dest[idx+1]) ) {
|
|
hi2=(hi2<<1)|(hi>>31);
|
|
hi=(hi<<1)|(lo>>31);
|
|
lo=(lo<<1)|0;
|
|
} else if ( (!dest[idx]) && dest[idx+1]) {
|
|
hi2=(hi2<<1)|(hi>>31);
|
|
hi=(hi<<1)|(lo>>31);
|
|
lo=(lo<<1)|1;
|
|
} else {
|
|
found=0;
|
|
hi2=0;
|
|
hi=0;
|
|
lo=0;
|
|
}
|
|
idx++;
|
|
}
|
|
if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )
|
|
{
|
|
found=1;
|
|
idx+=6;
|
|
if (found && (hi|lo)) {
|
|
if (hi2 != 0){
|
|
Dbprintf("TAG ID: %x%08x%08x (%d)",
|
|
(unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
|
|
}
|
|
else {
|
|
Dbprintf("TAG ID: %x%08x (%d)",
|
|
(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
|
|
}
|
|
/* if we're only looking for one tag */
|
|
if (findone)
|
|
{
|
|
*high = hi;
|
|
*low = lo;
|
|
return;
|
|
}
|
|
hi2=0;
|
|
hi=0;
|
|
lo=0;
|
|
found=0;
|
|
}
|
|
}
|
|
}
|
|
WDT_HIT();
|
|
}
|
|
}
|
|
|
|
/*------------------------------
|
|
* T5555/T5557/T5567 routines
|
|
*------------------------------
|
|
*/
|
|
|
|
/* T55x7 configuration register definitions */
|
|
#define T55x7_POR_DELAY 0x00000001
|
|
#define T55x7_ST_TERMINATOR 0x00000008
|
|
#define T55x7_PWD 0x00000010
|
|
#define T55x7_MAXBLOCK_SHIFT 5
|
|
#define T55x7_AOR 0x00000200
|
|
#define T55x7_PSKCF_RF_2 0
|
|
#define T55x7_PSKCF_RF_4 0x00000400
|
|
#define T55x7_PSKCF_RF_8 0x00000800
|
|
#define T55x7_MODULATION_DIRECT 0
|
|
#define T55x7_MODULATION_PSK1 0x00001000
|
|
#define T55x7_MODULATION_PSK2 0x00002000
|
|
#define T55x7_MODULATION_PSK3 0x00003000
|
|
#define T55x7_MODULATION_FSK1 0x00004000
|
|
#define T55x7_MODULATION_FSK2 0x00005000
|
|
#define T55x7_MODULATION_FSK1a 0x00006000
|
|
#define T55x7_MODULATION_FSK2a 0x00007000
|
|
#define T55x7_MODULATION_MANCHESTER 0x00008000
|
|
#define T55x7_MODULATION_BIPHASE 0x00010000
|
|
#define T55x7_BITRATE_RF_8 0
|
|
#define T55x7_BITRATE_RF_16 0x00040000
|
|
#define T55x7_BITRATE_RF_32 0x00080000
|
|
#define T55x7_BITRATE_RF_40 0x000C0000
|
|
#define T55x7_BITRATE_RF_50 0x00100000
|
|
#define T55x7_BITRATE_RF_64 0x00140000
|
|
#define T55x7_BITRATE_RF_100 0x00180000
|
|
#define T55x7_BITRATE_RF_128 0x001C0000
|
|
|
|
/* T5555 (Q5) configuration register definitions */
|
|
#define T5555_ST_TERMINATOR 0x00000001
|
|
#define T5555_MAXBLOCK_SHIFT 0x00000001
|
|
#define T5555_MODULATION_MANCHESTER 0
|
|
#define T5555_MODULATION_PSK1 0x00000010
|
|
#define T5555_MODULATION_PSK2 0x00000020
|
|
#define T5555_MODULATION_PSK3 0x00000030
|
|
#define T5555_MODULATION_FSK1 0x00000040
|
|
#define T5555_MODULATION_FSK2 0x00000050
|
|
#define T5555_MODULATION_BIPHASE 0x00000060
|
|
#define T5555_MODULATION_DIRECT 0x00000070
|
|
#define T5555_INVERT_OUTPUT 0x00000080
|
|
#define T5555_PSK_RF_2 0
|
|
#define T5555_PSK_RF_4 0x00000100
|
|
#define T5555_PSK_RF_8 0x00000200
|
|
#define T5555_USE_PWD 0x00000400
|
|
#define T5555_USE_AOR 0x00000800
|
|
#define T5555_BITRATE_SHIFT 12
|
|
#define T5555_FAST_WRITE 0x00004000
|
|
#define T5555_PAGE_SELECT 0x00008000
|
|
|
|
/*
|
|
* Relevant times in microsecond
|
|
* To compensate antenna falling times shorten the write times
|
|
* and enlarge the gap ones.
|
|
*/
|
|
#define START_GAP 250
|
|
#define WRITE_GAP 160
|
|
#define WRITE_0 144 // 192
|
|
#define WRITE_1 400 // 432 for T55x7; 448 for E5550
|
|
|
|
// Write one bit to card
|
|
void T55xxWriteBit(int bit)
|
|
{
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
|
|
if (bit == 0)
|
|
SpinDelayUs(WRITE_0);
|
|
else
|
|
SpinDelayUs(WRITE_1);
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
SpinDelayUs(WRITE_GAP);
|
|
}
|
|
|
|
// Write one card block in page 0, no lock
|
|
void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
|
|
{
|
|
unsigned int i;
|
|
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
|
|
|
|
// Give it a bit of time for the resonant antenna to settle.
|
|
// And for the tag to fully power up
|
|
SpinDelay(150);
|
|
|
|
// Now start writting
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
SpinDelayUs(START_GAP);
|
|
|
|
// Opcode
|
|
T55xxWriteBit(1);
|
|
T55xxWriteBit(0); //Page 0
|
|
if (PwdMode == 1){
|
|
// Pwd
|
|
for (i = 0x80000000; i != 0; i >>= 1)
|
|
T55xxWriteBit(Pwd & i);
|
|
}
|
|
// Lock bit
|
|
T55xxWriteBit(0);
|
|
|
|
// Data
|
|
for (i = 0x80000000; i != 0; i >>= 1)
|
|
T55xxWriteBit(Data & i);
|
|
|
|
// Block
|
|
for (i = 0x04; i != 0; i >>= 1)
|
|
T55xxWriteBit(Block & i);
|
|
|
|
// Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
|
|
// so wait a little more)
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
|
|
SpinDelay(20);
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
}
|
|
|
|
// Read one card block in page 0
|
|
void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
|
|
{
|
|
uint8_t *dest = (uint8_t *)BigBuf;
|
|
int m=0, i=0;
|
|
|
|
m = sizeof(BigBuf);
|
|
// Clear destination buffer before sending the command
|
|
memset(dest, 128, m);
|
|
// Connect the A/D to the peak-detected low-frequency path.
|
|
SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
|
|
// Now set up the SSC to get the ADC samples that are now streaming at us.
|
|
FpgaSetupSsc();
|
|
|
|
LED_D_ON();
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
|
|
|
|
// Give it a bit of time for the resonant antenna to settle.
|
|
// And for the tag to fully power up
|
|
SpinDelay(150);
|
|
|
|
// Now start writting
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
SpinDelayUs(START_GAP);
|
|
|
|
// Opcode
|
|
T55xxWriteBit(1);
|
|
T55xxWriteBit(0); //Page 0
|
|
if (PwdMode == 1){
|
|
// Pwd
|
|
for (i = 0x80000000; i != 0; i >>= 1)
|
|
T55xxWriteBit(Pwd & i);
|
|
}
|
|
// Lock bit
|
|
T55xxWriteBit(0);
|
|
// Block
|
|
for (i = 0x04; i != 0; i >>= 1)
|
|
T55xxWriteBit(Block & i);
|
|
|
|
// Turn field on to read the response
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
|
|
|
|
// Now do the acquisition
|
|
i = 0;
|
|
for(;;) {
|
|
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
|
|
AT91C_BASE_SSC->SSC_THR = 0x43;
|
|
}
|
|
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
|
|
dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
|
|
// we don't care about actual value, only if it's more or less than a
|
|
// threshold essentially we capture zero crossings for later analysis
|
|
// if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
|
|
i++;
|
|
if (i >= m) break;
|
|
}
|
|
}
|
|
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
|
|
LED_D_OFF();
|
|
DbpString("DONE!");
|
|
}
|
|
|
|
// Read card traceability data (page 1)
|
|
void T55xxReadTrace(void){
|
|
uint8_t *dest = (uint8_t *)BigBuf;
|
|
int m=0, i=0;
|
|
|
|
m = sizeof(BigBuf);
|
|
// Clear destination buffer before sending the command
|
|
memset(dest, 128, m);
|
|
// Connect the A/D to the peak-detected low-frequency path.
|
|
SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
|
|
// Now set up the SSC to get the ADC samples that are now streaming at us.
|
|
FpgaSetupSsc();
|
|
|
|
LED_D_ON();
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
|
|
|
|
// Give it a bit of time for the resonant antenna to settle.
|
|
// And for the tag to fully power up
|
|
SpinDelay(150);
|
|
|
|
// Now start writting
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
SpinDelayUs(START_GAP);
|
|
|
|
// Opcode
|
|
T55xxWriteBit(1);
|
|
T55xxWriteBit(1); //Page 1
|
|
|
|
// Turn field on to read the response
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
|
|
|
|
// Now do the acquisition
|
|
i = 0;
|
|
for(;;) {
|
|
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
|
|
AT91C_BASE_SSC->SSC_THR = 0x43;
|
|
}
|
|
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
|
|
dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
|
|
i++;
|
|
if (i >= m) break;
|
|
}
|
|
}
|
|
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
|
|
LED_D_OFF();
|
|
DbpString("DONE!");
|
|
}
|
|
|
|
/*-------------- Cloning routines -----------*/
|
|
// Copy HID id to card and setup block 0 config
|
|
void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT)
|
|
{
|
|
int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format
|
|
int last_block = 0;
|
|
|
|
if (longFMT){
|
|
// Ensure no more than 84 bits supplied
|
|
if (hi2>0xFFFFF) {
|
|
DbpString("Tags can only have 84 bits.");
|
|
return;
|
|
}
|
|
// Build the 6 data blocks for supplied 84bit ID
|
|
last_block = 6;
|
|
data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
|
|
for (int i=0;i<4;i++) {
|
|
if (hi2 & (1<<(19-i)))
|
|
data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10
|
|
else
|
|
data1 |= (1<<((3-i)*2)); // 0 -> 01
|
|
}
|
|
|
|
data2 = 0;
|
|
for (int i=0;i<16;i++) {
|
|
if (hi2 & (1<<(15-i)))
|
|
data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
|
|
else
|
|
data2 |= (1<<((15-i)*2)); // 0 -> 01
|
|
}
|
|
|
|
data3 = 0;
|
|
for (int i=0;i<16;i++) {
|
|
if (hi & (1<<(31-i)))
|
|
data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
|
|
else
|
|
data3 |= (1<<((15-i)*2)); // 0 -> 01
|
|
}
|
|
|
|
data4 = 0;
|
|
for (int i=0;i<16;i++) {
|
|
if (hi & (1<<(15-i)))
|
|
data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10
|
|
else
|
|
data4 |= (1<<((15-i)*2)); // 0 -> 01
|
|
}
|
|
|
|
data5 = 0;
|
|
for (int i=0;i<16;i++) {
|
|
if (lo & (1<<(31-i)))
|
|
data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10
|
|
else
|
|
data5 |= (1<<((15-i)*2)); // 0 -> 01
|
|
}
|
|
|
|
data6 = 0;
|
|
for (int i=0;i<16;i++) {
|
|
if (lo & (1<<(15-i)))
|
|
data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10
|
|
else
|
|
data6 |= (1<<((15-i)*2)); // 0 -> 01
|
|
}
|
|
}
|
|
else {
|
|
// Ensure no more than 44 bits supplied
|
|
if (hi>0xFFF) {
|
|
DbpString("Tags can only have 44 bits.");
|
|
return;
|
|
}
|
|
|
|
// Build the 3 data blocks for supplied 44bit ID
|
|
last_block = 3;
|
|
|
|
data1 = 0x1D000000; // load preamble
|
|
|
|
for (int i=0;i<12;i++) {
|
|
if (hi & (1<<(11-i)))
|
|
data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10
|
|
else
|
|
data1 |= (1<<((11-i)*2)); // 0 -> 01
|
|
}
|
|
|
|
data2 = 0;
|
|
for (int i=0;i<16;i++) {
|
|
if (lo & (1<<(31-i)))
|
|
data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
|
|
else
|
|
data2 |= (1<<((15-i)*2)); // 0 -> 01
|
|
}
|
|
|
|
data3 = 0;
|
|
for (int i=0;i<16;i++) {
|
|
if (lo & (1<<(15-i)))
|
|
data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
|
|
else
|
|
data3 |= (1<<((15-i)*2)); // 0 -> 01
|
|
}
|
|
}
|
|
|
|
LED_D_ON();
|
|
// Program the data blocks for supplied ID
|
|
// and the block 0 for HID format
|
|
T55xxWriteBlock(data1,1,0,0);
|
|
T55xxWriteBlock(data2,2,0,0);
|
|
T55xxWriteBlock(data3,3,0,0);
|
|
|
|
if (longFMT) { // if long format there are 6 blocks
|
|
T55xxWriteBlock(data4,4,0,0);
|
|
T55xxWriteBlock(data5,5,0,0);
|
|
T55xxWriteBlock(data6,6,0,0);
|
|
}
|
|
|
|
// Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
|
|
T55xxWriteBlock(T55x7_BITRATE_RF_50 |
|
|
T55x7_MODULATION_FSK2a |
|
|
last_block << T55x7_MAXBLOCK_SHIFT,
|
|
0,0,0);
|
|
|
|
LED_D_OFF();
|
|
|
|
DbpString("DONE!");
|
|
}
|
|
|
|
// Define 9bit header for EM410x tags
|
|
#define EM410X_HEADER 0x1FF
|
|
#define EM410X_ID_LENGTH 40
|
|
|
|
void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo)
|
|
{
|
|
int i, id_bit;
|
|
uint64_t id = EM410X_HEADER;
|
|
uint64_t rev_id = 0; // reversed ID
|
|
int c_parity[4]; // column parity
|
|
int r_parity = 0; // row parity
|
|
uint32_t clock = 0;
|
|
|
|
// Reverse ID bits given as parameter (for simpler operations)
|
|
for (i = 0; i < EM410X_ID_LENGTH; ++i) {
|
|
if (i < 32) {
|
|
rev_id = (rev_id << 1) | (id_lo & 1);
|
|
id_lo >>= 1;
|
|
} else {
|
|
rev_id = (rev_id << 1) | (id_hi & 1);
|
|
id_hi >>= 1;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < EM410X_ID_LENGTH; ++i) {
|
|
id_bit = rev_id & 1;
|
|
|
|
if (i % 4 == 0) {
|
|
// Don't write row parity bit at start of parsing
|
|
if (i)
|
|
id = (id << 1) | r_parity;
|
|
// Start counting parity for new row
|
|
r_parity = id_bit;
|
|
} else {
|
|
// Count row parity
|
|
r_parity ^= id_bit;
|
|
}
|
|
|
|
// First elements in column?
|
|
if (i < 4)
|
|
// Fill out first elements
|
|
c_parity[i] = id_bit;
|
|
else
|
|
// Count column parity
|
|
c_parity[i % 4] ^= id_bit;
|
|
|
|
// Insert ID bit
|
|
id = (id << 1) | id_bit;
|
|
rev_id >>= 1;
|
|
}
|
|
|
|
// Insert parity bit of last row
|
|
id = (id << 1) | r_parity;
|
|
|
|
// Fill out column parity at the end of tag
|
|
for (i = 0; i < 4; ++i)
|
|
id = (id << 1) | c_parity[i];
|
|
|
|
// Add stop bit
|
|
id <<= 1;
|
|
|
|
Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
|
|
LED_D_ON();
|
|
|
|
// Write EM410x ID
|
|
T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0);
|
|
T55xxWriteBlock((uint32_t)id, 2, 0, 0);
|
|
|
|
// Config for EM410x (RF/64, Manchester, Maxblock=2)
|
|
if (card) {
|
|
// Clock rate is stored in bits 8-15 of the card value
|
|
clock = (card & 0xFF00) >> 8;
|
|
Dbprintf("Clock rate: %d", clock);
|
|
switch (clock)
|
|
{
|
|
case 32:
|
|
clock = T55x7_BITRATE_RF_32;
|
|
break;
|
|
case 16:
|
|
clock = T55x7_BITRATE_RF_16;
|
|
break;
|
|
case 0:
|
|
// A value of 0 is assumed to be 64 for backwards-compatibility
|
|
// Fall through...
|
|
case 64:
|
|
clock = T55x7_BITRATE_RF_64;
|
|
break;
|
|
default:
|
|
Dbprintf("Invalid clock rate: %d", clock);
|
|
return;
|
|
}
|
|
|
|
// Writing configuration for T55x7 tag
|
|
T55xxWriteBlock(clock |
|
|
T55x7_MODULATION_MANCHESTER |
|
|
2 << T55x7_MAXBLOCK_SHIFT,
|
|
0, 0, 0);
|
|
}
|
|
else
|
|
// Writing configuration for T5555(Q5) tag
|
|
T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT |
|
|
T5555_MODULATION_MANCHESTER |
|
|
2 << T5555_MAXBLOCK_SHIFT,
|
|
0, 0, 0);
|
|
|
|
LED_D_OFF();
|
|
Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555",
|
|
(uint32_t)(id >> 32), (uint32_t)id);
|
|
}
|
|
|
|
// Clone Indala 64-bit tag by UID to T55x7
|
|
void CopyIndala64toT55x7(int hi, int lo)
|
|
{
|
|
|
|
//Program the 2 data blocks for supplied 64bit UID
|
|
// and the block 0 for Indala64 format
|
|
T55xxWriteBlock(hi,1,0,0);
|
|
T55xxWriteBlock(lo,2,0,0);
|
|
//Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
|
|
T55xxWriteBlock(T55x7_BITRATE_RF_32 |
|
|
T55x7_MODULATION_PSK1 |
|
|
2 << T55x7_MAXBLOCK_SHIFT,
|
|
0, 0, 0);
|
|
//Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
|
|
// T5567WriteBlock(0x603E1042,0);
|
|
|
|
DbpString("DONE!");
|
|
|
|
}
|
|
|
|
void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7)
|
|
{
|
|
|
|
//Program the 7 data blocks for supplied 224bit UID
|
|
// and the block 0 for Indala224 format
|
|
T55xxWriteBlock(uid1,1,0,0);
|
|
T55xxWriteBlock(uid2,2,0,0);
|
|
T55xxWriteBlock(uid3,3,0,0);
|
|
T55xxWriteBlock(uid4,4,0,0);
|
|
T55xxWriteBlock(uid5,5,0,0);
|
|
T55xxWriteBlock(uid6,6,0,0);
|
|
T55xxWriteBlock(uid7,7,0,0);
|
|
//Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
|
|
T55xxWriteBlock(T55x7_BITRATE_RF_32 |
|
|
T55x7_MODULATION_PSK1 |
|
|
7 << T55x7_MAXBLOCK_SHIFT,
|
|
0,0,0);
|
|
//Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
|
|
// T5567WriteBlock(0x603E10E2,0);
|
|
|
|
DbpString("DONE!");
|
|
|
|
}
|
|
|
|
|
|
#define abs(x) ( ((x)<0) ? -(x) : (x) )
|
|
#define max(x,y) ( x<y ? y:x)
|
|
|
|
int DemodPCF7931(uint8_t **outBlocks) {
|
|
uint8_t BitStream[256];
|
|
uint8_t Blocks[8][16];
|
|
uint8_t *GraphBuffer = (uint8_t *)BigBuf;
|
|
int GraphTraceLen = sizeof(BigBuf);
|
|
int i, j, lastval, bitidx, half_switch;
|
|
int clock = 64;
|
|
int tolerance = clock / 8;
|
|
int pmc, block_done;
|
|
int lc, warnings = 0;
|
|
int num_blocks = 0;
|
|
int lmin=128, lmax=128;
|
|
uint8_t dir;
|
|
|
|
AcquireRawAdcSamples125k(0);
|
|
|
|
lmin = 64;
|
|
lmax = 192;
|
|
|
|
i = 2;
|
|
|
|
/* Find first local max/min */
|
|
if(GraphBuffer[1] > GraphBuffer[0]) {
|
|
while(i < GraphTraceLen) {
|
|
if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax)
|
|
break;
|
|
i++;
|
|
}
|
|
dir = 0;
|
|
}
|
|
else {
|
|
while(i < GraphTraceLen) {
|
|
if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin)
|
|
break;
|
|
i++;
|
|
}
|
|
dir = 1;
|
|
}
|
|
|
|
lastval = i++;
|
|
half_switch = 0;
|
|
pmc = 0;
|
|
block_done = 0;
|
|
|
|
for (bitidx = 0; i < GraphTraceLen; i++)
|
|
{
|
|
if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin))
|
|
{
|
|
lc = i - lastval;
|
|
lastval = i;
|
|
|
|
// Switch depending on lc length:
|
|
// Tolerance is 1/8 of clock rate (arbitrary)
|
|
if (abs(lc-clock/4) < tolerance) {
|
|
// 16T0
|
|
if((i - pmc) == lc) { /* 16T0 was previous one */
|
|
/* It's a PMC ! */
|
|
i += (128+127+16+32+33+16)-1;
|
|
lastval = i;
|
|
pmc = 0;
|
|
block_done = 1;
|
|
}
|
|
else {
|
|
pmc = i;
|
|
}
|
|
} else if (abs(lc-clock/2) < tolerance) {
|
|
// 32TO
|
|
if((i - pmc) == lc) { /* 16T0 was previous one */
|
|
/* It's a PMC ! */
|
|
i += (128+127+16+32+33)-1;
|
|
lastval = i;
|
|
pmc = 0;
|
|
block_done = 1;
|
|
}
|
|
else if(half_switch == 1) {
|
|
BitStream[bitidx++] = 0;
|
|
half_switch = 0;
|
|
}
|
|
else
|
|
half_switch++;
|
|
} else if (abs(lc-clock) < tolerance) {
|
|
// 64TO
|
|
BitStream[bitidx++] = 1;
|
|
} else {
|
|
// Error
|
|
warnings++;
|
|
if (warnings > 10)
|
|
{
|
|
Dbprintf("Error: too many detection errors, aborting.");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if(block_done == 1) {
|
|
if(bitidx == 128) {
|
|
for(j=0; j<16; j++) {
|
|
Blocks[num_blocks][j] = 128*BitStream[j*8+7]+
|
|
64*BitStream[j*8+6]+
|
|
32*BitStream[j*8+5]+
|
|
16*BitStream[j*8+4]+
|
|
8*BitStream[j*8+3]+
|
|
4*BitStream[j*8+2]+
|
|
2*BitStream[j*8+1]+
|
|
BitStream[j*8];
|
|
}
|
|
num_blocks++;
|
|
}
|
|
bitidx = 0;
|
|
block_done = 0;
|
|
half_switch = 0;
|
|
}
|
|
if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0;
|
|
else dir = 1;
|
|
}
|
|
if(bitidx==255)
|
|
bitidx=0;
|
|
warnings = 0;
|
|
if(num_blocks == 4) break;
|
|
}
|
|
memcpy(outBlocks, Blocks, 16*num_blocks);
|
|
return num_blocks;
|
|
}
|
|
|
|
int IsBlock0PCF7931(uint8_t *Block) {
|
|
// Assume RFU means 0 :)
|
|
if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
|
|
return 1;
|
|
if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ?
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
int IsBlock1PCF7931(uint8_t *Block) {
|
|
// Assume RFU means 0 :)
|
|
if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0)
|
|
if((Block[14] & 0x7f) <= 9 && Block[15] <= 9)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define ALLOC 16
|
|
|
|
void ReadPCF7931() {
|
|
uint8_t Blocks[8][17];
|
|
uint8_t tmpBlocks[4][16];
|
|
int i, j, ind, ind2, n;
|
|
int num_blocks = 0;
|
|
int max_blocks = 8;
|
|
int ident = 0;
|
|
int error = 0;
|
|
int tries = 0;
|
|
|
|
memset(Blocks, 0, 8*17*sizeof(uint8_t));
|
|
|
|
do {
|
|
memset(tmpBlocks, 0, 4*16*sizeof(uint8_t));
|
|
n = DemodPCF7931((uint8_t**)tmpBlocks);
|
|
if(!n)
|
|
error++;
|
|
if(error==10 && num_blocks == 0) {
|
|
Dbprintf("Error, no tag or bad tag");
|
|
return;
|
|
}
|
|
else if (tries==20 || error==10) {
|
|
Dbprintf("Error reading the tag");
|
|
Dbprintf("Here is the partial content");
|
|
goto end;
|
|
}
|
|
|
|
for(i=0; i<n; i++)
|
|
Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
|
|
tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7],
|
|
tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]);
|
|
if(!ident) {
|
|
for(i=0; i<n; i++) {
|
|
if(IsBlock0PCF7931(tmpBlocks[i])) {
|
|
// Found block 0 ?
|
|
if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) {
|
|
// Found block 1!
|
|
// \o/
|
|
ident = 1;
|
|
memcpy(Blocks[0], tmpBlocks[i], 16);
|
|
Blocks[0][ALLOC] = 1;
|
|
memcpy(Blocks[1], tmpBlocks[i+1], 16);
|
|
Blocks[1][ALLOC] = 1;
|
|
max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1;
|
|
// Debug print
|
|
Dbprintf("(dbg) Max blocks: %d", max_blocks);
|
|
num_blocks = 2;
|
|
// Handle following blocks
|
|
for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) {
|
|
if(j==n) j=0;
|
|
if(j==i) break;
|
|
memcpy(Blocks[ind2], tmpBlocks[j], 16);
|
|
Blocks[ind2][ALLOC] = 1;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
for(i=0; i<n; i++) { // Look for identical block in known blocks
|
|
if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
|
|
for(j=0; j<max_blocks; j++) {
|
|
if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) {
|
|
// Found an identical block
|
|
for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) {
|
|
if(ind2 < 0)
|
|
ind2 = max_blocks;
|
|
if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
|
|
// Dbprintf("Tmp %d -> Block %d", ind, ind2);
|
|
memcpy(Blocks[ind2], tmpBlocks[ind], 16);
|
|
Blocks[ind2][ALLOC] = 1;
|
|
num_blocks++;
|
|
if(num_blocks == max_blocks) goto end;
|
|
}
|
|
}
|
|
for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) {
|
|
if(ind2 > max_blocks)
|
|
ind2 = 0;
|
|
if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
|
|
// Dbprintf("Tmp %d -> Block %d", ind, ind2);
|
|
memcpy(Blocks[ind2], tmpBlocks[ind], 16);
|
|
Blocks[ind2][ALLOC] = 1;
|
|
num_blocks++;
|
|
if(num_blocks == max_blocks) goto end;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
tries++;
|
|
if (BUTTON_PRESS()) return;
|
|
} while (num_blocks != max_blocks);
|
|
end:
|
|
Dbprintf("-----------------------------------------");
|
|
Dbprintf("Memory content:");
|
|
Dbprintf("-----------------------------------------");
|
|
for(i=0; i<max_blocks; i++) {
|
|
if(Blocks[i][ALLOC]==1)
|
|
Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
|
|
Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7],
|
|
Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]);
|
|
else
|
|
Dbprintf("<missing block %d>", i);
|
|
}
|
|
Dbprintf("-----------------------------------------");
|
|
|
|
return ;
|
|
}
|
|
|
|
|
|
//-----------------------------------
|
|
// EM4469 / EM4305 routines
|
|
//-----------------------------------
|
|
#define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
|
|
#define FWD_CMD_WRITE 0xA
|
|
#define FWD_CMD_READ 0x9
|
|
#define FWD_CMD_DISABLE 0x5
|
|
|
|
|
|
uint8_t forwardLink_data[64]; //array of forwarded bits
|
|
uint8_t * forward_ptr; //ptr for forward message preparation
|
|
uint8_t fwd_bit_sz; //forwardlink bit counter
|
|
uint8_t * fwd_write_ptr; //forwardlink bit pointer
|
|
|
|
//====================================================================
|
|
// prepares command bits
|
|
// see EM4469 spec
|
|
//====================================================================
|
|
//--------------------------------------------------------------------
|
|
uint8_t Prepare_Cmd( uint8_t cmd ) {
|
|
//--------------------------------------------------------------------
|
|
|
|
*forward_ptr++ = 0; //start bit
|
|
*forward_ptr++ = 0; //second pause for 4050 code
|
|
|
|
*forward_ptr++ = cmd;
|
|
cmd >>= 1;
|
|
*forward_ptr++ = cmd;
|
|
cmd >>= 1;
|
|
*forward_ptr++ = cmd;
|
|
cmd >>= 1;
|
|
*forward_ptr++ = cmd;
|
|
|
|
return 6; //return number of emited bits
|
|
}
|
|
|
|
//====================================================================
|
|
// prepares address bits
|
|
// see EM4469 spec
|
|
//====================================================================
|
|
|
|
//--------------------------------------------------------------------
|
|
uint8_t Prepare_Addr( uint8_t addr ) {
|
|
//--------------------------------------------------------------------
|
|
|
|
register uint8_t line_parity;
|
|
|
|
uint8_t i;
|
|
line_parity = 0;
|
|
for(i=0;i<6;i++) {
|
|
*forward_ptr++ = addr;
|
|
line_parity ^= addr;
|
|
addr >>= 1;
|
|
}
|
|
|
|
*forward_ptr++ = (line_parity & 1);
|
|
|
|
return 7; //return number of emited bits
|
|
}
|
|
|
|
//====================================================================
|
|
// prepares data bits intreleaved with parity bits
|
|
// see EM4469 spec
|
|
//====================================================================
|
|
|
|
//--------------------------------------------------------------------
|
|
uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
|
|
//--------------------------------------------------------------------
|
|
|
|
register uint8_t line_parity;
|
|
register uint8_t column_parity;
|
|
register uint8_t i, j;
|
|
register uint16_t data;
|
|
|
|
data = data_low;
|
|
column_parity = 0;
|
|
|
|
for(i=0; i<4; i++) {
|
|
line_parity = 0;
|
|
for(j=0; j<8; j++) {
|
|
line_parity ^= data;
|
|
column_parity ^= (data & 1) << j;
|
|
*forward_ptr++ = data;
|
|
data >>= 1;
|
|
}
|
|
*forward_ptr++ = line_parity;
|
|
if(i == 1)
|
|
data = data_hi;
|
|
}
|
|
|
|
for(j=0; j<8; j++) {
|
|
*forward_ptr++ = column_parity;
|
|
column_parity >>= 1;
|
|
}
|
|
*forward_ptr = 0;
|
|
|
|
return 45; //return number of emited bits
|
|
}
|
|
|
|
//====================================================================
|
|
// Forward Link send function
|
|
// Requires: forwarLink_data filled with valid bits (1 bit per byte)
|
|
// fwd_bit_count set with number of bits to be sent
|
|
//====================================================================
|
|
void SendForward(uint8_t fwd_bit_count) {
|
|
|
|
fwd_write_ptr = forwardLink_data;
|
|
fwd_bit_sz = fwd_bit_count;
|
|
|
|
LED_D_ON();
|
|
|
|
//Field on
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
|
|
|
|
// Give it a bit of time for the resonant antenna to settle.
|
|
// And for the tag to fully power up
|
|
SpinDelay(150);
|
|
|
|
// force 1st mod pulse (start gap must be longer for 4305)
|
|
fwd_bit_sz--; //prepare next bit modulation
|
|
fwd_write_ptr++;
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
|
|
SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);//field on
|
|
SpinDelayUs(16*8); //16 cycles on (8us each)
|
|
|
|
// now start writting
|
|
while(fwd_bit_sz-- > 0) { //prepare next bit modulation
|
|
if(((*fwd_write_ptr++) & 1) == 1)
|
|
SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
|
|
else {
|
|
//These timings work for 4469/4269/4305 (with the 55*8 above)
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
|
|
SpinDelayUs(23*8); //16-4 cycles off (8us each)
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);//field on
|
|
SpinDelayUs(9*8); //16 cycles on (8us each)
|
|
}
|
|
}
|
|
}
|
|
|
|
void EM4xLogin(uint32_t Password) {
|
|
|
|
uint8_t fwd_bit_count;
|
|
|
|
forward_ptr = forwardLink_data;
|
|
fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
|
|
fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
|
|
|
|
SendForward(fwd_bit_count);
|
|
|
|
//Wait for command to complete
|
|
SpinDelay(20);
|
|
|
|
}
|
|
|
|
void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
|
|
|
|
uint8_t fwd_bit_count;
|
|
uint8_t *dest = (uint8_t *)BigBuf;
|
|
int m=0, i=0;
|
|
|
|
//If password mode do login
|
|
if (PwdMode == 1) EM4xLogin(Pwd);
|
|
|
|
forward_ptr = forwardLink_data;
|
|
fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
|
|
fwd_bit_count += Prepare_Addr( Address );
|
|
|
|
m = sizeof(BigBuf);
|
|
// Clear destination buffer before sending the command
|
|
memset(dest, 128, m);
|
|
// Connect the A/D to the peak-detected low-frequency path.
|
|
SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
|
|
// Now set up the SSC to get the ADC samples that are now streaming at us.
|
|
FpgaSetupSsc();
|
|
|
|
SendForward(fwd_bit_count);
|
|
|
|
// Now do the acquisition
|
|
i = 0;
|
|
for(;;) {
|
|
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
|
|
AT91C_BASE_SSC->SSC_THR = 0x43;
|
|
}
|
|
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
|
|
dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
|
|
i++;
|
|
if (i >= m) break;
|
|
}
|
|
}
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
|
|
LED_D_OFF();
|
|
}
|
|
|
|
void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
|
|
|
|
uint8_t fwd_bit_count;
|
|
|
|
//If password mode do login
|
|
if (PwdMode == 1) EM4xLogin(Pwd);
|
|
|
|
forward_ptr = forwardLink_data;
|
|
fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
|
|
fwd_bit_count += Prepare_Addr( Address );
|
|
fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
|
|
|
|
SendForward(fwd_bit_count);
|
|
|
|
//Wait for write to complete
|
|
SpinDelay(20);
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
|
|
LED_D_OFF();
|
|
}
|