proxmark3/client/cmdhflegic.c
2016-02-18 20:39:41 +01:00

466 lines
No EOL
13 KiB
C

//-----------------------------------------------------------------------------
// Copyright (C) 2010 iZsh <izsh at fail0verflow.com>
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// High frequency Legic commands
//-----------------------------------------------------------------------------
#include <stdio.h>
#include <string.h>
#include "proxmark3.h"
#include "data.h"
#include "ui.h"
#include "cmdparser.h"
#include "cmdhflegic.h"
#include "cmdmain.h"
#include "util.h"
#include "crc.h"
static int CmdHelp(const char *Cmd);
int usage_legic_calccrc8(void){
PrintAndLog("Calculates the legic crc8 on the input hexbytes.");
PrintAndLog("There must be an even number of hexsymbols as input.");
PrintAndLog("Usage: hf legic crc8 <hexbytes>");
PrintAndLog("Options :");
PrintAndLog(" <hexbytes> : hex bytes in a string");
PrintAndLog("");
PrintAndLog("Sample : hf legic crc8 deadbeef1122");
return 0;
}
int usage_legic_load(void){
PrintAndLog("It loads datasamples from the file `filename` to device memory");
PrintAndLog("Usage: hf legic load <file name>");
PrintAndLog(" sample: hf legic load filename");
return 0;
}
/*
* Output BigBuf and deobfuscate LEGIC RF tag data.
* This is based on information given in the talk held
* by Henryk Ploetz and Karsten Nohl at 26c3
*/
int CmdLegicDecode(const char *Cmd) {
// Index for the bytearray.
int i = 0;
int k = 0, segmentNum;
int segment_len = 0;
int segment_flag = 0;
uint8_t stamp_len = 0;
int crc = 0;
int wrp = 0;
int wrc = 0;
uint8_t data_buf[1200]; // receiver buffer, should be 1024..
char token_type[4];
// copy data from proxmark into buffer
GetFromBigBuf(data_buf, sizeof(data_buf), 0);
if ( !WaitForResponseTimeout(CMD_ACK, NULL, 2000)){
PrintAndLog("Command execute timeout");
return 1;
}
// Output CDF System area (9 bytes) plus remaining header area (12 bytes)
crc = data_buf[4];
uint32_t calc_crc = CRC8Legic(data_buf, 4);
PrintAndLog("\nCDF: System Area");
PrintAndLog("------------------------------------------------------");
PrintAndLog("MCD: %02x, MSN: %02x %02x %02x, MCC: %02x %s",
data_buf[0],
data_buf[1],
data_buf[2],
data_buf[3],
data_buf[4],
(calc_crc == crc) ? "OK":"Fail"
);
switch (data_buf[5] & 0x7f) {
case 0x00 ... 0x2f:
strncpy(token_type, "IAM",sizeof(token_type));
break;
case 0x30 ... 0x6f:
strncpy(token_type, "SAM",sizeof(token_type));
break;
case 0x70 ... 0x7f:
strncpy(token_type, "GAM",sizeof(token_type));
break;
default:
strncpy(token_type, "???",sizeof(token_type));
break;
}
stamp_len = 0xfc - data_buf[6];
PrintAndLog("DCF: %02x %02x, Token Type=%s (OLE=%01u), Stamp len=%02u",
data_buf[5],
data_buf[6],
token_type,
(data_buf[5]&0x80)>>7,
stamp_len
);
PrintAndLog("WRP=%02u, WRC=%01u, RD=%01u, raw=%02x, SSC=%02x",
data_buf[7]&0x0f,
(data_buf[7]&0x70)>>4,
(data_buf[7]&0x80)>>7,
data_buf[7],
data_buf[8]
);
PrintAndLog("Remaining Header Area");
PrintAndLog("%s", sprint_hex(data_buf+9, 13));
uint8_t segCrcBytes[8] = {0x00};
uint32_t segCalcCRC = 0;
uint32_t segCRC = 0;
// see if user area is xored or just zeros.
int numOfZeros = 0;
for (int index=22; index < 256; ++index){
if ( data_buf[index] == 0x00 )
++numOfZeros;
}
// if possible zeros is less then 60%, lets assume data is xored
// 256 - 22 (header) = 234
// 1024 - 22 (header) = 1002
int isXored = (numOfZeros*100/stamp_len) < 50;
PrintAndLog("is data xored? %d ( %d %)", isXored, (numOfZeros*100/stamp_len));
print_hex_break( data_buf, 33, 16);
PrintAndLog("\nADF: User Area");
PrintAndLog("------------------------------------------------------");
i = 22;
// 64 potential segements
// how to detect there is no segments?!?
for ( segmentNum=0; segmentNum<64; segmentNum++ ) {
segment_len = ((data_buf[i+1]^crc)&0x0f) * 256 + (data_buf[i]^crc);
segment_flag = ((data_buf[i+1]^crc)&0xf0)>>4;
wrp = (data_buf[i+2]^crc);
wrc = ((data_buf[i+3]^crc)&0x70)>>4;
bool hasWRC = (wrc > 0);
bool hasWRP = (wrp > wrc);
int wrp_len = (wrp - wrc);
int remain_seg_payload_len = (segment_len - wrp - 5);
// validate segment-crc
segCrcBytes[0]=data_buf[0]; //uid0
segCrcBytes[1]=data_buf[1]; //uid1
segCrcBytes[2]=data_buf[2]; //uid2
segCrcBytes[3]=data_buf[3]; //uid3
segCrcBytes[4]=(data_buf[i]^crc); //hdr0
segCrcBytes[5]=(data_buf[i+1]^crc); //hdr1
segCrcBytes[6]=(data_buf[i+2]^crc); //hdr2
segCrcBytes[7]=(data_buf[i+3]^crc); //hdr3
segCalcCRC = CRC8Legic(segCrcBytes, 8);
segCRC = data_buf[i+4]^crc;
PrintAndLog("Segment %02u \nraw header | 0x%02X 0x%02X 0x%02X 0x%02X \nSegment len: %u, Flag: 0x%X (valid:%01u, last:%01u), WRP: %02u, WRC: %02u, RD: %01u, CRC: 0x%02X (%s)",
segmentNum,
data_buf[i]^crc,
data_buf[i+1]^crc,
data_buf[i+2]^crc,
data_buf[i+3]^crc,
segment_len,
segment_flag,
(segment_flag & 0x4) >> 2,
(segment_flag & 0x8) >> 3,
wrp,
wrc,
((data_buf[i+3]^crc) & 0x80) >> 7,
segCRC,
( segCRC == segCalcCRC ) ? "OK" : "fail"
);
i += 5;
if ( hasWRC ) {
PrintAndLog("WRC protected area: (I %d | K %d| WRC %d)", i, k, wrc);
PrintAndLog("\nrow | data");
PrintAndLog("-----+------------------------------------------------");
// de-xor? if not zero, assume it needs xoring.
if ( isXored) {
for ( k=i; k < wrc; ++k)
data_buf[k] ^= crc;
}
print_hex_break( data_buf+i, wrc, 16);
i += wrc;
}
if ( hasWRP ) {
PrintAndLog("Remaining write protected area: (I %d | K %d | WRC %d | WRP %d WRP_LEN %d)",i, k, wrc, wrp, wrp_len);
PrintAndLog("\nrow | data");
PrintAndLog("-----+------------------------------------------------");
if (isXored) {
for (k=i; k < wrp_len; ++k)
data_buf[k] ^= crc;
}
print_hex_break( data_buf+i, wrp_len, 16);
i += wrp_len;
// does this one work?
if( wrp_len == 8 )
PrintAndLog("Card ID: %2X%02X%02X", data_buf[i-4]^crc, data_buf[i-3]^crc, data_buf[i-2]^crc);
}
PrintAndLog("Remaining segment payload: (I %d | K %d | Remain LEN %d)", i, k, remain_seg_payload_len);
PrintAndLog("\nrow | data");
PrintAndLog("-----+------------------------------------------------");
if ( isXored ) {
for ( k=i; k < remain_seg_payload_len; ++k)
data_buf[k] ^= crc;
}
print_hex_break( data_buf+i, remain_seg_payload_len, 16);
i += remain_seg_payload_len;
PrintAndLog("-----+------------------------------------------------\n");
// end with last segment
if (segment_flag & 0x8) return 0;
} // end for loop
return 0;
}
int CmdLegicRFRead(const char *Cmd) {
int byte_count=0, offset=0;
sscanf(Cmd, "%i %i", &offset, &byte_count);
if(byte_count == 0) byte_count = -1;
if(byte_count + offset > 1024) byte_count = 1024 - offset;
UsbCommand c= {CMD_READER_LEGIC_RF, {offset, byte_count, 0}};
clearCommandBuffer();
SendCommand(&c);
return 0;
}
int CmdLegicLoad(const char *Cmd) {
char cmdp = param_getchar(Cmd, 0);
if ( cmdp == 'H' || cmdp == 'h' || cmdp == 0x00) return usage_legic_load();
char filename[FILE_PATH_SIZE] = {0x00};
int len = strlen(Cmd);
if (len > FILE_PATH_SIZE) {
PrintAndLog("Filepath too long (was %s bytes), max allowed is %s ", len, FILE_PATH_SIZE);
return 0;
}
memcpy(filename, Cmd, len);
FILE *f = fopen(filename, "r");
if(!f) {
PrintAndLog("couldn't open '%s'", Cmd);
return -1;
}
char line[80];
int offset = 0;
uint8_t data[USB_CMD_DATA_SIZE] = {0x00};
int index = 0;
int totalbytes = 0;
while ( fgets(line, sizeof(line), f) ) {
int res = sscanf(line, "%x %x %x %x %x %x %x %x",
(unsigned int *)&data[index],
(unsigned int *)&data[index + 1],
(unsigned int *)&data[index + 2],
(unsigned int *)&data[index + 3],
(unsigned int *)&data[index + 4],
(unsigned int *)&data[index + 5],
(unsigned int *)&data[index + 6],
(unsigned int *)&data[index + 7]);
if(res != 8) {
PrintAndLog("Error: could not read samples");
fclose(f);
return -1;
}
index += res;
if ( index == USB_CMD_DATA_SIZE ){
// PrintAndLog("sent %d | %d | %d", index, offset, totalbytes);
UsbCommand c = { CMD_DOWNLOADED_SIM_SAMPLES_125K, {offset, 0, 0}};
memcpy(c.d.asBytes, data, sizeof(data));
clearCommandBuffer();
SendCommand(&c);
if ( !WaitForResponseTimeout(CMD_ACK, NULL, 1500)){
PrintAndLog("Command execute timeout");
fclose(f);
return 1;
}
offset += index;
totalbytes += index;
index = 0;
}
}
fclose(f);
// left over bytes?
if ( index != 0 ) {
UsbCommand c = { CMD_DOWNLOADED_SIM_SAMPLES_125K, {offset, 0, 0}};
memcpy(c.d.asBytes, data, 8);
clearCommandBuffer();
SendCommand(&c);
if ( !WaitForResponseTimeout(CMD_ACK, NULL, 1500)){
PrintAndLog("Command execute timeout");
return 1;
}
totalbytes += index;
}
PrintAndLog("loaded %u samples", totalbytes);
return 0;
}
int CmdLegicSave(const char *Cmd) {
int requested = 1024;
int offset = 0;
int delivered = 0;
char filename[FILE_PATH_SIZE];
uint8_t got[1024] = {0x00};
sscanf(Cmd, " %s %i %i", filename, &requested, &offset);
/* If no length given save entire legic read buffer */
/* round up to nearest 8 bytes so the saved data can be used with legicload */
if (requested == 0)
requested = 1024;
if (requested % 8 != 0) {
int remainder = requested % 8;
requested = requested + 8 - remainder;
}
if (offset + requested > sizeof(got)) {
PrintAndLog("Tried to read past end of buffer, <bytes> + <offset> > 1024");
return 0;
}
GetFromBigBuf(got, requested, offset);
if ( !WaitForResponseTimeout(CMD_ACK, NULL, 2000)){
PrintAndLog("Command execute timeout");
return 1;
}
FILE *f = fopen(filename, "w");
if(!f) {
PrintAndLog("couldn't open '%s'", Cmd+1);
return -1;
}
for (int j = 0; j < requested; j += 8) {
fprintf(f, "%02x %02x %02x %02x %02x %02x %02x %02x\n",
got[j+0], got[j+1], got[j+2], got[j+3],
got[j+4], got[j+5], got[j+6], got[j+7]
);
delivered += 8;
if (delivered >= requested) break;
}
fclose(f);
PrintAndLog("saved %u samples", delivered);
return 0;
}
//TODO: write a help text (iceman)
int CmdLegicRfSim(const char *Cmd) {
UsbCommand c = {CMD_SIMULATE_TAG_LEGIC_RF, {6,3,0}};
sscanf(Cmd, " %"lli" %"lli" %"lli, &c.arg[0], &c.arg[1], &c.arg[2]);
clearCommandBuffer();
SendCommand(&c);
return 0;
}
//TODO: write a help text (iceman)
int CmdLegicRfWrite(const char *Cmd) {
UsbCommand c = {CMD_WRITER_LEGIC_RF};
int res = sscanf(Cmd, " 0x%"llx" 0x%"llx, &c.arg[0], &c.arg[1]);
if(res != 2) {
PrintAndLog("Please specify the offset and length as two hex strings");
return -1;
}
clearCommandBuffer();
SendCommand(&c);
return 0;
}
int CmdLegicRfFill(const char *Cmd) {
UsbCommand cmd = {CMD_WRITER_LEGIC_RF};
int res = sscanf(Cmd, " 0x%"llx" 0x%"llx" 0x%"llx, &cmd.arg[0], &cmd.arg[1], &cmd.arg[2]);
if(res != 3) {
PrintAndLog("Please specify the offset, length and value as two hex strings");
return -1;
}
int i;
UsbCommand c = {CMD_DOWNLOADED_SIM_SAMPLES_125K, {0, 0, 0}};
for(i = 0; i < 48; i++) {
c.d.asBytes[i] = cmd.arg[2];
}
for(i = 0; i < 22; i++) {
c.arg[0] = i*48;
SendCommand(&c);
WaitForResponse(CMD_ACK,NULL);
}
clearCommandBuffer();
SendCommand(&cmd);
return 0;
}
int CmdLegicCalcCrc8(const char *Cmd){
int len = strlen(Cmd);
if ( len & 1 ) return usage_legic_calccrc8();
// add 1 for null terminator.
uint8_t *data = malloc(len+1);
if ( data == NULL ) return 1;
if (param_gethex(Cmd, 0, data, len )) {
free(data);
return usage_legic_calccrc8();
}
uint32_t checksum = CRC8Legic(data, len/2);
PrintAndLog("Bytes: %s || CRC8: %X", sprint_hex(data, len/2), checksum );
free(data);
return 0;
}
static command_t CommandTable[] = {
{"help", CmdHelp, 1, "This help"},
{"decode", CmdLegicDecode, 0, "Display deobfuscated and decoded LEGIC RF tag data (use after hf legic reader)"},
{"read", CmdLegicRFRead, 0, "[offset][length] -- read bytes from a LEGIC card"},
{"save", CmdLegicSave, 0, "<filename> [<length>] -- Store samples"},
{"load", CmdLegicLoad, 0, "<filename> -- Restore samples"},
{"sim", CmdLegicRfSim, 0, "[phase drift [frame drift [req/resp drift]]] Start tag simulator (use after load or read)"},
{"write", CmdLegicRfWrite,0, "<offset> <length> -- Write sample buffer (user after load or read)"},
{"fill", CmdLegicRfFill, 0, "<offset> <length> <value> -- Fill/Write tag with constant value"},
{"crc8", CmdLegicCalcCrc8, 1, "Calculate Legic CRC8 over given hexbytes"},
{NULL, NULL, 0, NULL}
};
int CmdHFLegic(const char *Cmd) {
clearCommandBuffer();
CmdsParse(CommandTable, Cmd);
return 0;
}
int CmdHelp(const char *Cmd) {
CmdsHelp(CommandTable);
return 0;
}