mirror of
https://github.com/RfidResearchGroup/proxmark3.git
synced 2024-12-31 04:39:49 +08:00
1934 lines
55 KiB
C
1934 lines
55 KiB
C
//-----------------------------------------------------------------------------
|
|
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
|
|
// at your option, any later version. See the LICENSE.txt file for the text of
|
|
// the license.
|
|
//-----------------------------------------------------------------------------
|
|
// Miscellaneous routines for low frequency tag operations.
|
|
// Tags supported here so far are Texas Instruments (TI), HID, EM4x05, EM410x
|
|
// Also routines for raw mode reading/simulating of LF waveform
|
|
//-----------------------------------------------------------------------------
|
|
|
|
#include "proxmark3.h"
|
|
#include "apps.h"
|
|
#include "util.h"
|
|
#include "hitag2.h"
|
|
#include "crc16.h"
|
|
#include "string.h"
|
|
#include "lfdemod.h"
|
|
#include "lfsampling.h"
|
|
#include "protocols.h"
|
|
#include "usb_cdc.h" // for usb_poll_validate_length
|
|
|
|
#ifndef SHORT_COIL
|
|
# define SHORT_COIL() LOW(GPIO_SSC_DOUT)
|
|
#endif
|
|
#ifndef OPEN_COIL
|
|
# define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
|
|
#endif
|
|
|
|
|
|
#define START_GAP 31*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (15fc)
|
|
#define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (10fc)
|
|
#define WRITE_0 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (24fc)
|
|
#define WRITE_1 50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (56fc) 432 for T55x7; 448 for E5550
|
|
#define READ_GAP 15*8
|
|
|
|
// VALUES TAKEN FROM EM4x function: SendForward
|
|
// START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
|
|
// WRITE_GAP = 128; (16*8)
|
|
// WRITE_1 = 256 32*8; (32*8)
|
|
|
|
// These timings work for 4469/4269/4305 (with the 55*8 above)
|
|
// WRITE_0 = 23*8 , 9*8
|
|
|
|
// Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK)
|
|
// TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz
|
|
// Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier)
|
|
// T0 = TIMER_CLOCK1 / 125000 = 192
|
|
// 1 Cycle = 8 microseconds(us) == 1 field clock
|
|
|
|
// new timer:
|
|
// = 1us = 1.5ticks
|
|
// 1fc = 8us = 12ticks
|
|
|
|
|
|
/**
|
|
* Function to do a modulation and then get samples.
|
|
* @param delay_off
|
|
* @param period_0
|
|
* @param period_1
|
|
* @param command (in binary char array)
|
|
*/
|
|
void ModThenAcquireRawAdcSamples125k(uint32_t delay_off, uint32_t period_0, uint32_t period_1, uint8_t *command) {
|
|
|
|
// start timer
|
|
StartTicks();
|
|
|
|
// use lf config settings
|
|
sample_config *sc = getSamplingConfig();
|
|
|
|
// Make sure the tag is reset
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
WaitMS(500);
|
|
|
|
// clear read buffer
|
|
BigBuf_Clear_keep_EM();
|
|
|
|
LFSetupFPGAForADC(sc->divisor, 1);
|
|
|
|
// little more time for the tag to fully power up
|
|
WaitMS(200);
|
|
|
|
// if delay_off = 0 then just bitbang 1 = antenna on 0 = off for respective periods.
|
|
bool bitbang = delay_off == 0;
|
|
// now modulate the reader field
|
|
if (bitbang) {
|
|
// HACK it appears the loop and if statements take up about 7us so adjust waits accordingly...
|
|
uint8_t hack_cnt = 7;
|
|
if (period_0 < hack_cnt || period_1 < hack_cnt) {
|
|
DbpString("[!] Warning periods cannot be less than 7us in bit bang mode");
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
LED_D_OFF();
|
|
return;
|
|
}
|
|
|
|
// hack2 needed--- it appears to take about 8-16us to turn the antenna back on
|
|
// leading to ~ 1 to 2 125khz samples extra in every off period
|
|
// so we should test for last 0 before next 1 and reduce period_0 by this extra amount...
|
|
// but is this time different for every antenna or other hw builds??? more testing needed
|
|
|
|
// prime cmd_len to save time comparing strings while modulating
|
|
int cmd_len = 0;
|
|
while(command[cmd_len] != '\0' && command[cmd_len] != ' ')
|
|
cmd_len++;
|
|
|
|
int counter = 0;
|
|
bool off = false;
|
|
for (counter = 0; counter < cmd_len; counter++) {
|
|
// if cmd = 0 then turn field off
|
|
if (command[counter] == '0') {
|
|
// if field already off leave alone (affects timing otherwise)
|
|
if (off == false) {
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
LED_D_OFF();
|
|
off = true;
|
|
}
|
|
// note we appear to take about 7us to switch over (or run the if statements/loop...)
|
|
WaitUS(period_0 - hack_cnt);
|
|
// else if cmd = 1 then turn field on
|
|
} else {
|
|
// if field already on leave alone (affects timing otherwise)
|
|
if (off) {
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
|
|
LED_D_ON();
|
|
off = false;
|
|
}
|
|
// note we appear to take about 7us to switch over (or run the if statements/loop...)
|
|
WaitUS(period_1 - hack_cnt);
|
|
}
|
|
}
|
|
} else { // old mode of cmd read using delay as off period
|
|
while(*command != '\0' && *command != ' ') {
|
|
LED_D_ON();
|
|
if (*(command++) == '0')
|
|
TurnReadLFOn(period_0);
|
|
else
|
|
TurnReadLFOn(period_1);
|
|
|
|
LED_D_OFF();
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
WaitUS(delay_off);
|
|
}
|
|
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc->divisor);
|
|
}
|
|
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
|
|
|
|
// now do the read
|
|
DoAcquisition_config(false, 0);
|
|
|
|
// Turn off antenna
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
// tell client we are done
|
|
cmd_send(CMD_ACK,0,0,0,0,0);
|
|
}
|
|
|
|
/* blank r/w tag data stream
|
|
...0000000000000000 01111111
|
|
1010101010101010101010101010101010101010101010101010101010101010
|
|
0011010010100001
|
|
01111111
|
|
101010101010101[0]000...
|
|
|
|
[5555fe852c5555555555555555fe0000]
|
|
*/
|
|
void ReadTItag(void)
|
|
{
|
|
StartTicks();
|
|
// some hardcoded initial params
|
|
// when we read a TI tag we sample the zerocross line at 2Mhz
|
|
// TI tags modulate a 1 as 16 cycles of 123.2Khz
|
|
// TI tags modulate a 0 as 16 cycles of 134.2Khz
|
|
#define FSAMPLE 2000000
|
|
#define FREQLO 123200
|
|
#define FREQHI 134200
|
|
|
|
signed char *dest = (signed char *)BigBuf_get_addr();
|
|
uint16_t n = BigBuf_max_traceLen();
|
|
// 128 bit shift register [shift3:shift2:shift1:shift0]
|
|
uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
|
|
|
|
int i, cycles=0, samples=0;
|
|
// how many sample points fit in 16 cycles of each frequency
|
|
uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
|
|
// when to tell if we're close enough to one freq or another
|
|
uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
|
|
|
|
// TI tags charge at 134.2Khz
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
|
|
|
|
// Place FPGA in passthrough mode, in this mode the CROSS_LO line
|
|
// connects to SSP_DIN and the SSP_DOUT logic level controls
|
|
// whether we're modulating the antenna (high)
|
|
// or listening to the antenna (low)
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
|
|
|
|
// get TI tag data into the buffer
|
|
AcquireTiType();
|
|
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
|
|
for (i=0; i<n-1; i++) {
|
|
// count cycles by looking for lo to hi zero crossings
|
|
if ( (dest[i]<0) && (dest[i+1]>0) ) {
|
|
cycles++;
|
|
// after 16 cycles, measure the frequency
|
|
if (cycles>15) {
|
|
cycles=0;
|
|
samples=i-samples; // number of samples in these 16 cycles
|
|
|
|
// TI bits are coming to us lsb first so shift them
|
|
// right through our 128 bit right shift register
|
|
shift0 = (shift0>>1) | (shift1 << 31);
|
|
shift1 = (shift1>>1) | (shift2 << 31);
|
|
shift2 = (shift2>>1) | (shift3 << 31);
|
|
shift3 >>= 1;
|
|
|
|
// check if the cycles fall close to the number
|
|
// expected for either the low or high frequency
|
|
if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
|
|
// low frequency represents a 1
|
|
shift3 |= (1<<31);
|
|
} else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
|
|
// high frequency represents a 0
|
|
} else {
|
|
// probably detected a gay waveform or noise
|
|
// use this as gaydar or discard shift register and start again
|
|
shift3 = shift2 = shift1 = shift0 = 0;
|
|
}
|
|
samples = i;
|
|
|
|
// for each bit we receive, test if we've detected a valid tag
|
|
|
|
// if we see 17 zeroes followed by 6 ones, we might have a tag
|
|
// remember the bits are backwards
|
|
if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
|
|
// if start and end bytes match, we have a tag so break out of the loop
|
|
if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
|
|
cycles = 0xF0B; //use this as a flag (ugly but whatever)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// if flag is set we have a tag
|
|
if (cycles!=0xF0B) {
|
|
DbpString("Info: No valid tag detected.");
|
|
} else {
|
|
// put 64 bit data into shift1 and shift0
|
|
shift0 = (shift0>>24) | (shift1 << 8);
|
|
shift1 = (shift1>>24) | (shift2 << 8);
|
|
|
|
// align 16 bit crc into lower half of shift2
|
|
shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
|
|
|
|
// if r/w tag, check ident match
|
|
if (shift3 & (1<<15) ) {
|
|
DbpString("Info: TI tag is rewriteable");
|
|
// only 15 bits compare, last bit of ident is not valid
|
|
if (((shift3 >> 16) ^ shift0) & 0x7fff ) {
|
|
DbpString("Error: Ident mismatch!");
|
|
} else {
|
|
DbpString("Info: TI tag ident is valid");
|
|
}
|
|
} else {
|
|
DbpString("Info: TI tag is readonly");
|
|
}
|
|
|
|
// WARNING the order of the bytes in which we calc crc below needs checking
|
|
// i'm 99% sure the crc algorithm is correct, but it may need to eat the
|
|
// bytes in reverse or something
|
|
// calculate CRC
|
|
uint32_t crc=0;
|
|
|
|
crc = update_crc16(crc, (shift0)&0xff);
|
|
crc = update_crc16(crc, (shift0>>8)&0xff);
|
|
crc = update_crc16(crc, (shift0>>16)&0xff);
|
|
crc = update_crc16(crc, (shift0>>24)&0xff);
|
|
crc = update_crc16(crc, (shift1)&0xff);
|
|
crc = update_crc16(crc, (shift1>>8)&0xff);
|
|
crc = update_crc16(crc, (shift1>>16)&0xff);
|
|
crc = update_crc16(crc, (shift1>>24)&0xff);
|
|
|
|
Dbprintf("Info: Tag data: %x%08x, crc=%x", (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
|
|
if (crc != (shift2&0xffff)) {
|
|
Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
|
|
} else {
|
|
DbpString("Info: CRC is good");
|
|
}
|
|
}
|
|
StopTicks();
|
|
}
|
|
|
|
void WriteTIbyte(uint8_t b)
|
|
{
|
|
int i = 0;
|
|
|
|
// modulate 8 bits out to the antenna
|
|
for (i=0; i<8; i++)
|
|
{
|
|
if ( b & ( 1 << i ) ) {
|
|
// stop modulating antenna 1ms
|
|
LOW(GPIO_SSC_DOUT);
|
|
WaitUS(1000);
|
|
// modulate antenna 1ms
|
|
HIGH(GPIO_SSC_DOUT);
|
|
WaitUS(1000);
|
|
} else {
|
|
// stop modulating antenna 0.3ms
|
|
LOW(GPIO_SSC_DOUT);
|
|
WaitUS(300);
|
|
// modulate antenna 1.7ms
|
|
HIGH(GPIO_SSC_DOUT);
|
|
WaitUS(1700);
|
|
}
|
|
}
|
|
}
|
|
|
|
void AcquireTiType(void)
|
|
{
|
|
int i, j, n;
|
|
// tag transmission is <20ms, sampling at 2M gives us 40K samples max
|
|
// each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
|
|
#define TIBUFLEN 1250
|
|
|
|
// clear buffer
|
|
uint32_t *buf = (uint32_t *)BigBuf_get_addr();
|
|
|
|
//clear buffer now so it does not interfere with timing later
|
|
BigBuf_Clear_ext(false);
|
|
|
|
// Set up the synchronous serial port
|
|
AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
|
|
AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
|
|
|
|
// steal this pin from the SSP and use it to control the modulation
|
|
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
|
|
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
|
|
|
|
AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
|
|
AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
|
|
|
|
// Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
|
|
// 48/2 = 24 MHz clock must be divided by 12
|
|
AT91C_BASE_SSC->SSC_CMR = 12;
|
|
|
|
AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
|
|
AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
|
|
AT91C_BASE_SSC->SSC_TCMR = 0;
|
|
AT91C_BASE_SSC->SSC_TFMR = 0;
|
|
// iceman, FpgaSetupSsc() ?? the code above? can it be replaced?
|
|
LED_D_ON();
|
|
|
|
// modulate antenna
|
|
HIGH(GPIO_SSC_DOUT);
|
|
|
|
// Charge TI tag for 50ms.
|
|
WaitMS(50);
|
|
|
|
// stop modulating antenna and listen
|
|
LOW(GPIO_SSC_DOUT);
|
|
|
|
LED_D_OFF();
|
|
|
|
i = 0;
|
|
for(;;) {
|
|
if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
|
|
buf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
|
|
i++; if(i >= TIBUFLEN) break;
|
|
}
|
|
WDT_HIT();
|
|
}
|
|
|
|
// return stolen pin to SSP
|
|
AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
|
|
AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
|
|
|
|
char *dest = (char *)BigBuf_get_addr();
|
|
n = TIBUFLEN * 32;
|
|
|
|
// unpack buffer
|
|
for (i = TIBUFLEN-1; i >= 0; i--) {
|
|
for (j = 0; j < 32; j++) {
|
|
if(buf[i] & (1 << j)) {
|
|
dest[--n] = 1;
|
|
} else {
|
|
dest[--n] = -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
// reset SSC
|
|
FpgaSetupSsc();
|
|
}
|
|
|
|
// arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
|
|
// if crc provided, it will be written with the data verbatim (even if bogus)
|
|
// if not provided a valid crc will be computed from the data and written.
|
|
void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
|
|
{
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
|
|
if(crc == 0) {
|
|
crc = update_crc16(crc, (idlo)&0xff);
|
|
crc = update_crc16(crc, (idlo>>8)&0xff);
|
|
crc = update_crc16(crc, (idlo>>16)&0xff);
|
|
crc = update_crc16(crc, (idlo>>24)&0xff);
|
|
crc = update_crc16(crc, (idhi)&0xff);
|
|
crc = update_crc16(crc, (idhi>>8)&0xff);
|
|
crc = update_crc16(crc, (idhi>>16)&0xff);
|
|
crc = update_crc16(crc, (idhi>>24)&0xff);
|
|
}
|
|
Dbprintf("Writing to tag: %x%08x, crc=%x", idhi, idlo, crc);
|
|
|
|
// TI tags charge at 134.2Khz
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
|
|
// Place FPGA in passthrough mode, in this mode the CROSS_LO line
|
|
// connects to SSP_DIN and the SSP_DOUT logic level controls
|
|
// whether we're modulating the antenna (high)
|
|
// or listening to the antenna (low)
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
|
|
StartTicks();
|
|
|
|
LED_A_ON();
|
|
|
|
// steal this pin from the SSP and use it to control the modulation
|
|
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
|
|
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
|
|
|
|
// writing algorithm:
|
|
// a high bit consists of a field off for 1ms and field on for 1ms
|
|
// a low bit consists of a field off for 0.3ms and field on for 1.7ms
|
|
// initiate a charge time of 50ms (field on) then immediately start writing bits
|
|
// start by writing 0xBB (keyword) and 0xEB (password)
|
|
// then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
|
|
// finally end with 0x0300 (write frame)
|
|
// all data is sent lsb first
|
|
// finish with 50ms programming time
|
|
|
|
// modulate antenna
|
|
HIGH(GPIO_SSC_DOUT);
|
|
WaitMS(50); // charge time
|
|
|
|
WriteTIbyte(0xbb); // keyword
|
|
WriteTIbyte(0xeb); // password
|
|
WriteTIbyte( (idlo )&0xff );
|
|
WriteTIbyte( (idlo>>8 )&0xff );
|
|
WriteTIbyte( (idlo>>16)&0xff );
|
|
WriteTIbyte( (idlo>>24)&0xff );
|
|
WriteTIbyte( (idhi )&0xff );
|
|
WriteTIbyte( (idhi>>8 )&0xff );
|
|
WriteTIbyte( (idhi>>16)&0xff );
|
|
WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
|
|
WriteTIbyte( (crc )&0xff ); // crc lo
|
|
WriteTIbyte( (crc>>8 )&0xff ); // crc hi
|
|
WriteTIbyte(0x00); // write frame lo
|
|
WriteTIbyte(0x03); // write frame hi
|
|
HIGH(GPIO_SSC_DOUT);
|
|
WaitMS(50); // programming time
|
|
|
|
LED_A_OFF();
|
|
|
|
// get TI tag data into the buffer
|
|
AcquireTiType();
|
|
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
DbpString("Now use `lf ti read` to check");
|
|
StopTicks();
|
|
}
|
|
|
|
void SimulateTagLowFrequencyEx(int period, int gap, int ledcontrol, int numcycles) {
|
|
// note this may destroy the bigbuf so be sure this is called before now...
|
|
//FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
|
|
|
|
//FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_TOGGLE_MODE );
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
|
|
SpinDelay(20);
|
|
|
|
int i = 0, x = 0;
|
|
uint8_t *buf = BigBuf_get_addr();
|
|
|
|
// set frequency, get values from 'lf config' command
|
|
sample_config *sc = getSamplingConfig();
|
|
|
|
if ( (sc->divisor == 1) || (sc->divisor < 0) || (sc->divisor > 255) )
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
|
|
else if (sc->divisor == 0)
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
|
|
else
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc->divisor);
|
|
|
|
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
|
|
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
|
|
AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
|
|
|
|
for(;;) {
|
|
|
|
if ( numcycles > -1 ) {
|
|
if ( x != numcycles ) {
|
|
++x;
|
|
} else {
|
|
// exit without turning of field
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (ledcontrol) LED_D_ON();
|
|
|
|
// wait until SSC_CLK goes HIGH
|
|
// used as a simple detection of a reader field?
|
|
while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
|
|
WDT_HIT();
|
|
if ( usb_poll_validate_length() || BUTTON_PRESS() )
|
|
goto OUT;
|
|
}
|
|
|
|
if(buf[i])
|
|
OPEN_COIL();
|
|
else
|
|
SHORT_COIL();
|
|
|
|
//wait until SSC_CLK goes LOW
|
|
while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
|
|
WDT_HIT();
|
|
//if ( usb_poll_validate_length() || BUTTON_PRESS() )
|
|
if ( BUTTON_PRESS() )
|
|
goto OUT;
|
|
}
|
|
|
|
i++;
|
|
if(i == period) {
|
|
i = 0;
|
|
if (gap) {
|
|
SHORT_COIL();
|
|
SpinDelayUs(gap);
|
|
}
|
|
}
|
|
|
|
if (ledcontrol) LED_D_OFF();
|
|
}
|
|
OUT:
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
LED_D_OFF();
|
|
}
|
|
|
|
void SimulateTagLowFrequency(int period, int gap, int ledcontrol) {
|
|
SimulateTagLowFrequencyEx(period, gap, ledcontrol, -1);
|
|
}
|
|
|
|
|
|
#define DEBUG_FRAME_CONTENTS 1
|
|
void SimulateTagLowFrequencyBidir(int divisor, int t0)
|
|
{
|
|
}
|
|
// compose fc/5 fc/8 waveform (FSK1)
|
|
|
|
// compose fc/8 fc/10 waveform (FSK2)
|
|
// also manchester,
|
|
static void fc(int c, int *n)
|
|
{
|
|
uint8_t *dest = BigBuf_get_addr();
|
|
int idx;
|
|
|
|
// for when we want an fc8 pattern every 4 logical bits
|
|
if(c==0) {
|
|
dest[((*n)++)]=1;
|
|
dest[((*n)++)]=1;
|
|
dest[((*n)++)]=1;
|
|
dest[((*n)++)]=1;
|
|
dest[((*n)++)]=0;
|
|
dest[((*n)++)]=0;
|
|
dest[((*n)++)]=0;
|
|
dest[((*n)++)]=0;
|
|
}
|
|
|
|
// an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples
|
|
if(c==8) {
|
|
for (idx=0; idx<6; idx++) {
|
|
dest[((*n)++)]=1;
|
|
dest[((*n)++)]=1;
|
|
dest[((*n)++)]=1;
|
|
dest[((*n)++)]=1;
|
|
dest[((*n)++)]=0;
|
|
dest[((*n)++)]=0;
|
|
dest[((*n)++)]=0;
|
|
dest[((*n)++)]=0;
|
|
}
|
|
}
|
|
|
|
// an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
|
|
if(c==10) {
|
|
for (idx=0; idx<5; idx++) {
|
|
dest[((*n)++)]=1;
|
|
dest[((*n)++)]=1;
|
|
dest[((*n)++)]=1;
|
|
dest[((*n)++)]=1;
|
|
dest[((*n)++)]=1;
|
|
dest[((*n)++)]=0;
|
|
dest[((*n)++)]=0;
|
|
dest[((*n)++)]=0;
|
|
dest[((*n)++)]=0;
|
|
dest[((*n)++)]=0;
|
|
}
|
|
}
|
|
}
|
|
|
|
// special start of frame marker containing invalid bit sequences
|
|
// this one is focused on HID, with manchester encoding.
|
|
static void fcSTT(int *n) {
|
|
fc(8, n); fc(8, n); // invalid
|
|
fc(8, n); fc(10, n); // logical 0
|
|
fc(10, n); fc(10, n); // invalid
|
|
fc(8, n); fc(10, n); // logical 0
|
|
}
|
|
|
|
// compose fc/X fc/Y waveform (FSKx)
|
|
static void fcAll(uint8_t fc, int *n, uint8_t clock, uint16_t *modCnt)
|
|
{
|
|
uint8_t *dest = BigBuf_get_addr();
|
|
uint8_t halfFC = fc/2;
|
|
uint8_t wavesPerClock = clock/fc;
|
|
uint8_t mod = clock % fc; //modifier
|
|
uint8_t modAdj = fc/mod; //how often to apply modifier
|
|
bool modAdjOk = !(fc % mod); //if (fc % mod==0) modAdjOk = true;
|
|
|
|
// loop through clock - step field clock
|
|
for (uint8_t idx=0; idx < wavesPerClock; idx++){
|
|
// put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
|
|
memset(dest+(*n), 0, fc-halfFC); //in case of odd number use extra here
|
|
memset(dest+(*n)+(fc-halfFC), 1, halfFC);
|
|
*n += fc;
|
|
}
|
|
if (mod>0) (*modCnt)++;
|
|
if ((mod>0) && modAdjOk){ //fsk2
|
|
if ((*modCnt % modAdj) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
|
|
memset(dest+(*n), 0, fc-halfFC);
|
|
memset(dest+(*n)+(fc-halfFC), 1, halfFC);
|
|
*n += fc;
|
|
}
|
|
}
|
|
if (mod>0 && !modAdjOk){ //fsk1
|
|
memset(dest+(*n), 0, mod-(mod/2));
|
|
memset(dest+(*n)+(mod-(mod/2)), 1, mod/2);
|
|
*n += mod;
|
|
}
|
|
}
|
|
|
|
// prepare a waveform pattern in the buffer based on the ID given then
|
|
// simulate a HID tag until the button is pressed
|
|
void CmdHIDsimTAGEx( uint32_t hi, uint32_t lo, int ledcontrol, int numcycles) {
|
|
|
|
if (hi > 0xFFF) {
|
|
DbpString("[!] tags can only have 44 bits. - USE lf simfsk for larger tags");
|
|
return;
|
|
}
|
|
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
|
|
set_tracing(false);
|
|
|
|
int n = 0, i = 0;
|
|
/*
|
|
HID tag bitstream format
|
|
The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
|
|
A 1 bit is represented as 6 fc8 and 5 fc10 patterns (manchester 10) during 2 clock periods. (1bit = 1clock period)
|
|
A 0 bit is represented as 5 fc10 and 6 fc8 patterns (manchester 01)
|
|
A fc8 is inserted before every 4 bits
|
|
A special start of frame pattern is used consisting a0b0 where a and b are neither 0
|
|
nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
|
|
|
|
FSK2a
|
|
bit 1 = fc10
|
|
bit 0 = fc8
|
|
*/
|
|
|
|
fc(0, &n);
|
|
|
|
// special start of frame marker containing invalid bit sequences
|
|
fcSTT(&n);
|
|
|
|
// manchester encode bits 43 to 32
|
|
for (i=11; i>=0; i--) {
|
|
|
|
if ((i%4)==3) fc(0, &n);
|
|
|
|
if ((hi>>i) & 1) {
|
|
fc(10, &n); fc(8, &n); // low-high transition
|
|
} else {
|
|
fc(8, &n); fc(10, &n); // high-low transition
|
|
}
|
|
}
|
|
|
|
// manchester encode bits 31 to 0
|
|
for (i=31; i>=0; i--) {
|
|
|
|
if ((i%4)==3) fc(0, &n);
|
|
|
|
if ((lo>>i) & 1) {
|
|
fc(10, &n); fc(8, &n); // low-high transition
|
|
} else {
|
|
fc(8, &n); fc(10, &n); // high-low transition
|
|
}
|
|
}
|
|
|
|
if (ledcontrol) LED_A_ON();
|
|
SimulateTagLowFrequencyEx(n, 0, ledcontrol, numcycles);
|
|
if (ledcontrol) LED_A_OFF();
|
|
}
|
|
|
|
void CmdHIDsimTAG( uint32_t hi, uint32_t lo, int ledcontrol) {
|
|
CmdHIDsimTAGEx( hi, lo, ledcontrol, -1);
|
|
}
|
|
|
|
// prepare a waveform pattern in the buffer based on the ID given then
|
|
// simulate a FSK tag until the button is pressed
|
|
// arg1 contains fcHigh and fcLow, arg2 contains STT marker and clock
|
|
void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *bits) {
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
|
|
|
|
// free eventually allocated BigBuf memory
|
|
BigBuf_free(); BigBuf_Clear_ext(false);
|
|
clear_trace();
|
|
set_tracing(false);
|
|
|
|
int ledcontrol = 1, n = 0, i = 0;
|
|
uint8_t fcHigh = arg1 >> 8;
|
|
uint8_t fcLow = arg1 & 0xFF;
|
|
uint16_t modCnt = 0;
|
|
uint8_t clk = arg2 & 0xFF;
|
|
uint8_t stt = (arg2 >> 8) & 1;
|
|
|
|
if ( stt ) {
|
|
//int fsktype = ( fcHigh == 8 && fcLow == 5) ? 1 : 2;
|
|
//fcSTT(&n);
|
|
}
|
|
|
|
for (i=0; i<size; i++){
|
|
if (bits[i])
|
|
fcAll(fcLow, &n, clk, &modCnt);
|
|
else
|
|
fcAll(fcHigh, &n, clk, &modCnt);
|
|
}
|
|
|
|
WDT_HIT();
|
|
|
|
Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, STT: %d, n: %d", fcHigh, fcLow, clk, stt, n);
|
|
|
|
if (ledcontrol) LED_A_ON();
|
|
SimulateTagLowFrequency(n, 0, ledcontrol);
|
|
if (ledcontrol) LED_A_OFF();
|
|
}
|
|
|
|
// compose ask waveform for one bit(ASK)
|
|
static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester)
|
|
{
|
|
uint8_t *dest = BigBuf_get_addr();
|
|
uint8_t halfClk = clock/2;
|
|
// c = current bit 1 or 0
|
|
if (manchester==1){
|
|
memset(dest+(*n), c, halfClk);
|
|
memset(dest+(*n) + halfClk, c^1, halfClk);
|
|
} else {
|
|
memset(dest+(*n), c, clock);
|
|
}
|
|
*n += clock;
|
|
}
|
|
|
|
static void biphaseSimBit(uint8_t c, int *n, uint8_t clock, uint8_t *phase)
|
|
{
|
|
uint8_t *dest = BigBuf_get_addr();
|
|
uint8_t halfClk = clock/2;
|
|
if (c){
|
|
memset(dest+(*n), c ^ 1 ^ *phase, halfClk);
|
|
memset(dest+(*n) + halfClk, c ^ *phase, halfClk);
|
|
} else {
|
|
memset(dest+(*n), c ^ *phase, clock);
|
|
*phase ^= 1;
|
|
}
|
|
*n += clock;
|
|
}
|
|
|
|
static void stAskSimBit(int *n, uint8_t clock) {
|
|
uint8_t *dest = BigBuf_get_addr();
|
|
uint8_t halfClk = clock/2;
|
|
//ST = .5 high .5 low 1.5 high .5 low 1 high
|
|
memset(dest+(*n), 1, halfClk);
|
|
memset(dest+(*n) + halfClk, 0, halfClk);
|
|
memset(dest+(*n) + clock, 1, clock + halfClk);
|
|
memset(dest+(*n) + clock*2 + halfClk, 0, halfClk);
|
|
memset(dest+(*n) + clock*3, 1, clock);
|
|
*n += clock*4;
|
|
}
|
|
|
|
// args clock, ask/man or askraw, invert, transmission separator
|
|
void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
|
|
{
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
|
|
set_tracing(false);
|
|
|
|
int ledcontrol = 1, n = 0, i = 0;
|
|
uint8_t clk = (arg1 >> 8) & 0xFF;
|
|
uint8_t encoding = arg1 & 0xFF;
|
|
uint8_t separator = arg2 & 1;
|
|
uint8_t invert = (arg2 >> 8) & 1;
|
|
|
|
if (encoding == 2){ //biphase
|
|
uint8_t phase = 0;
|
|
for (i=0; i<size; i++){
|
|
biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
|
|
}
|
|
if (phase == 1) { //run a second set inverted to keep phase in check
|
|
for (i=0; i<size; i++){
|
|
biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
|
|
}
|
|
}
|
|
} else { // ask/manchester || ask/raw
|
|
for (i=0; i<size; i++){
|
|
askSimBit(BitStream[i]^invert, &n, clk, encoding);
|
|
}
|
|
if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for ask/raw || biphase phase)
|
|
for (i=0; i<size; i++){
|
|
askSimBit(BitStream[i]^invert^1, &n, clk, encoding);
|
|
}
|
|
}
|
|
}
|
|
if (separator==1 && encoding == 1)
|
|
stAskSimBit(&n, clk);
|
|
else if (separator==1)
|
|
Dbprintf("sorry but separator option not yet available");
|
|
|
|
WDT_HIT();
|
|
|
|
Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk, invert, encoding, separator, n);
|
|
|
|
if (ledcontrol) LED_A_ON();
|
|
SimulateTagLowFrequency(n, 0, ledcontrol);
|
|
if (ledcontrol) LED_A_OFF();
|
|
}
|
|
|
|
//carrier can be 2,4 or 8
|
|
static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg)
|
|
{
|
|
uint8_t *dest = BigBuf_get_addr();
|
|
uint8_t halfWave = waveLen/2;
|
|
//uint8_t idx;
|
|
int i = 0;
|
|
if (phaseChg){
|
|
// write phase change
|
|
memset(dest+(*n), *curPhase^1, halfWave);
|
|
memset(dest+(*n) + halfWave, *curPhase, halfWave);
|
|
*n += waveLen;
|
|
*curPhase ^= 1;
|
|
i += waveLen;
|
|
}
|
|
//write each normal clock wave for the clock duration
|
|
for (; i < clk; i+=waveLen){
|
|
memset(dest+(*n), *curPhase, halfWave);
|
|
memset(dest+(*n) + halfWave, *curPhase^1, halfWave);
|
|
*n += waveLen;
|
|
}
|
|
}
|
|
|
|
// args clock, carrier, invert,
|
|
void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
|
|
{
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
|
|
set_tracing(false);
|
|
|
|
int ledcontrol = 1, n = 0, i = 0;
|
|
uint8_t clk = arg1 >> 8;
|
|
uint8_t carrier = arg1 & 0xFF;
|
|
uint8_t invert = arg2 & 0xFF;
|
|
uint8_t curPhase = 0;
|
|
for (i=0; i<size; i++){
|
|
if (BitStream[i] == curPhase){
|
|
pskSimBit(carrier, &n, clk, &curPhase, false);
|
|
} else {
|
|
pskSimBit(carrier, &n, clk, &curPhase, true);
|
|
}
|
|
}
|
|
|
|
WDT_HIT();
|
|
|
|
Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n);
|
|
|
|
if (ledcontrol) LED_A_ON();
|
|
SimulateTagLowFrequency(n, 0, ledcontrol);
|
|
if (ledcontrol) LED_A_OFF();
|
|
}
|
|
|
|
// loop to get raw HID waveform then FSK demodulate the TAG ID from it
|
|
void CmdHIDdemodFSK(int findone, uint32_t *high, uint32_t *low, int ledcontrol) {
|
|
uint8_t *dest = BigBuf_get_addr();
|
|
size_t size = 0;
|
|
uint32_t hi2 = 0, hi = 0, lo = 0;
|
|
int idx = 0;
|
|
int dummyIdx = 0;
|
|
// Configure to go in 125Khz listen mode
|
|
LFSetupFPGAForADC(95, true);
|
|
|
|
//clear read buffer
|
|
BigBuf_Clear_keep_EM();
|
|
|
|
while( !BUTTON_PRESS() && !usb_poll_validate_length()) {
|
|
|
|
WDT_HIT();
|
|
if (ledcontrol) LED_A_ON();
|
|
|
|
DoAcquisition_default(-1, true);
|
|
// FSK demodulator
|
|
size = 50*128*2; //big enough to catch 2 sequences of largest format
|
|
idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo, &dummyIdx);
|
|
if ( idx < 0 ) continue;
|
|
|
|
if (idx>0 && lo>0 && (size==96 || size==192)){
|
|
// go over previously decoded manchester data and decode into usable tag ID
|
|
if (hi2 != 0){ //extra large HID tags 88/192 bits
|
|
Dbprintf("TAG ID: %x%08x%08x (%d)",
|
|
hi2,
|
|
hi,
|
|
lo,
|
|
(lo >> 1) & 0xFFFF
|
|
);
|
|
} else { //standard HID tags 44/96 bits
|
|
uint8_t bitlen = 0;
|
|
uint32_t fc = 0;
|
|
uint32_t cardnum = 0;
|
|
|
|
if (((hi >> 5) & 1) == 1){//if bit 38 is set then < 37 bit format is used
|
|
uint32_t lo2 = 0;
|
|
lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
|
|
uint8_t idx3 = 1;
|
|
while (lo2 > 1){ //find last bit set to 1 (format len bit)
|
|
lo2 >>= 1;
|
|
idx3++;
|
|
}
|
|
bitlen = idx3 + 19;
|
|
fc = 0;
|
|
cardnum = 0;
|
|
if (bitlen == 26){
|
|
cardnum = (lo >> 1) & 0xFFFF;
|
|
fc = (lo >> 17) & 0xFF;
|
|
}
|
|
if (bitlen == 37){
|
|
cardnum = (lo >> 1 ) & 0x7FFFF;
|
|
fc = ((hi & 0xF) << 12) | (lo >> 20);
|
|
}
|
|
if (bitlen == 34){
|
|
cardnum = (lo >> 1) & 0xFFFF;
|
|
fc = ((hi & 1) << 15) | (lo >> 17);
|
|
}
|
|
if (bitlen == 35){
|
|
cardnum = (lo >> 1) & 0xFFFFF;
|
|
fc = ((hi & 1) << 11)|(lo >> 21);
|
|
}
|
|
}
|
|
else { //if bit 38 is not set then 37 bit format is used
|
|
bitlen= 37;
|
|
fc = 0;
|
|
cardnum = 0;
|
|
if (bitlen == 37){
|
|
cardnum = (lo >> 1) & 0x7FFFF;
|
|
fc = ((hi & 0xF) << 12) | (lo >> 20);
|
|
}
|
|
}
|
|
Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
|
|
hi,
|
|
lo,
|
|
(lo >> 1) & 0xFFFF,
|
|
bitlen,
|
|
fc,
|
|
cardnum
|
|
);
|
|
}
|
|
if (findone){
|
|
if (ledcontrol) LED_A_OFF();
|
|
*high = hi;
|
|
*low = lo;
|
|
break;
|
|
}
|
|
// reset
|
|
}
|
|
hi2 = hi = lo = idx = 0;
|
|
}
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
DbpString("Stopped");
|
|
if (ledcontrol) LED_A_OFF();
|
|
}
|
|
|
|
// loop to get raw HID waveform then FSK demodulate the TAG ID from it
|
|
void CmdAWIDdemodFSK(int findone, uint32_t *high, uint32_t *low, int ledcontrol) {
|
|
|
|
uint8_t *dest = BigBuf_get_addr();
|
|
|
|
//big enough to catch 2 sequences of largest format
|
|
size_t size = 12800; //50 * 128 * 2;
|
|
|
|
int idx = 0, dummyIdx = 0;
|
|
|
|
BigBuf_Clear_keep_EM();
|
|
|
|
LFSetupFPGAForADC(95, true);
|
|
|
|
while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
|
|
|
|
WDT_HIT();
|
|
if (ledcontrol) LED_A_ON();
|
|
|
|
DoAcquisition_default(-1, true);
|
|
// FSK demodulator
|
|
|
|
idx = detectAWID(dest, &size, &dummyIdx);
|
|
|
|
if (idx <= 0 || size != 96) continue;
|
|
// Index map
|
|
// 0 10 20 30 40 50 60
|
|
// | | | | | | |
|
|
// 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
|
|
// -----------------------------------------------------------------------------
|
|
// 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
|
|
// premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
|
|
// |---26 bit---| |-----117----||-------------142-------------|
|
|
// b = format bit len, o = odd parity of last 3 bits
|
|
// f = facility code, c = card number
|
|
// w = wiegand parity
|
|
// (26 bit format shown)
|
|
|
|
//get raw ID before removing parities
|
|
uint32_t rawLo = bytebits_to_byte(dest+idx+64, 32);
|
|
uint32_t rawHi = bytebits_to_byte(dest+idx+32, 32);
|
|
uint32_t rawHi2 = bytebits_to_byte(dest+idx, 32);
|
|
|
|
size = removeParity(dest, idx+8, 4, 1, 88);
|
|
if (size != 66) continue;
|
|
// ok valid card found!
|
|
|
|
// Index map
|
|
// 0 10 20 30 40 50 60
|
|
// | | | | | | |
|
|
// 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
|
|
// -----------------------------------------------------------------------------
|
|
// 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
|
|
// bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
|
|
// |26 bit| |-117--| |-----142------|
|
|
// b = format bit len, o = odd parity of last 3 bits
|
|
// f = facility code, c = card number
|
|
// w = wiegand parity
|
|
// (26 bit format shown)
|
|
|
|
uint32_t fc = 0;
|
|
uint32_t cardnum = 0;
|
|
uint32_t code1 = 0;
|
|
uint32_t code2 = 0;
|
|
uint8_t fmtLen = bytebits_to_byte(dest, 8);
|
|
if (fmtLen == 26){
|
|
fc = bytebits_to_byte(dest+9, 8);
|
|
cardnum = bytebits_to_byte(dest+17, 16);
|
|
code1 = bytebits_to_byte(dest+8, fmtLen);
|
|
Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo);
|
|
} else {
|
|
cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16);
|
|
if (fmtLen > 32){
|
|
code1 = bytebits_to_byte(dest+8, fmtLen-32);
|
|
code2 = bytebits_to_byte(dest+8+(fmtLen-32), 32);
|
|
Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo);
|
|
} else{
|
|
code1 = bytebits_to_byte(dest+8, fmtLen);
|
|
Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo);
|
|
}
|
|
}
|
|
if (findone){
|
|
if (ledcontrol) LED_A_OFF();
|
|
*high = rawHi;
|
|
*low = rawLo;
|
|
break;
|
|
}
|
|
// reset
|
|
idx = 0;
|
|
WDT_HIT();
|
|
}
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
DbpString("Stopped");
|
|
if (ledcontrol) LED_A_OFF();
|
|
}
|
|
|
|
void CmdEM410xdemod(int findone, uint32_t *high, uint64_t *low, int ledcontrol) {
|
|
uint8_t *dest = BigBuf_get_addr();
|
|
|
|
size_t size = 0, idx = 0;
|
|
int clk = 0, invert = 0, errCnt = 0, maxErr = 20;
|
|
uint32_t hi = 0;
|
|
uint64_t lo = 0;
|
|
|
|
BigBuf_Clear_keep_EM();
|
|
|
|
LFSetupFPGAForADC(95, true);
|
|
|
|
while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
|
|
|
|
WDT_HIT();
|
|
if (ledcontrol) LED_A_ON();
|
|
|
|
DoAcquisition_default(-1, true);
|
|
size = BigBuf_max_traceLen();
|
|
//askdemod and manchester decode
|
|
if (size > 16385) size = 16385; //big enough to catch 2 sequences of largest format
|
|
errCnt = askdemod(dest, &size, &clk, &invert, maxErr, 0, 1);
|
|
WDT_HIT();
|
|
|
|
if (errCnt < 0) continue;
|
|
|
|
errCnt = Em410xDecode(dest, &size, &idx, &hi, &lo);
|
|
if (errCnt){
|
|
if (size == 128){
|
|
Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)",
|
|
hi,
|
|
(uint32_t)(lo >> 32),
|
|
(uint32_t)lo,
|
|
(uint32_t)(lo & 0xFFFF),
|
|
(uint32_t)((lo >> 16LL) & 0xFF),
|
|
(uint32_t)(lo & 0xFFFFFF));
|
|
} else {
|
|
Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
|
|
(uint32_t)(lo >> 32),
|
|
(uint32_t)lo,
|
|
(uint32_t)(lo & 0xFFFF),
|
|
(uint32_t)((lo >> 16LL) & 0xFF),
|
|
(uint32_t)(lo & 0xFFFFFF));
|
|
}
|
|
|
|
if (findone){
|
|
if (ledcontrol) LED_A_OFF();
|
|
*high = hi;
|
|
*low = lo;
|
|
break;
|
|
}
|
|
}
|
|
WDT_HIT();
|
|
hi = lo = size = idx = 0;
|
|
clk = invert = errCnt = 0;
|
|
}
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
DbpString("Stopped");
|
|
if (ledcontrol) LED_A_OFF();
|
|
}
|
|
|
|
void CmdIOdemodFSK(int findone, uint32_t *high, uint32_t *low, int ledcontrol) {
|
|
|
|
uint8_t *dest = BigBuf_get_addr();
|
|
|
|
int dummyIdx = 0, idx = 0;
|
|
uint32_t code = 0, code2 = 0;
|
|
uint8_t version = 0, facilitycode = 0, crc = 0;
|
|
uint16_t number = 0, calccrc = 0;
|
|
|
|
size_t size = BigBuf_max_traceLen();
|
|
|
|
BigBuf_Clear_keep_EM();
|
|
|
|
// Configure to go in 125Khz listen mode
|
|
LFSetupFPGAForADC(95, true);
|
|
|
|
while (!BUTTON_PRESS() && !usb_poll_validate_length()) {
|
|
WDT_HIT();
|
|
if (ledcontrol) LED_A_ON();
|
|
DoAcquisition_default(-1,true);
|
|
//fskdemod and get start index
|
|
WDT_HIT();
|
|
idx = detectIOProx(dest, &size, &dummyIdx);
|
|
if (idx < 0) continue;
|
|
//valid tag found
|
|
|
|
//Index map
|
|
//0 10 20 30 40 50 60
|
|
//| | | | | | |
|
|
//01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
|
|
//-----------------------------------------------------------------------------
|
|
//00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 checksum 11
|
|
//
|
|
//Checksum:
|
|
//00000000 0 11110000 1 11100000 1 00000001 1 00000011 1 10110110 1 01110101 11
|
|
//preamble F0 E0 01 03 B6 75
|
|
// How to calc checksum,
|
|
// http://www.proxmark.org/forum/viewtopic.php?id=364&p=6
|
|
// F0 + E0 + 01 + 03 + B6 = 28A
|
|
// 28A & FF = 8A
|
|
// FF - 8A = 75
|
|
// Checksum: 0x75
|
|
//XSF(version)facility:codeone+codetwo
|
|
//Handle the data
|
|
// if(findone){ //only print binary if we are doing one
|
|
// Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
|
|
// Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
|
|
// Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
|
|
// Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
|
|
// Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
|
|
// Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
|
|
// Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
|
|
// }
|
|
code = bytebits_to_byte(dest+idx, 32);
|
|
code2 = bytebits_to_byte(dest+idx+32, 32);
|
|
version = bytebits_to_byte(dest+idx+27, 8); //14,4
|
|
facilitycode = bytebits_to_byte(dest+idx+18, 8);
|
|
number = (bytebits_to_byte(dest+idx+36, 8) << 8) | (bytebits_to_byte(dest+idx+45, 8)); //36,9
|
|
|
|
crc = bytebits_to_byte(dest+idx+54, 8);
|
|
for (uint8_t i=1; i<6; ++i)
|
|
calccrc += bytebits_to_byte(dest+idx+9*i, 8);
|
|
calccrc &= 0xff;
|
|
calccrc = 0xff - calccrc;
|
|
|
|
char *crcStr = (crc == calccrc) ? "ok" : "!crc";
|
|
|
|
Dbprintf("IO Prox XSF(%02d)%02x:%05d (%08x%08x) [%02x %s]", version, facilitycode, number, code, code2, crc, crcStr);
|
|
// if we're only looking for one tag
|
|
if (findone){
|
|
if (ledcontrol) LED_A_OFF();
|
|
*high = code;
|
|
*low = code2;
|
|
break;
|
|
}
|
|
code = code2 = 0;
|
|
version = facilitycode = 0;
|
|
number = 0;
|
|
idx = 0;
|
|
|
|
WDT_HIT();
|
|
}
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
DbpString("Stopped");
|
|
if (ledcontrol) LED_A_OFF();
|
|
}
|
|
|
|
/*------------------------------
|
|
* T5555/T5557/T5567/T5577 routines
|
|
*------------------------------
|
|
* NOTE: T55x7/T5555 configuration register definitions moved to protocols.h
|
|
*
|
|
* Relevant communication times in microsecond
|
|
* To compensate antenna falling times shorten the write times
|
|
* and enlarge the gap ones.
|
|
* Q5 tags seems to have issues when these values changes.
|
|
*/
|
|
|
|
void TurnReadLFOn(uint32_t delay) {
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
|
|
|
|
// measure antenna strength.
|
|
//int adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
|
|
|
|
// Give it a bit of time for the resonant antenna to settle.
|
|
WaitUS(delay);
|
|
}
|
|
void TurnReadLF_off(uint32_t delay) {
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
WaitUS(delay);
|
|
}
|
|
|
|
// Write one bit to card
|
|
void T55xxWriteBit(int bit) {
|
|
if (!bit)
|
|
TurnReadLFOn(WRITE_0);
|
|
else
|
|
TurnReadLFOn(WRITE_1);
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
WaitUS(WRITE_GAP);
|
|
}
|
|
|
|
// Send T5577 reset command then read stream (see if we can identify the start of the stream)
|
|
void T55xxResetRead(void) {
|
|
LED_A_ON();
|
|
//clear buffer now so it does not interfere with timing later
|
|
BigBuf_Clear_keep_EM();
|
|
|
|
// Set up FPGA, 125kHz
|
|
LFSetupFPGAForADC(95, true);
|
|
StartTicks();
|
|
// make sure tag is fully powered up...
|
|
WaitMS(5);
|
|
|
|
// Trigger T55x7 in mode.
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
WaitUS(START_GAP);
|
|
|
|
// reset tag - op code 00
|
|
T55xxWriteBit(0);
|
|
T55xxWriteBit(0);
|
|
|
|
TurnReadLFOn(READ_GAP);
|
|
|
|
// Acquisition
|
|
DoPartialAcquisition(0, true, BigBuf_max_traceLen(), 0);
|
|
|
|
// Turn the field off
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
|
|
cmd_send(CMD_ACK,0,0,0,0,0);
|
|
LED_A_OFF();
|
|
}
|
|
|
|
// Write one card block in page 0, no lock
|
|
void T55xxWriteBlockExt(uint32_t Data, uint8_t Block, uint32_t Pwd, uint8_t arg) {
|
|
LED_A_ON();
|
|
bool PwdMode = arg & 0x1;
|
|
uint8_t Page = (arg & 0x2)>>1;
|
|
bool testMode = arg & 0x4;
|
|
uint32_t i = 0;
|
|
|
|
// Set up FPGA, 125kHz
|
|
LFSetupFPGAForADC(95, true);
|
|
StartTicks();
|
|
// make sure tag is fully powered up...
|
|
WaitMS(5);
|
|
// Trigger T55x7 in mode.
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
WaitUS(START_GAP);
|
|
|
|
if (testMode) Dbprintf("TestMODE");
|
|
// Std Opcode 10
|
|
T55xxWriteBit(testMode ? 0 : 1);
|
|
T55xxWriteBit(testMode ? 1 : Page); //Page 0
|
|
|
|
if (PwdMode){
|
|
// Send Pwd
|
|
for (i = 0x80000000; i != 0; i >>= 1)
|
|
T55xxWriteBit(Pwd & i);
|
|
}
|
|
// Send Lock bit
|
|
T55xxWriteBit(0);
|
|
|
|
// Send Data
|
|
for (i = 0x80000000; i != 0; i >>= 1)
|
|
T55xxWriteBit(Data & i);
|
|
|
|
// Send Block number
|
|
for (i = 0x04; i != 0; i >>= 1)
|
|
T55xxWriteBit(Block & i);
|
|
|
|
// Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
|
|
// so wait a little more)
|
|
|
|
// "there is a clock delay before programming"
|
|
// - programming takes ~5.6ms for t5577 ~18ms for E5550 or t5567
|
|
// so we should wait 1 clock + 5.6ms then read response?
|
|
// but we need to know we are dealing with t5577 vs t5567 vs e5550 (or q5) marshmellow...
|
|
if (testMode) {
|
|
//TESTMODE TIMING TESTS:
|
|
// <566us does nothing
|
|
// 566-568 switches between wiping to 0s and doing nothing
|
|
// 5184 wipes and allows 1 block to be programmed.
|
|
// indefinite power on wipes and then programs all blocks with bitshifted data sent.
|
|
TurnReadLFOn(5184);
|
|
|
|
} else {
|
|
TurnReadLFOn(20 * 1000);
|
|
|
|
//could attempt to do a read to confirm write took
|
|
// as the tag should repeat back the new block
|
|
// until it is reset, but to confirm it we would
|
|
// need to know the current block 0 config mode for
|
|
// modulation clock an other details to demod the response...
|
|
// response should be (for t55x7) a 0 bit then (ST if on)
|
|
// block data written in on repeat until reset.
|
|
|
|
//DoPartialAcquisition(20, true, 12000);
|
|
}
|
|
|
|
// turn field off
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
LED_A_OFF();
|
|
}
|
|
|
|
// Write one card block in page 0, no lock
|
|
void T55xxWriteBlock(uint32_t Data, uint8_t Block, uint32_t Pwd, uint8_t arg) {
|
|
T55xxWriteBlockExt(Data, Block, Pwd, arg);
|
|
cmd_send(CMD_ACK,0,0,0,0,0);
|
|
}
|
|
|
|
// Read one card block in page [page]
|
|
void T55xxReadBlock(uint16_t arg0, uint8_t Block, uint32_t Pwd) {
|
|
LED_A_ON();
|
|
bool PwdMode = arg0 & 0x1;
|
|
uint8_t Page = (arg0 & 0x2) >> 1;
|
|
uint32_t i = 0;
|
|
bool RegReadMode = (Block == 0xFF);//regular read mode
|
|
|
|
//clear buffer now so it does not interfere with timing later
|
|
BigBuf_Clear_keep_EM();
|
|
|
|
//make sure block is at max 7
|
|
Block &= 0x7;
|
|
|
|
// Set up FPGA, 125kHz to power up the tag
|
|
LFSetupFPGAForADC(95, true);
|
|
StartTicks();
|
|
// make sure tag is fully powered up...
|
|
WaitMS(5);
|
|
// Trigger T55x7 Direct Access Mode with start gap
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
WaitUS(START_GAP);
|
|
|
|
// Opcode 1[page]
|
|
T55xxWriteBit(1);
|
|
T55xxWriteBit(Page); //Page 0
|
|
|
|
if (PwdMode){
|
|
// Send Pwd
|
|
for (i = 0x80000000; i != 0; i >>= 1)
|
|
T55xxWriteBit(Pwd & i);
|
|
}
|
|
// Send a zero bit separation
|
|
T55xxWriteBit(0);
|
|
|
|
// Send Block number (if direct access mode)
|
|
if (!RegReadMode)
|
|
for (i = 0x04; i != 0; i >>= 1)
|
|
T55xxWriteBit(Block & i);
|
|
|
|
// Turn field on to read the response
|
|
// 137*8 seems to get to the start of data pretty well...
|
|
// but we want to go past the start and let the repeating data settle in...
|
|
TurnReadLFOn(210*8);
|
|
|
|
// Acquisition
|
|
// Now do the acquisition
|
|
DoPartialAcquisition(0, true, 12000, 0);
|
|
|
|
// Turn the field off
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
|
|
cmd_send(CMD_ACK,0,0,0,0,0);
|
|
LED_A_OFF();
|
|
}
|
|
|
|
void T55xxWakeUp(uint32_t Pwd){
|
|
LED_B_ON();
|
|
uint32_t i = 0;
|
|
|
|
// Set up FPGA, 125kHz
|
|
LFSetupFPGAForADC(95, true);
|
|
StartTicks();
|
|
// make sure tag is fully powered up...
|
|
WaitMS(5);
|
|
|
|
// Trigger T55x7 Direct Access Mode
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
WaitUS(START_GAP);
|
|
|
|
// Opcode 10
|
|
T55xxWriteBit(1);
|
|
T55xxWriteBit(0); //Page 0
|
|
|
|
// Send Pwd
|
|
for (i = 0x80000000; i != 0; i >>= 1)
|
|
T55xxWriteBit(Pwd & i);
|
|
|
|
// Turn and leave field on to let the begin repeating transmission
|
|
TurnReadLFOn(20*1000);
|
|
}
|
|
|
|
/*-------------- Cloning routines -----------*/
|
|
void WriteT55xx(uint32_t *blockdata, uint8_t startblock, uint8_t numblocks) {
|
|
// write last block first and config block last (if included)
|
|
for (uint8_t i = numblocks+startblock; i > startblock; i--)
|
|
T55xxWriteBlockExt(blockdata[i-1], i-1, 0, 0);
|
|
}
|
|
|
|
// Copy HID id to card and setup block 0 config
|
|
void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) {
|
|
uint32_t data[] = {0,0,0,0,0,0,0};
|
|
uint8_t last_block = 0;
|
|
|
|
if (longFMT){
|
|
// Ensure no more than 84 bits supplied
|
|
if (hi2 > 0xFFFFF) {
|
|
DbpString("Tags can only have 84 bits.");
|
|
return;
|
|
}
|
|
// Build the 6 data blocks for supplied 84bit ID
|
|
last_block = 6;
|
|
// load preamble (1D) & long format identifier (9E manchester encoded)
|
|
data[1] = 0x1D96A900 | (manchesterEncode2Bytes((hi2 >> 16) & 0xF) & 0xFF);
|
|
// load raw id from hi2, hi, lo to data blocks (manchester encoded)
|
|
data[2] = manchesterEncode2Bytes(hi2 & 0xFFFF);
|
|
data[3] = manchesterEncode2Bytes(hi >> 16);
|
|
data[4] = manchesterEncode2Bytes(hi & 0xFFFF);
|
|
data[5] = manchesterEncode2Bytes(lo >> 16);
|
|
data[6] = manchesterEncode2Bytes(lo & 0xFFFF);
|
|
} else {
|
|
// Ensure no more than 44 bits supplied
|
|
if (hi > 0xFFF) {
|
|
DbpString("Tags can only have 44 bits.");
|
|
return;
|
|
}
|
|
// Build the 3 data blocks for supplied 44bit ID
|
|
last_block = 3;
|
|
// load preamble
|
|
data[1] = 0x1D000000 | (manchesterEncode2Bytes(hi) & 0xFFFFFF);
|
|
data[2] = manchesterEncode2Bytes(lo >> 16);
|
|
data[3] = manchesterEncode2Bytes(lo & 0xFFFF);
|
|
}
|
|
// load chip config block
|
|
data[0] = T55x7_BITRATE_RF_50 | T55x7_MODULATION_FSK2a | last_block << T55x7_MAXBLOCK_SHIFT;
|
|
|
|
//TODO add selection of chip for Q5 or T55x7
|
|
// data[0] = T5555_SET_BITRATE(50) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | last_block << T5555_MAXBLOCK_SHIFT;
|
|
|
|
LED_D_ON();
|
|
WriteT55xx(data, 0, last_block+1);
|
|
LED_D_OFF();
|
|
}
|
|
|
|
void CopyIOtoT55x7(uint32_t hi, uint32_t lo) {
|
|
uint32_t data[] = {T55x7_BITRATE_RF_64 | T55x7_MODULATION_FSK2a | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
|
|
//TODO add selection of chip for Q5 or T55x7
|
|
// data[0] = T5555_SET_BITRATE(64) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | 2 << T5555_MAXBLOCK_SHIFT;
|
|
|
|
LED_D_ON();
|
|
// Program the data blocks for supplied ID
|
|
// and the block 0 config
|
|
WriteT55xx(data, 0, 3);
|
|
LED_D_OFF();
|
|
}
|
|
|
|
// Clone Indala 64-bit tag by UID to T55x7
|
|
void CopyIndala64toT55x7(uint32_t hi, uint32_t lo) {
|
|
//Program the 2 data blocks for supplied 64bit UID
|
|
// and the Config for Indala 64 format (RF/32;PSK2 with RF/2;Maxblock=2)
|
|
uint32_t data[] = { T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK2 | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
|
|
//TODO add selection of chip for Q5 or T55x7
|
|
// data[0] = T5555_SET_BITRATE(32 | T5555_MODULATION_PSK2 | 2 << T5555_MAXBLOCK_SHIFT;
|
|
|
|
WriteT55xx(data, 0, 3);
|
|
//Alternative config for Indala (Extended mode;RF/32;PSK2 with RF/2;Maxblock=2;Inverse data)
|
|
// T5567WriteBlock(0x603E1042,0);
|
|
}
|
|
// Clone Indala 224-bit tag by UID to T55x7
|
|
void CopyIndala224toT55x7(uint32_t uid1, uint32_t uid2, uint32_t uid3, uint32_t uid4, uint32_t uid5, uint32_t uid6, uint32_t uid7) {
|
|
//Program the 7 data blocks for supplied 224bit UID
|
|
uint32_t data[] = {0, uid1, uid2, uid3, uid4, uid5, uid6, uid7};
|
|
// and the block 0 for Indala224 format
|
|
//Config for Indala (RF/32;PSK2 with RF/2;Maxblock=7)
|
|
data[0] = T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK2 | (7 << T55x7_MAXBLOCK_SHIFT);
|
|
//TODO add selection of chip for Q5 or T55x7
|
|
// data[0] = T5555_SET_BITRATE(32 | T5555_MODULATION_PSK2 | 7 << T5555_MAXBLOCK_SHIFT;
|
|
WriteT55xx(data, 0, 8);
|
|
//Alternative config for Indala (Extended mode;RF/32;PSK2 with RF/2;Maxblock=7;Inverse data)
|
|
// T5567WriteBlock(0x603E10E2,0);
|
|
}
|
|
// clone viking tag to T55xx
|
|
void CopyVikingtoT55xx(uint32_t block1, uint32_t block2, uint8_t Q5) {
|
|
uint32_t data[] = {T55x7_BITRATE_RF_32 | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT), block1, block2};
|
|
if (Q5) data[0] = T5555_SET_BITRATE(32) | T5555_MODULATION_MANCHESTER | 2 << T5555_MAXBLOCK_SHIFT;
|
|
// Program the data blocks for supplied ID and the block 0 config
|
|
WriteT55xx(data, 0, 3);
|
|
LED_D_OFF();
|
|
cmd_send(CMD_ACK,0,0,0,0,0);
|
|
}
|
|
|
|
// Define 9bit header for EM410x tags
|
|
#define EM410X_HEADER 0x1FF
|
|
#define EM410X_ID_LENGTH 40
|
|
|
|
void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) {
|
|
int i, id_bit;
|
|
uint64_t id = EM410X_HEADER;
|
|
uint64_t rev_id = 0; // reversed ID
|
|
int c_parity[4]; // column parity
|
|
int r_parity = 0; // row parity
|
|
uint32_t clock = 0;
|
|
|
|
// Reverse ID bits given as parameter (for simpler operations)
|
|
for (i = 0; i < EM410X_ID_LENGTH; ++i) {
|
|
if (i < 32) {
|
|
rev_id = (rev_id << 1) | (id_lo & 1);
|
|
id_lo >>= 1;
|
|
} else {
|
|
rev_id = (rev_id << 1) | (id_hi & 1);
|
|
id_hi >>= 1;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < EM410X_ID_LENGTH; ++i) {
|
|
id_bit = rev_id & 1;
|
|
|
|
if (i % 4 == 0) {
|
|
// Don't write row parity bit at start of parsing
|
|
if (i)
|
|
id = (id << 1) | r_parity;
|
|
// Start counting parity for new row
|
|
r_parity = id_bit;
|
|
} else {
|
|
// Count row parity
|
|
r_parity ^= id_bit;
|
|
}
|
|
|
|
// First elements in column?
|
|
if (i < 4)
|
|
// Fill out first elements
|
|
c_parity[i] = id_bit;
|
|
else
|
|
// Count column parity
|
|
c_parity[i % 4] ^= id_bit;
|
|
|
|
// Insert ID bit
|
|
id = (id << 1) | id_bit;
|
|
rev_id >>= 1;
|
|
}
|
|
|
|
// Insert parity bit of last row
|
|
id = (id << 1) | r_parity;
|
|
|
|
// Fill out column parity at the end of tag
|
|
for (i = 0; i < 4; ++i)
|
|
id = (id << 1) | c_parity[i];
|
|
|
|
// Add stop bit
|
|
id <<= 1;
|
|
|
|
Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
|
|
LED_D_ON();
|
|
|
|
// Write EM410x ID
|
|
uint32_t data[] = {0, (uint32_t)(id>>32), (uint32_t)(id & 0xFFFFFFFF)};
|
|
|
|
clock = (card & 0xFF00) >> 8;
|
|
clock = (clock == 0) ? 64 : clock;
|
|
Dbprintf("Clock rate: %d", clock);
|
|
if (card & 0xFF) { //t55x7
|
|
clock = GetT55xxClockBit(clock);
|
|
if (clock == 0) {
|
|
Dbprintf("Invalid clock rate: %d", clock);
|
|
return;
|
|
}
|
|
data[0] = clock | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT);
|
|
} else { //t5555 (Q5)
|
|
data[0] = T5555_SET_BITRATE(clock) | T5555_MODULATION_MANCHESTER | (2 << T5555_MAXBLOCK_SHIFT);
|
|
}
|
|
|
|
WriteT55xx(data, 0, 3);
|
|
|
|
LED_D_OFF();
|
|
Dbprintf("Tag %s written with 0x%08x%08x\n",
|
|
card ? "T55x7":"T5555",
|
|
(uint32_t)(id >> 32),
|
|
(uint32_t)id);
|
|
}
|
|
|
|
//-----------------------------------
|
|
// EM4469 / EM4305 routines
|
|
//-----------------------------------
|
|
// Below given command set.
|
|
// Commands are including the even parity, binary mirrored
|
|
#define FWD_CMD_LOGIN 0xC
|
|
#define FWD_CMD_WRITE 0xA
|
|
#define FWD_CMD_READ 0x9
|
|
#define FWD_CMD_DISABLE 0x5
|
|
|
|
uint8_t forwardLink_data[64]; //array of forwarded bits
|
|
uint8_t * forward_ptr; //ptr for forward message preparation
|
|
uint8_t fwd_bit_sz; //forwardlink bit counter
|
|
uint8_t * fwd_write_ptr; //forwardlink bit pointer
|
|
|
|
//====================================================================
|
|
// prepares command bits
|
|
// see EM4469 spec
|
|
//====================================================================
|
|
//--------------------------------------------------------------------
|
|
// VALUES TAKEN FROM EM4x function: SendForward
|
|
// START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
|
|
// WRITE_GAP = 128; (16*8)
|
|
// WRITE_1 = 256 32*8; (32*8)
|
|
|
|
// These timings work for 4469/4269/4305 (with the 55*8 above)
|
|
// WRITE_0 = 23*8 , 9*8
|
|
|
|
uint8_t Prepare_Cmd( uint8_t cmd ) {
|
|
|
|
*forward_ptr++ = 0; //start bit
|
|
*forward_ptr++ = 0; //second pause for 4050 code
|
|
|
|
*forward_ptr++ = cmd;
|
|
cmd >>= 1;
|
|
*forward_ptr++ = cmd;
|
|
cmd >>= 1;
|
|
*forward_ptr++ = cmd;
|
|
cmd >>= 1;
|
|
*forward_ptr++ = cmd;
|
|
|
|
return 6; //return number of emited bits
|
|
}
|
|
|
|
//====================================================================
|
|
// prepares address bits
|
|
// see EM4469 spec
|
|
//====================================================================
|
|
uint8_t Prepare_Addr( uint8_t addr ) {
|
|
|
|
register uint8_t line_parity;
|
|
|
|
uint8_t i;
|
|
line_parity = 0;
|
|
for( i=0; i<6; i++ ) {
|
|
*forward_ptr++ = addr;
|
|
line_parity ^= addr;
|
|
addr >>= 1;
|
|
}
|
|
|
|
*forward_ptr++ = (line_parity & 1);
|
|
|
|
return 7; //return number of emited bits
|
|
}
|
|
|
|
//====================================================================
|
|
// prepares data bits intreleaved with parity bits
|
|
// see EM4469 spec
|
|
//====================================================================
|
|
uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
|
|
|
|
register uint8_t line_parity;
|
|
register uint8_t column_parity;
|
|
register uint8_t i, j;
|
|
register uint16_t data;
|
|
|
|
data = data_low;
|
|
column_parity = 0;
|
|
|
|
for(i=0; i<4; i++) {
|
|
line_parity = 0;
|
|
for(j=0; j<8; j++) {
|
|
line_parity ^= data;
|
|
column_parity ^= (data & 1) << j;
|
|
*forward_ptr++ = data;
|
|
data >>= 1;
|
|
}
|
|
*forward_ptr++ = line_parity;
|
|
if(i == 1)
|
|
data = data_hi;
|
|
}
|
|
|
|
for(j=0; j<8; j++) {
|
|
*forward_ptr++ = column_parity;
|
|
column_parity >>= 1;
|
|
}
|
|
*forward_ptr = 0;
|
|
|
|
return 45; //return number of emited bits
|
|
}
|
|
|
|
//====================================================================
|
|
// Forward Link send function
|
|
// Requires: forwarLink_data filled with valid bits (1 bit per byte)
|
|
// fwd_bit_count set with number of bits to be sent
|
|
//====================================================================
|
|
void SendForward(uint8_t fwd_bit_count) {
|
|
|
|
// iceman, 21.3us increments for the USclock verification.
|
|
// 55FC * 8us == 440us / 21.3 === 20.65 steps. could be too short. Go for 56FC instead
|
|
// 32FC * 8us == 256us / 21.3 == 12.018 steps. ok
|
|
// 16FC * 8us == 128us / 21.3 == 6.009 steps. ok
|
|
#ifndef EM_START_GAP
|
|
#define EM_START_GAP 55*8
|
|
#endif
|
|
|
|
fwd_write_ptr = forwardLink_data;
|
|
fwd_bit_sz = fwd_bit_count;
|
|
|
|
// Set up FPGA, 125kHz or 95 divisor
|
|
LFSetupFPGAForADC(95, true);
|
|
|
|
// force 1st mod pulse (start gap must be longer for 4305)
|
|
fwd_bit_sz--; //prepare next bit modulation
|
|
fwd_write_ptr++;
|
|
|
|
TurnReadLF_off(EM_START_GAP);
|
|
TurnReadLFOn(18*8);
|
|
|
|
// now start writting with bitbanging the antenna.
|
|
while(fwd_bit_sz-- > 0) { //prepare next bit modulation
|
|
if(((*fwd_write_ptr++) & 1) == 1) {
|
|
WaitUS(32*8);
|
|
} else {
|
|
TurnReadLF_off(23*8);
|
|
TurnReadLFOn(18*8);
|
|
}
|
|
}
|
|
}
|
|
|
|
void EM4xLogin(uint32_t pwd) {
|
|
uint8_t len;
|
|
forward_ptr = forwardLink_data;
|
|
len = Prepare_Cmd( FWD_CMD_LOGIN );
|
|
len += Prepare_Data( pwd & 0xFFFF, pwd >> 16 );
|
|
SendForward(len);
|
|
//WaitUS(20); // no wait for login command.
|
|
// should receive
|
|
// 0000 1010 ok.
|
|
// 0000 0001 fail
|
|
}
|
|
|
|
void EM4xReadWord(uint8_t addr, uint32_t pwd, uint8_t usepwd) {
|
|
|
|
LED_A_ON();
|
|
uint8_t len;
|
|
|
|
//clear buffer now so it does not interfere with timing later
|
|
BigBuf_Clear_ext(false);
|
|
|
|
StartTicks();
|
|
/* should we read answer from Logincommand?
|
|
*
|
|
* should receive
|
|
* 0000 1010 ok.
|
|
* 0000 0001 fail
|
|
**/
|
|
if (usepwd) EM4xLogin(pwd);
|
|
|
|
forward_ptr = forwardLink_data;
|
|
len = Prepare_Cmd( FWD_CMD_READ );
|
|
len += Prepare_Addr( addr );
|
|
|
|
SendForward(len);
|
|
|
|
WaitUS(400);
|
|
|
|
DoPartialAcquisition(20, true, 6000, 1000);
|
|
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
cmd_send(CMD_ACK,0,0,0,0,0);
|
|
LED_A_OFF();
|
|
}
|
|
|
|
void EM4xWriteWord(uint32_t flag, uint32_t data, uint32_t pwd) {
|
|
|
|
LED_A_ON();
|
|
|
|
bool usePwd = (flag & 0xF);
|
|
uint8_t addr = (flag >> 8) & 0xFF;
|
|
uint8_t len;
|
|
|
|
//clear buffer now so it does not interfere with timing later
|
|
BigBuf_Clear_ext(false);
|
|
StartTicks();
|
|
/* should we read answer from Logincommand?
|
|
*
|
|
* should receive
|
|
* 0000 1010 ok.
|
|
* 0000 0001 fail
|
|
**/
|
|
if (usePwd) EM4xLogin(pwd);
|
|
|
|
forward_ptr = forwardLink_data;
|
|
len = Prepare_Cmd( FWD_CMD_WRITE );
|
|
len += Prepare_Addr( addr );
|
|
len += Prepare_Data( data & 0xFFFF, data >> 16 );
|
|
|
|
SendForward(len);
|
|
|
|
//Wait 20ms for write to complete?
|
|
WaitMS(7);
|
|
|
|
//Capture response if one exists
|
|
DoPartialAcquisition(20, true, 6000, 1000);
|
|
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
cmd_send(CMD_ACK,0,0,0,0,0);
|
|
LED_A_OFF();
|
|
}
|
|
|
|
/*
|
|
Reading a COTAG.
|
|
|
|
COTAG needs the reader to send a startsequence and the card has an extreme slow datarate.
|
|
because of this, we can "sample" the data signal but we interpreate it to Manchester direct.
|
|
|
|
READER START SEQUENCE:
|
|
burst 800 us, gap 2.2 msecs
|
|
burst 3.6 msecs gap 2.2 msecs
|
|
burst 800 us gap 2.2 msecs
|
|
pulse 3.6 msecs
|
|
|
|
This triggers a COTAG tag to response
|
|
*/
|
|
void Cotag(uint32_t arg0) {
|
|
#ifndef OFF
|
|
# define OFF { FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); WaitUS(2035); }
|
|
#endif
|
|
#ifndef ON
|
|
# define ON(x) { FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); WaitUS((x)); }
|
|
#endif
|
|
uint8_t rawsignal = arg0 & 0xF;
|
|
|
|
LED_A_ON();
|
|
|
|
// Switching to LF image on FPGA. This might empty BigBuff
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
|
|
|
|
//clear buffer now so it does not interfere with timing later
|
|
BigBuf_Clear_ext(false);
|
|
|
|
// Set up FPGA, 132kHz to power up the tag
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 89);
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
|
|
|
|
// Connect the A/D to the peak-detected low-frequency path.
|
|
SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
|
|
|
|
// Now set up the SSC to get the ADC samples that are now streaming at us.
|
|
FpgaSetupSsc();
|
|
|
|
// start clock - 1.5ticks is 1us
|
|
StartTicks();
|
|
|
|
//send COTAG start pulse
|
|
ON(740) OFF
|
|
ON(3330) OFF
|
|
ON(740) OFF
|
|
ON(1000)
|
|
|
|
switch(rawsignal) {
|
|
case 0: doCotagAcquisition(50000); break;
|
|
case 1: doCotagAcquisitionManchester(); break;
|
|
case 2: DoAcquisition_config(true, 0); break;
|
|
}
|
|
|
|
// Turn the field off
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
|
|
cmd_send(CMD_ACK,0,0,0,0,0);
|
|
LED_A_OFF();
|
|
}
|
|
|
|
/*
|
|
* EM4305 support
|
|
*/
|