mirror of
https://github.com/RfidResearchGroup/proxmark3.git
synced 2025-01-07 00:28:07 +08:00
433 lines
14 KiB
C
433 lines
14 KiB
C
//-----------------------------------------------------------------------------
|
|
// Jonathan Westhues, April 2006
|
|
//
|
|
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
|
|
// at your option, any later version. See the LICENSE.txt file for the text of
|
|
// the license.
|
|
//-----------------------------------------------------------------------------
|
|
// Routines to load the FPGA image, and then to configure the FPGA's major
|
|
// mode once it is configured.
|
|
//-----------------------------------------------------------------------------
|
|
|
|
#include "proxmark3.h"
|
|
#include "apps.h"
|
|
#include "util.h"
|
|
#include "string.h"
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Set up the Serial Peripheral Interface as master
|
|
// Used to write the FPGA config word
|
|
// May also be used to write to other SPI attached devices like an LCD
|
|
//-----------------------------------------------------------------------------
|
|
void SetupSpi(int mode)
|
|
{
|
|
// PA10 -> SPI_NCS2 chip select (LCD)
|
|
// PA11 -> SPI_NCS0 chip select (FPGA)
|
|
// PA12 -> SPI_MISO Master-In Slave-Out
|
|
// PA13 -> SPI_MOSI Master-Out Slave-In
|
|
// PA14 -> SPI_SPCK Serial Clock
|
|
|
|
// Disable PIO control of the following pins, allows use by the SPI peripheral
|
|
AT91C_BASE_PIOA->PIO_PDR =
|
|
GPIO_NCS0 |
|
|
GPIO_NCS2 |
|
|
GPIO_MISO |
|
|
GPIO_MOSI |
|
|
GPIO_SPCK;
|
|
|
|
AT91C_BASE_PIOA->PIO_ASR =
|
|
GPIO_NCS0 |
|
|
GPIO_MISO |
|
|
GPIO_MOSI |
|
|
GPIO_SPCK;
|
|
|
|
AT91C_BASE_PIOA->PIO_BSR = GPIO_NCS2;
|
|
|
|
//enable the SPI Peripheral clock
|
|
AT91C_BASE_PMC->PMC_PCER = (1<<AT91C_ID_SPI);
|
|
// Enable SPI
|
|
AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SPIEN;
|
|
|
|
switch (mode) {
|
|
case SPI_FPGA_MODE:
|
|
AT91C_BASE_SPI->SPI_MR =
|
|
( 0 << 24) | // Delay between chip selects (take default: 6 MCK periods)
|
|
(14 << 16) | // Peripheral Chip Select (selects FPGA SPI_NCS0 or PA11)
|
|
( 0 << 7) | // Local Loopback Disabled
|
|
( 1 << 4) | // Mode Fault Detection disabled
|
|
( 0 << 2) | // Chip selects connected directly to peripheral
|
|
( 0 << 1) | // Fixed Peripheral Select
|
|
( 1 << 0); // Master Mode
|
|
AT91C_BASE_SPI->SPI_CSR[0] =
|
|
( 1 << 24) | // Delay between Consecutive Transfers (32 MCK periods)
|
|
( 1 << 16) | // Delay Before SPCK (1 MCK period)
|
|
( 6 << 8) | // Serial Clock Baud Rate (baudrate = MCK/6 = 24Mhz/6 = 4M baud
|
|
( 8 << 4) | // Bits per Transfer (16 bits)
|
|
( 0 << 3) | // Chip Select inactive after transfer
|
|
( 1 << 1) | // Clock Phase data captured on leading edge, changes on following edge
|
|
( 0 << 0); // Clock Polarity inactive state is logic 0
|
|
break;
|
|
case SPI_LCD_MODE:
|
|
AT91C_BASE_SPI->SPI_MR =
|
|
( 0 << 24) | // Delay between chip selects (take default: 6 MCK periods)
|
|
(11 << 16) | // Peripheral Chip Select (selects LCD SPI_NCS2 or PA10)
|
|
( 0 << 7) | // Local Loopback Disabled
|
|
( 1 << 4) | // Mode Fault Detection disabled
|
|
( 0 << 2) | // Chip selects connected directly to peripheral
|
|
( 0 << 1) | // Fixed Peripheral Select
|
|
( 1 << 0); // Master Mode
|
|
AT91C_BASE_SPI->SPI_CSR[2] =
|
|
( 1 << 24) | // Delay between Consecutive Transfers (32 MCK periods)
|
|
( 1 << 16) | // Delay Before SPCK (1 MCK period)
|
|
( 6 << 8) | // Serial Clock Baud Rate (baudrate = MCK/6 = 24Mhz/6 = 4M baud
|
|
( 1 << 4) | // Bits per Transfer (9 bits)
|
|
( 0 << 3) | // Chip Select inactive after transfer
|
|
( 1 << 1) | // Clock Phase data captured on leading edge, changes on following edge
|
|
( 0 << 0); // Clock Polarity inactive state is logic 0
|
|
break;
|
|
default: // Disable SPI
|
|
AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SPIDIS;
|
|
break;
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Set up the synchronous serial port, with the one set of options that we
|
|
// always use when we are talking to the FPGA. Both RX and TX are enabled.
|
|
//-----------------------------------------------------------------------------
|
|
void FpgaSetupSsc(void)
|
|
{
|
|
// First configure the GPIOs, and get ourselves a clock.
|
|
AT91C_BASE_PIOA->PIO_ASR =
|
|
GPIO_SSC_FRAME |
|
|
GPIO_SSC_DIN |
|
|
GPIO_SSC_DOUT |
|
|
GPIO_SSC_CLK;
|
|
AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
|
|
|
|
AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_SSC);
|
|
|
|
// Now set up the SSC proper, starting from a known state.
|
|
AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
|
|
|
|
// RX clock comes from TX clock, RX starts when TX starts, data changes
|
|
// on RX clock rising edge, sampled on falling edge
|
|
AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(1) | SSC_CLOCK_MODE_START(1);
|
|
|
|
// 8 bits per transfer, no loopback, MSB first, 1 transfer per sync
|
|
// pulse, no output sync, start on positive-going edge of sync
|
|
AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(8) |
|
|
AT91C_SSC_MSBF | SSC_FRAME_MODE_WORDS_PER_TRANSFER(0);
|
|
|
|
// clock comes from TK pin, no clock output, outputs change on falling
|
|
// edge of TK, start on rising edge of TF
|
|
AT91C_BASE_SSC->SSC_TCMR = SSC_CLOCK_MODE_SELECT(2) |
|
|
SSC_CLOCK_MODE_START(5);
|
|
|
|
// tx framing is the same as the rx framing
|
|
AT91C_BASE_SSC->SSC_TFMR = AT91C_BASE_SSC->SSC_RFMR;
|
|
|
|
AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Set up DMA to receive samples from the FPGA. We will use the PDC, with
|
|
// a single buffer as a circular buffer (so that we just chain back to
|
|
// ourselves, not to another buffer). The stuff to manipulate those buffers
|
|
// is in apps.h, because it should be inlined, for speed.
|
|
//-----------------------------------------------------------------------------
|
|
bool FpgaSetupSscDma(uint8_t *buf, int len)
|
|
{
|
|
if (buf == NULL) {
|
|
return false;
|
|
}
|
|
|
|
AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
|
|
AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) buf;
|
|
AT91C_BASE_PDC_SSC->PDC_RCR = len;
|
|
AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) buf;
|
|
AT91C_BASE_PDC_SSC->PDC_RNCR = len;
|
|
AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTEN;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void DownloadFPGA_byte(unsigned char w)
|
|
{
|
|
#define SEND_BIT(x) { if(w & (1<<x) ) HIGH(GPIO_FPGA_DIN); else LOW(GPIO_FPGA_DIN); HIGH(GPIO_FPGA_CCLK); LOW(GPIO_FPGA_CCLK); }
|
|
SEND_BIT(7);
|
|
SEND_BIT(6);
|
|
SEND_BIT(5);
|
|
SEND_BIT(4);
|
|
SEND_BIT(3);
|
|
SEND_BIT(2);
|
|
SEND_BIT(1);
|
|
SEND_BIT(0);
|
|
}
|
|
|
|
// Download the fpga image starting at FpgaImage and with length FpgaImageLen bytes
|
|
// If bytereversal is set: reverse the byte order in each 4-byte word
|
|
static void DownloadFPGA(const char *FpgaImage, int FpgaImageLen, int bytereversal)
|
|
{
|
|
int i=0;
|
|
|
|
AT91C_BASE_PIOA->PIO_OER = GPIO_FPGA_ON;
|
|
AT91C_BASE_PIOA->PIO_PER = GPIO_FPGA_ON;
|
|
HIGH(GPIO_FPGA_ON); // ensure everything is powered on
|
|
|
|
SpinDelay(50);
|
|
|
|
LED_D_ON();
|
|
|
|
// These pins are inputs
|
|
AT91C_BASE_PIOA->PIO_ODR =
|
|
GPIO_FPGA_NINIT |
|
|
GPIO_FPGA_DONE;
|
|
// PIO controls the following pins
|
|
AT91C_BASE_PIOA->PIO_PER =
|
|
GPIO_FPGA_NINIT |
|
|
GPIO_FPGA_DONE;
|
|
// Enable pull-ups
|
|
AT91C_BASE_PIOA->PIO_PPUER =
|
|
GPIO_FPGA_NINIT |
|
|
GPIO_FPGA_DONE;
|
|
|
|
// setup initial logic state
|
|
HIGH(GPIO_FPGA_NPROGRAM);
|
|
LOW(GPIO_FPGA_CCLK);
|
|
LOW(GPIO_FPGA_DIN);
|
|
// These pins are outputs
|
|
AT91C_BASE_PIOA->PIO_OER =
|
|
GPIO_FPGA_NPROGRAM |
|
|
GPIO_FPGA_CCLK |
|
|
GPIO_FPGA_DIN;
|
|
|
|
// enter FPGA configuration mode
|
|
LOW(GPIO_FPGA_NPROGRAM);
|
|
SpinDelay(50);
|
|
HIGH(GPIO_FPGA_NPROGRAM);
|
|
|
|
i=100000;
|
|
// wait for FPGA ready to accept data signal
|
|
while ((i) && ( !(AT91C_BASE_PIOA->PIO_PDSR & GPIO_FPGA_NINIT ) ) ) {
|
|
i--;
|
|
}
|
|
|
|
// crude error indicator, leave both red LEDs on and return
|
|
if (i==0){
|
|
LED_C_ON();
|
|
LED_D_ON();
|
|
return;
|
|
}
|
|
|
|
if(bytereversal) {
|
|
/* This is only supported for uint32_t aligned images */
|
|
if( ((int)FpgaImage % sizeof(uint32_t)) == 0 ) {
|
|
i=0;
|
|
while(FpgaImageLen-->0)
|
|
DownloadFPGA_byte(FpgaImage[(i++)^0x3]);
|
|
/* Explanation of the magic in the above line:
|
|
* i^0x3 inverts the lower two bits of the integer i, counting backwards
|
|
* for each 4 byte increment. The generated sequence of (i++)^3 is
|
|
* 3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12 etc. pp.
|
|
*/
|
|
}
|
|
} else {
|
|
while(FpgaImageLen-->0)
|
|
DownloadFPGA_byte(*FpgaImage++);
|
|
}
|
|
|
|
// continue to clock FPGA until ready signal goes high
|
|
i=100000;
|
|
while ( (i--) && ( !(AT91C_BASE_PIOA->PIO_PDSR & GPIO_FPGA_DONE ) ) ) {
|
|
HIGH(GPIO_FPGA_CCLK);
|
|
LOW(GPIO_FPGA_CCLK);
|
|
}
|
|
// crude error indicator, leave both red LEDs on and return
|
|
if (i==0){
|
|
LED_C_ON();
|
|
LED_D_ON();
|
|
return;
|
|
}
|
|
LED_D_OFF();
|
|
}
|
|
|
|
static char *bitparse_headers_start;
|
|
static char *bitparse_bitstream_end;
|
|
static int bitparse_initialized;
|
|
/* Simple Xilinx .bit parser. The file starts with the fixed opaque byte sequence
|
|
* 00 09 0f f0 0f f0 0f f0 0f f0 00 00 01
|
|
* After that the format is 1 byte section type (ASCII character), 2 byte length
|
|
* (big endian), <length> bytes content. Except for section 'e' which has 4 bytes
|
|
* length.
|
|
*/
|
|
static const char _bitparse_fixed_header[] = {0x00, 0x09, 0x0f, 0xf0, 0x0f, 0xf0, 0x0f, 0xf0, 0x0f, 0xf0, 0x00, 0x00, 0x01};
|
|
static int bitparse_init(void * start_address, void *end_address)
|
|
{
|
|
bitparse_initialized = 0;
|
|
|
|
if(memcmp(_bitparse_fixed_header, start_address, sizeof(_bitparse_fixed_header)) != 0) {
|
|
return 0; /* Not matched */
|
|
} else {
|
|
bitparse_headers_start= ((char*)start_address) + sizeof(_bitparse_fixed_header);
|
|
bitparse_bitstream_end= (char*)end_address;
|
|
bitparse_initialized = 1;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
int bitparse_find_section(char section_name, char **section_start, unsigned int *section_length)
|
|
{
|
|
char *pos = bitparse_headers_start;
|
|
int result = 0;
|
|
|
|
if(!bitparse_initialized) return 0;
|
|
|
|
while(pos < bitparse_bitstream_end) {
|
|
char current_name = *pos++;
|
|
unsigned int current_length = 0;
|
|
if(current_name < 'a' || current_name > 'e') {
|
|
/* Strange section name, abort */
|
|
break;
|
|
}
|
|
current_length = 0;
|
|
switch(current_name) {
|
|
case 'e':
|
|
/* Four byte length field */
|
|
current_length += (*pos++) << 24;
|
|
current_length += (*pos++) << 16;
|
|
default: /* Fall through, two byte length field */
|
|
current_length += (*pos++) << 8;
|
|
current_length += (*pos++) << 0;
|
|
}
|
|
|
|
if(current_name != 'e' && current_length > 255) {
|
|
/* Maybe a parse error */
|
|
break;
|
|
}
|
|
|
|
if(current_name == section_name) {
|
|
/* Found it */
|
|
*section_start = pos;
|
|
*section_length = current_length;
|
|
result = 1;
|
|
break;
|
|
}
|
|
|
|
pos += current_length; /* Skip section */
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Find out which FPGA image format is stored in flash, then call DownloadFPGA
|
|
// with the right parameters to download the image
|
|
//-----------------------------------------------------------------------------
|
|
extern char _binary_fpga_bit_start, _binary_fpga_bit_end;
|
|
void FpgaDownloadAndGo(void)
|
|
{
|
|
/* Check for the new flash image format: Should have the .bit file at &_binary_fpga_bit_start
|
|
*/
|
|
if(bitparse_init(&_binary_fpga_bit_start, &_binary_fpga_bit_end)) {
|
|
/* Successfully initialized the .bit parser. Find the 'e' section and
|
|
* send its contents to the FPGA.
|
|
*/
|
|
char *bitstream_start;
|
|
unsigned int bitstream_length;
|
|
if(bitparse_find_section('e', &bitstream_start, &bitstream_length)) {
|
|
DownloadFPGA(bitstream_start, bitstream_length, 0);
|
|
|
|
return; /* All done */
|
|
}
|
|
}
|
|
|
|
/* Fallback for the old flash image format: Check for the magic marker 0xFFFFFFFF
|
|
* 0xAA995566 at address 0x102000. This is raw bitstream with a size of 336,768 bits
|
|
* = 10,524 uint32_t, stored as uint32_t e.g. little-endian in memory, but each DWORD
|
|
* is still to be transmitted in MSBit first order. Set the invert flag to indicate
|
|
* that the DownloadFPGA function should invert every 4 byte sequence when doing
|
|
* the bytewise download.
|
|
*/
|
|
if( *(uint32_t*)0x102000 == 0xFFFFFFFF && *(uint32_t*)0x102004 == 0xAA995566 )
|
|
DownloadFPGA((char*)0x102000, 10524*4, 1);
|
|
}
|
|
|
|
void FpgaGatherVersion(char *dst, int len)
|
|
{
|
|
char *fpga_info;
|
|
unsigned int fpga_info_len;
|
|
dst[0] = 0;
|
|
if(!bitparse_find_section('e', &fpga_info, &fpga_info_len)) {
|
|
strncat(dst, "FPGA image: legacy image without version information", len-1);
|
|
} else {
|
|
strncat(dst, "FPGA image built", len-1);
|
|
/* USB packets only have 48 bytes data payload, so be terse */
|
|
#if 0
|
|
if(bitparse_find_section('a', &fpga_info, &fpga_info_len) && fpga_info[fpga_info_len-1] == 0 ) {
|
|
strncat(dst, " from ", len-1);
|
|
strncat(dst, fpga_info, len-1);
|
|
}
|
|
if(bitparse_find_section('b', &fpga_info, &fpga_info_len) && fpga_info[fpga_info_len-1] == 0 ) {
|
|
strncat(dst, " for ", len-1);
|
|
strncat(dst, fpga_info, len-1);
|
|
}
|
|
#endif
|
|
if(bitparse_find_section('c', &fpga_info, &fpga_info_len) && fpga_info[fpga_info_len-1] == 0 ) {
|
|
strncat(dst, " on ", len-1);
|
|
strncat(dst, fpga_info, len-1);
|
|
}
|
|
if(bitparse_find_section('d', &fpga_info, &fpga_info_len) && fpga_info[fpga_info_len-1] == 0 ) {
|
|
strncat(dst, " at ", len-1);
|
|
strncat(dst, fpga_info, len-1);
|
|
}
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Send a 16 bit command/data pair to the FPGA.
|
|
// The bit format is: C3 C2 C1 C0 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
|
|
// where C is the 4 bit command and D is the 12 bit data
|
|
//-----------------------------------------------------------------------------
|
|
void FpgaSendCommand(uint16_t cmd, uint16_t v)
|
|
{
|
|
SetupSpi(SPI_FPGA_MODE);
|
|
while ((AT91C_BASE_SPI->SPI_SR & AT91C_SPI_TXEMPTY) == 0); // wait for the transfer to complete
|
|
AT91C_BASE_SPI->SPI_TDR = AT91C_SPI_LASTXFER | cmd | v; // send the data
|
|
}
|
|
//-----------------------------------------------------------------------------
|
|
// Write the FPGA setup word (that determines what mode the logic is in, read
|
|
// vs. clone vs. etc.). This is now a special case of FpgaSendCommand() to
|
|
// avoid changing this function's occurence everywhere in the source code.
|
|
//-----------------------------------------------------------------------------
|
|
void FpgaWriteConfWord(uint8_t v)
|
|
{
|
|
FpgaSendCommand(FPGA_CMD_SET_CONFREG, v);
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Set up the CMOS switches that mux the ADC: four switches, independently
|
|
// closable, but should only close one at a time. Not an FPGA thing, but
|
|
// the samples from the ADC always flow through the FPGA.
|
|
//-----------------------------------------------------------------------------
|
|
void SetAdcMuxFor(uint32_t whichGpio)
|
|
{
|
|
AT91C_BASE_PIOA->PIO_OER =
|
|
GPIO_MUXSEL_HIPKD |
|
|
GPIO_MUXSEL_LOPKD |
|
|
GPIO_MUXSEL_LORAW |
|
|
GPIO_MUXSEL_HIRAW;
|
|
|
|
AT91C_BASE_PIOA->PIO_PER =
|
|
GPIO_MUXSEL_HIPKD |
|
|
GPIO_MUXSEL_LOPKD |
|
|
GPIO_MUXSEL_LORAW |
|
|
GPIO_MUXSEL_HIRAW;
|
|
|
|
LOW(GPIO_MUXSEL_HIPKD);
|
|
LOW(GPIO_MUXSEL_HIRAW);
|
|
LOW(GPIO_MUXSEL_LORAW);
|
|
LOW(GPIO_MUXSEL_LOPKD);
|
|
|
|
HIGH(whichGpio);
|
|
}
|