proxmark3/armsrc/flashmem.c
2018-04-20 16:11:10 +02:00

408 lines
No EOL
9.8 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#include "flashmem.h"
/* here: use NCPS2 @ PA10: */
#define SPI_CSR_NUM 2 // Chip Select register[] 0,1,2,3 (at91samv512 has 4)
/* PCS_0 for NPCS0, PCS_1 for NPCS1 ... */
#define PCS_0 ((0<<0)|(1<<1)|(1<<2)|(1<<3)) // 0xE - 1110
#define PCS_1 ((1<<0)|(0<<1)|(1<<2)|(1<<3)) // 0xD - 1101
#define PCS_2 ((1<<0)|(1<<1)|(0<<2)|(1<<3)) // 0xB - 1011
#define PCS_3 ((1<<0)|(1<<1)|(1<<2)|(0<<3)) // 0x7 - 0111
// TODO
#if (SPI_CSR_NUM == 0)
#define SPI_MR_PCS PCS_0
#elif (SPI_CSR_NUM == 1)
#define SPI_MR_PCS PCS_1
#elif (SPI_CSR_NUM == 2)
#define SPI_MR_PCS PCS_2
#elif (SPI_CSR_NUM == 3)
#define SPI_MR_PCS PCS_3
#else
#error "SPI_CSR_NUM invalid"
// not realy - when using an external address decoder...
// but this code takes over the complete SPI-interace anyway
#endif
/*
读取指令,可以从一个位置开始持续的读,最多能将整块芯片读取完
页写指令每次写入为1-256字节但是不能跨越256字节边界
擦除指令擦除指令后必须将CS拉高否则不会执行
*/
void FlashSetup(void) {
// PA1 -> SPI_NCS3 chip select (MEM)
// PA10 -> SPI_NCS2 chip select (LCD)
// PA11 -> SPI_NCS0 chip select (FPGA)
// PA12 -> SPI_MISO Master-In Slave-Out
// PA13 -> SPI_MOSI Master-Out Slave-In
// PA14 -> SPI_SPCK Serial Clock
// Disable PIO control of the following pins, allows use by the SPI peripheral
AT91C_BASE_PIOA->PIO_PDR = GPIO_NCS0 | GPIO_MISO | GPIO_MOSI | GPIO_SPCK | GPIO_NCS2;
// Pull-up Enable
AT91C_BASE_PIOA->PIO_PPUER = GPIO_NCS0 | GPIO_MISO | GPIO_MOSI | GPIO_SPCK | GPIO_NCS2;
// Peripheral A
AT91C_BASE_PIOA->PIO_ASR = GPIO_NCS0 | GPIO_MISO | GPIO_MOSI | GPIO_SPCK;
// Peripheral B
AT91C_BASE_PIOA->PIO_BSR |= GPIO_NCS2;
//enable the SPI Peripheral clock
AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_SPI);
// Enable SPI
AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SPIEN;
// NPCS2 Mode 0
AT91C_BASE_SPI->SPI_MR =
( 0 << 24) | // Delay between chip selects (take default: 6 MCK periods)
(0xB << 16) | // Peripheral Chip Select (selects SPI_NCS2 or PA10)
( 0 << 7) | // Local Loopback Disabled
( 1 << 4) | // Mode Fault Detection disabled
( 0 << 2) | // Chip selects connected directly to peripheral
( 0 << 1) | // Fixed Peripheral Select
( 1 << 0); // Master Mode
// 8 bit
AT91C_BASE_SPI->SPI_CSR[2] =
( 0 << 24) | // Delay between Consecutive Transfers (32 MCK periods)
( 0 << 16) | // Delay Before SPCK (1 MCK period)
( 6 << 8) | // Serial Clock Baud Rate (baudrate = MCK/6 = 24Mhz/6 = 4M baud
( 0 << 4) | // Bits per Transfer (8 bits)
( 1 << 3) | // Chip Select inactive after transfer
( 1 << 1) | // Clock Phase data captured on leading edge, changes on following edge
( 0 << 0); // Clock Polarity inactive state is logic 0
// read first, empty buffer
if (AT91C_BASE_SPI->SPI_RDR == 0) {};
}
void FlashStop(void) {
//* Reset all the Chip Select register
AT91C_BASE_SPI->SPI_CSR[0] = 0;
AT91C_BASE_SPI->SPI_CSR[1] = 0;
AT91C_BASE_SPI->SPI_CSR[2] = 0;
AT91C_BASE_SPI->SPI_CSR[3] = 0;
// Reset the SPI mode
AT91C_BASE_SPI->SPI_MR = 0;
// Disable all interrupts
AT91C_BASE_SPI->SPI_IDR = 0xFFFFFFFF;
// SPI disable
AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SPIDIS;
if ( MF_DBGLEVEL > 3 ) Dbprintf("FlashStop");
StopTicks();
}
// send one byte over SPI
uint16_t FlashSendByte(uint32_t data) {
uint16_t incoming = 0;
WDT_HIT();
// wait until SPI is ready for transfer
while ((AT91C_BASE_SPI->SPI_SR & AT91C_SPI_TXEMPTY) == 0) {};
// send the data
AT91C_BASE_SPI->SPI_TDR = data;
// wait recive transfer is complete
while ((AT91C_BASE_SPI->SPI_SR & AT91C_SPI_RDRF) == 0)
WDT_HIT();
// reading incoming data
incoming = ((AT91C_BASE_SPI->SPI_RDR) & 0xFFFF);
return incoming;
}
// send last byte over SPI
uint16_t FlashSendLastByte(uint32_t data) {
return FlashSendByte(data | AT91C_SPI_LASTXFER);
}
// read state register 1
uint8_t Flash_ReadStat1(void) {
FlashSendByte(READSTAT1);
uint8_t stat1 = FlashSendLastByte(0xFF);
if ( MF_DBGLEVEL > 3 ) Dbprintf("stat1 [%02x]", stat1);
return stat1;
}
// read state register 2
uint8_t Flash_ReadStat2(void) {
FlashSendByte(READSTAT2);
uint8_t stat2 = FlashSendLastByte(0xFF);
if ( MF_DBGLEVEL > 3 ) Dbprintf("stat2 [%02x]", stat2);
return stat2;
}
// determine whether FLASHMEM is busy
bool Flash_CheckBusy(uint16_t times) {
bool ret = (Flash_ReadStat1() & BUSY);
if (!ret || !times || !(times--))
return ret;
while (times) {
WDT_HIT();
WaitMS(1);
ret = (Flash_ReadStat1() & BUSY);
if (!ret)
break;
times--;
}
return ret;
}
// read ID out
uint8_t Flash_ReadID(void) {
if (Flash_CheckBusy(100)) return 0;
// Manufacture ID / device ID
FlashSendByte(ID);
FlashSendByte(0x00);
FlashSendByte(0x00);
FlashSendByte(0x00);
uint8_t man_id = FlashSendByte(0xFF);
uint8_t dev_id = FlashSendLastByte(0xFF);
if ( MF_DBGLEVEL > 3 ) Dbprintf("Flash ReadID | Man ID %02x | Device ID %02x", man_id, dev_id);
if ( (man_id == WINBOND_MANID ) && (dev_id == WINBOND_DEVID) )
return dev_id;
return 0;
}
// read unique id for chip.
void Flash_UniqueID(uint8_t *uid) {
if (Flash_CheckBusy(100)) return;
// reading unique serial number
FlashSendByte(UNIQUE_ID);
FlashSendByte(0xFF);
FlashSendByte(0xFF);
FlashSendByte(0xFF);
FlashSendByte(0xFF);
uid[7] = FlashSendByte(0xFF);
uid[6] = FlashSendByte(0xFF);
uid[5] = FlashSendByte(0xFF);
uid[4] = FlashSendByte(0xFF);
uid[3] = FlashSendByte(0xFF);
uid[2] = FlashSendByte(0xFF);
uid[1] = FlashSendByte(0xFF);
uid[0] = FlashSendLastByte(0xFF);
}
uint16_t Flash_ReadData(uint32_t address, uint8_t *out, uint16_t len) {
if (!FlashInit()) return 0;
Flash_ReadStat1();
// length should never be zero
if (!len || Flash_CheckBusy(100)) return 0;
FlashSendByte(READDATA);
FlashSendByte((address >> 16) & 0xFF);
FlashSendByte((address >> 8) & 0xFF);
FlashSendByte((address >> 0) & 0xFF);
uint16_t i = 0;
for (; i < (len - 1); i++)
out[i] = FlashSendByte(0xFF);
out[i] = FlashSendLastByte(0xFF);
FlashStop();
return len;
}
// Write data can only program one page. A page has 256 bytes.
// if len > 256, it might wrap around and overwrite pos 0.
uint16_t Flash_WriteData(uint32_t address, uint8_t *in, uint16_t len) {
// length should never be zero
if (!len)
return 0;
// Max 256 bytes write
if (((address & 255) + len) > 256) {
Dbprintf("Flash_WriteData 256 fail");
return 0;
}
// out-of-range
if ( (( address >> 16 ) & 0xFF ) > MAX_BLOCKS) {
Dbprintf("Flash_WriteData, block out-of-range");
return 0;
}
// if 256b, empty out lower index.
if (len == 256)
address &= 0xFFFF00;
if (!FlashInit()) {
Dbprintf("Flash_WriteData init fail");
return 0;
}
Flash_ReadStat1();
Flash_WriteEnable();
FlashSendByte(PAGEPROG);
FlashSendByte((address >> 16) & 0xFF);
FlashSendByte((address >> 8) & 0xFF);
FlashSendByte((address >> 0) & 0xFF);
uint16_t i = 0;
for (; i < (len - 1); i++)
FlashSendByte(in[i]);
FlashSendLastByte(in[i]);
FlashStop();
return len;
}
// Wipes flash memory completely, fills with 0xFF
bool Flash_WipeMemory() {
if (!FlashInit()) {
Dbprintf("Flash_WriteData init fail");
return false;
}
Flash_ReadStat1();
// Each block is 64Kb. Four blocks
// one block erase takes 1s ( 1000ms )
Flash_WriteEnable(); Flash_Erase64k(0); Flash_CheckBusy(1000);
Flash_WriteEnable(); Flash_Erase64k(1); Flash_CheckBusy(1000);
Flash_WriteEnable(); Flash_Erase64k(2); Flash_CheckBusy(1000);
Flash_WriteEnable(); Flash_Erase64k(3); Flash_CheckBusy(1000);
FlashStop();
return true;
}
// enable the flash write
void Flash_WriteEnable() {
FlashSendLastByte(WRITEENABLE);
if ( MF_DBGLEVEL > 3 ) Dbprintf("Flash Write enabled");
}
// erase 4K at one time
// execution time: 0.8ms / 800us
bool Flash_Erase4k(uint8_t block, uint8_t sector) {
if (block > MAX_BLOCKS || sector > MAX_SECTORS) return false;
FlashSendByte(SECTORERASE);
FlashSendByte(block);
FlashSendByte(sector << 4);
FlashSendLastByte(00);
return true;
}
/*
// erase 32K at one time
// execution time: 0,3s / 300ms
bool Flash_Erase32k(uint32_t address) {
if (address & (32*1024 - 1)) {
if ( MF_DBGLEVEL > 1 ) Dbprintf("Flash_Erase32k : Address is not align at 4096");
return false;
}
FlashSendByte(BLOCK32ERASE);
FlashSendByte((address >> 16) & 0xFF);
FlashSendByte((address >> 8) & 0xFF);
FlashSendLastByte((address >> 0) & 0xFF);
return true;
}
*/
// erase 64k at one time
// since a block is 64kb, and there is four blocks.
// we only need block number, as MSB
// execution time: 1s / 1000ms
// 0x00 00 00 -- 0x 00 FF FF == block 0
// 0x01 00 00 -- 0x 01 FF FF == block 1
// 0x02 00 00 -- 0x 02 FF FF == block 2
// 0x03 00 00 -- 0x 03 FF FF == block 3
bool Flash_Erase64k(uint8_t block) {
if (block > MAX_BLOCKS) return false;
FlashSendByte(BLOCK64ERASE);
FlashSendByte(block);
FlashSendByte(0x00);
FlashSendLastByte(0x00);
return true;
}
// Erase chip
void Flash_EraseChip(void) {
FlashSendLastByte(CHIPERASE);
}
// initialize
bool FlashInit(void) {
FlashSetup();
StartTicks();
if (Flash_CheckBusy(100)) {
StopTicks();
return false;
}
if ( MF_DBGLEVEL > 3 ) Dbprintf("FlashInit OK");
return true;
}
void Flashmem_print_status(void) {
DbpString("Flash memory");
if (!FlashInit()) {
DbpString(" init....................FAIL");
return;
}
DbpString(" init....................OK");
uint8_t dev_id = Flash_ReadID();
switch (dev_id) {
case 0x11 :
DbpString(" Memory size.............2 mbits / 256kb");
break;
case 0x10 :
DbpString(" Memory size..... .......1 mbits / 128kb");
break;
case 0x05 :
DbpString(" Memory size.............512 kbits / 64kb");
break;
default :
DbpString(" Device ID............... --> Unknown <--");
break;
}
uint8_t uid[8] = {0,0,0,0,0,0,0,0};
Flash_UniqueID(uid);
Dbprintf(" Unique ID...............0x%02x%02x%02x%02x%02x%02x%02x%02x",
uid[7], uid[6], uid[5], uid[4],
uid[3], uid[2], uid[1], uid[0]
);
FlashStop();
}