proxmark3/armsrc/util.c
2024-09-06 09:52:30 +02:00

418 lines
11 KiB
C

//-----------------------------------------------------------------------------
// Copyright (C) Jonathan Westhues, Sept 2005
// Copyright (C) Proxmark3 contributors. See AUTHORS.md for details.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// See LICENSE.txt for the text of the license.
//-----------------------------------------------------------------------------
// Utility functions used in many places, not specific to any piece of code.
//-----------------------------------------------------------------------------
#include "util.h"
#include "proxmark3_arm.h"
#include "ticks.h"
#include "commonutil.h"
#include "dbprint.h"
#include "string.h"
#include "usb_cdc.h"
#include "usart.h"
size_t nbytes(size_t nbits) {
return (nbits >> 3) + ((nbits % 8) > 0);
}
//convert hex digit to integer
uint8_t hex2int(char x) {
switch (x) {
case '0':
return 0;
case '1':
return 1;
case '2':
return 2;
case '3':
return 3;
case '4':
return 4;
case '5':
return 5;
case '6':
return 6;
case '7':
return 7;
case '8':
return 8;
case '9':
return 9;
case 'a':
case 'A':
return 10;
case 'b':
case 'B':
return 11;
case 'c':
case 'C':
return 12;
case 'd':
case 'D':
return 13;
case 'e':
case 'E':
return 14;
case 'f':
case 'F':
return 15;
default:
return 0;
}
}
/*
The following methods comes from Rfidler sourcecode.
https://github.com/ApertureLabsLtd/RFIDler/blob/master/firmware/Pic32/RFIDler.X/src/
*/
// convert hex to sequence of 0/1 bit values
// returns number of bits converted
int hex2binarray(char *target, const char *source) {
return hex2binarray_n(target, source, strlen(source));
}
int hex2binarray_n(char *target, const char *source, int sourcelen) {
int count = 0;
// process 4 bits (1 hex digit) at a time
while (sourcelen--) {
char x = *(source++);
*(target++) = (x >> 7) & 1;
*(target++) = (x >> 6) & 1;
*(target++) = (x >> 5) & 1;
*(target++) = (x >> 4) & 1;
*(target++) = (x >> 3) & 1;
*(target++) = (x >> 2) & 1;
*(target++) = (x >> 1) & 1;
*(target++) = (x & 1);
count += 8;
}
return count;
}
int binarray2hex(const uint8_t *bs, int bs_len, uint8_t *hex) {
int count = 0;
int byte_index = 0;
// Clear output buffer
memset(hex, 0, bs_len >> 3);
for (int i = 0; i < bs_len; i++) {
// Set the appropriate bit in hex
if (bs[i] == 1) {
hex[byte_index] |= (1 << (7 - (count % 8)));
}
count++;
// Move to the next byte if 8 bits have been filled
if (count % 8 == 0) {
byte_index++;
}
}
return count;
}
void LEDsoff(void) {
LED_A_OFF();
LED_B_OFF();
LED_C_OFF();
LED_D_OFF();
}
//ICEMAN: LED went from 1,2,3,4 -> 1,2,4,8
void LED(int led, int ms) {
if (led & LED_A) // Proxmark3 historical mapping: LED_ORANGE
LED_A_ON();
if (led & LED_B) // Proxmark3 historical mapping: LED_GREEN
LED_B_ON();
if (led & LED_C) // Proxmark3 historical mapping: LED_RED
LED_C_ON();
if (led & LED_D) // Proxmark3 historical mapping: LED_RED2
LED_D_ON();
if (!ms)
return;
SpinDelay(ms);
if (led & LED_A)
LED_A_OFF();
if (led & LED_B)
LED_B_OFF();
if (led & LED_C)
LED_C_OFF();
if (led & LED_D)
LED_D_OFF();
}
void SpinOff(uint32_t pause) {
LED_A_OFF();
LED_B_OFF();
LED_C_OFF();
LED_D_OFF();
SpinDelay(pause);
}
// Blinks..
// A = 1, B = 2, C = 4, D = 8
void SpinErr(uint8_t led, uint32_t speed, uint8_t times) {
SpinOff(speed);
NTIME(times) {
if (led & LED_A) // Proxmark3 historical mapping: LED_ORANGE
LED_A_INV();
if (led & LED_B) // Proxmark3 historical mapping: LED_GREEN
LED_B_INV();
if (led & LED_C) // Proxmark3 historical mapping: LED_RED
LED_C_INV();
if (led & LED_D) // Proxmark3 historical mapping: LED_RED2
LED_D_INV();
SpinDelay(speed);
}
LED_A_OFF();
LED_B_OFF();
LED_C_OFF();
LED_D_OFF();
}
void SpinDown(uint32_t speed) {
SpinOff(speed);
LED_D_ON();
SpinDelay(speed);
LED_D_OFF();
LED_C_ON();
SpinDelay(speed);
LED_C_OFF();
LED_B_ON();
SpinDelay(speed);
LED_B_OFF();
LED_A_ON();
SpinDelay(speed);
LED_A_OFF();
}
void SpinUp(uint32_t speed) {
SpinOff(speed);
LED_A_ON();
SpinDelay(speed);
LED_A_OFF();
LED_B_ON();
SpinDelay(speed);
LED_B_OFF();
LED_C_ON();
SpinDelay(speed);
LED_C_OFF();
LED_D_ON();
SpinDelay(speed);
LED_D_OFF();
}
// Determine if a button is double clicked, single clicked,
// not clicked, or held down (for ms || 1sec)
// In general, don't use this function unless you expect a
// double click, otherwise it will waste 500ms -- use BUTTON_HELD instead
int BUTTON_CLICKED(int ms) {
// Up to 500ms in between clicks to mean a double click
// timer counts in 21.3us increments (1024/48MHz)
// WARNING: timer can't measure more than 1.39s (21.3us * 0xffff)
if (ms > 1390) {
if (g_dbglevel >= DBG_ERROR) Dbprintf(_RED_("Error, BUTTON_CLICKED called with %i > 1390"), ms);
ms = 1390;
}
int ticks = ((MCK / 1000) * (ms ? ms : 1000)) >> 10;
// If we're not even pressed, forget about it!
if (BUTTON_PRESS() == false)
return BUTTON_NO_CLICK;
// Borrow a PWM unit for my real-time clock
AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(0);
// 48 MHz / 1024 gives 46.875 kHz
AT91C_BASE_PWMC_CH0->PWMC_CMR = PWM_CH_MODE_PRESCALER(10);
AT91C_BASE_PWMC_CH0->PWMC_CDTYR = 0;
AT91C_BASE_PWMC_CH0->PWMC_CPRDR = 0xffff;
uint16_t start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
int letoff = 0;
for (;;) {
uint16_t now = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
// We haven't let off the button yet
if (!letoff) {
// We just let it off!
if (BUTTON_PRESS() == false) {
letoff = 1;
// reset our timer for 500ms
start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
ticks = ((MCK / 1000) * (500)) >> 10;
}
// Still haven't let it off
else
// Have we held down a full second?
if (now == (uint16_t)(start + ticks))
return BUTTON_HOLD;
}
// We already let off, did we click again?
else
// Sweet, double click!
if (BUTTON_PRESS())
return BUTTON_DOUBLE_CLICK;
// Have we ran out of time to double click?
else if (now == (uint16_t)(start + ticks))
// At least we did a single click
return BUTTON_SINGLE_CLICK;
WDT_HIT();
}
// We should never get here
return BUTTON_ERROR;
}
// Determine if a button is held down
int BUTTON_HELD(int ms) {
// timer counts in 21.3us increments (1024/48MHz)
// WARNING: timer can't measure more than 1.39s (21.3us * 0xffff)
if (ms > 1390) {
if (g_dbglevel >= DBG_ERROR) Dbprintf(_RED_("Error, BUTTON_HELD called with %i > 1390"), ms);
ms = 1390;
}
// If button is held for one second
int ticks = (48000 * (ms ? ms : 1000)) >> 10;
// If we're not even pressed, forget about it!
if (BUTTON_PRESS() == false) {
return BUTTON_NO_CLICK;
}
// Borrow a PWM unit for my real-time clock
AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(0);
// 48 MHz / 1024 gives 46.875 kHz
AT91C_BASE_PWMC_CH0->PWMC_CMR = PWM_CH_MODE_PRESCALER(10);
AT91C_BASE_PWMC_CH0->PWMC_CDTYR = 0;
AT91C_BASE_PWMC_CH0->PWMC_CPRDR = 0xffff;
uint16_t start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
for (;;) {
uint16_t now = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
// As soon as our button let go, we didn't hold long enough
if (BUTTON_PRESS() == false) {
return BUTTON_SINGLE_CLICK;
}
// Have we waited the full second?
else if (now == (uint16_t)(start + ticks)) {
return BUTTON_HOLD;
}
WDT_HIT();
}
// We should never get here
return BUTTON_ERROR;
}
// This function returns false if no data is available or
// the USB connection is invalid.
bool data_available(void) {
#ifdef WITH_FPC_USART_HOST
return usb_poll_validate_length() || (usart_rxdata_available() > 0);
#else
return usb_poll_validate_length();
#endif
}
// This function doesn't check if the USB connection is valid.
// In most of the cases, you should use data_available() unless
// the timing is critical.
bool data_available_fast(void) {
#ifdef WITH_FPC_USART_HOST
return usb_available_length() || (usart_rxdata_available() > 0);
#else
return usb_available_length();
#endif
}
uint32_t flash_size_from_cidr(uint32_t cidr) {
uint8_t nvpsiz = (cidr & 0xF00) >> 8;
switch (nvpsiz) {
case 0:
return 0;
case 1:
return 8 * 1024;
case 2:
return 16 * 1024;
case 3:
return 32 * 1024;
case 5:
return 64 * 1024;
case 7:
return 128 * 1024;
case 9:
return 256 * 1024;
case 10:
return 512 * 1024;
case 12:
return 1024 * 1024;
case 14:
default: // for 'reserved' values, guess 2MB
return 2048 * 1024;
}
}
uint32_t get_flash_size(void) {
return flash_size_from_cidr(*AT91C_DBGU_CIDR);
}
// Combined function to convert an unsigned int to an array of hex values corresponding to the last three bits of k1
void convertToHexArray(uint8_t num, uint8_t *partialkey) {
char binaryStr[25]; // 24 bits for binary representation + 1 for null terminator
binaryStr[24] = '\0'; // Null-terminate the string
// Convert the number to binary string
for (int i = 23; i >= 0; i--) {
binaryStr[i] = (num % 2) ? '1' : '0';
num /= 2;
}
// Split the binary string into groups of 3 and convert to hex
for (int i = 0; i < 8 ; i++) {
char group[4];
strncpy(group, binaryStr + i * 3, 3);
group[3] = '\0'; // Null-terminate the group string
partialkey[i] = (uint8_t)strtoul(group, NULL, 2);
}
}