mirror of
https://github.com/RfidResearchGroup/proxmark3.git
synced 2025-01-10 10:11:58 +08:00
480 lines
14 KiB
C
480 lines
14 KiB
C
//-----------------------------------------------------------------------------
|
|
// Copyright (C) 2018 Merlok
|
|
// Copyright (C) 2018 drHatson
|
|
//
|
|
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
|
|
// at your option, any later version. See the LICENSE.txt file for the text of
|
|
// the license.
|
|
//-----------------------------------------------------------------------------
|
|
// crypto commands
|
|
//-----------------------------------------------------------------------------
|
|
|
|
#include "crypto/libpcrypto.h"
|
|
#include <stdlib.h>
|
|
#include <unistd.h>
|
|
#include <string.h>
|
|
#include <mbedtls/asn1.h>
|
|
#include <mbedtls/aes.h>
|
|
#include <mbedtls/cmac.h>
|
|
#include <mbedtls/pk.h>
|
|
#include <mbedtls/ecdsa.h>
|
|
#include <mbedtls/sha256.h>
|
|
#include <mbedtls/sha512.h>
|
|
#include <mbedtls/ctr_drbg.h>
|
|
#include <mbedtls/entropy.h>
|
|
#include <mbedtls/error.h>
|
|
#include <crypto/asn1utils.h>
|
|
#include <util.h>
|
|
|
|
// NIST Special Publication 800-38A — Recommendation for block cipher modes of operation: methods and techniques, 2001.
|
|
int aes_encode(uint8_t *iv, uint8_t *key, uint8_t *input, uint8_t *output, int length) {
|
|
uint8_t iiv[16] = {0};
|
|
if (iv)
|
|
memcpy(iiv, iv, 16);
|
|
|
|
mbedtls_aes_context aes;
|
|
mbedtls_aes_init(&aes);
|
|
if (mbedtls_aes_setkey_enc(&aes, key, 128))
|
|
return 1;
|
|
if (mbedtls_aes_crypt_cbc(&aes, MBEDTLS_AES_ENCRYPT, length, iiv, input, output))
|
|
return 2;
|
|
mbedtls_aes_free(&aes);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int aes_decode(uint8_t *iv, uint8_t *key, uint8_t *input, uint8_t *output, int length) {
|
|
uint8_t iiv[16] = {0};
|
|
if (iv)
|
|
memcpy(iiv, iv, 16);
|
|
|
|
mbedtls_aes_context aes;
|
|
mbedtls_aes_init(&aes);
|
|
if (mbedtls_aes_setkey_dec(&aes, key, 128))
|
|
return 1;
|
|
if (mbedtls_aes_crypt_cbc(&aes, MBEDTLS_AES_DECRYPT, length, iiv, input, output))
|
|
return 2;
|
|
mbedtls_aes_free(&aes);
|
|
|
|
return 0;
|
|
}
|
|
|
|
// NIST Special Publication 800-38B — Recommendation for block cipher modes of operation: The CMAC mode for authentication.
|
|
// https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Standards-and-Guidelines/documents/examples/AES_CMAC.pdf
|
|
int aes_cmac(uint8_t *iv, uint8_t *key, uint8_t *input, uint8_t *mac, int length) {
|
|
memset(mac, 0x00, 16);
|
|
|
|
// NIST 800-38B
|
|
return mbedtls_aes_cmac_prf_128(key, MBEDTLS_AES_BLOCK_SIZE, input, length, mac);
|
|
}
|
|
|
|
int aes_cmac8(uint8_t *iv, uint8_t *key, uint8_t *input, uint8_t *mac, int length) {
|
|
uint8_t cmac_tmp[16] = {0};
|
|
memset(mac, 0x00, 8);
|
|
|
|
int res = aes_cmac(iv, key, input, cmac_tmp, length);
|
|
if (res)
|
|
return res;
|
|
|
|
for (int i = 0; i < 8; i++)
|
|
mac[i] = cmac_tmp[i * 2 + 1];
|
|
|
|
return 0;
|
|
}
|
|
|
|
static uint8_t fixed_rand_value[250] = {0};
|
|
static int fixed_rand(void *rng_state, unsigned char *output, size_t len) {
|
|
if (len <= 250) {
|
|
memcpy(output, fixed_rand_value, len);
|
|
} else {
|
|
memset(output, 0x00, len);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int sha256hash(uint8_t *input, int length, uint8_t *hash) {
|
|
if (!hash || !input)
|
|
return 1;
|
|
|
|
mbedtls_sha256_context sctx;
|
|
mbedtls_sha256_init(&sctx);
|
|
mbedtls_sha256_starts(&sctx, 0); // SHA-256, not 224
|
|
mbedtls_sha256_update(&sctx, input, length);
|
|
mbedtls_sha256_finish(&sctx, hash);
|
|
mbedtls_sha256_free(&sctx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int sha512hash(uint8_t *input, int length, uint8_t *hash) {
|
|
if (!hash || !input)
|
|
return 1;
|
|
|
|
mbedtls_sha512_context sctx;
|
|
mbedtls_sha512_init(&sctx);
|
|
mbedtls_sha512_starts(&sctx, 0); //SHA-512, not 384
|
|
mbedtls_sha512_update(&sctx, input, length);
|
|
mbedtls_sha512_finish(&sctx, hash);
|
|
mbedtls_sha512_free(&sctx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ecdsa_init_str(mbedtls_ecdsa_context *ctx, mbedtls_ecp_group_id curveid, const char *key_d, const char *key_x, const char *key_y) {
|
|
if (!ctx)
|
|
return 1;
|
|
|
|
int res;
|
|
|
|
mbedtls_ecdsa_init(ctx);
|
|
res = mbedtls_ecp_group_load(&ctx->grp, curveid);
|
|
if (res)
|
|
return res;
|
|
|
|
if (key_d) {
|
|
res = mbedtls_mpi_read_string(&ctx->d, 16, key_d);
|
|
if (res)
|
|
return res;
|
|
}
|
|
|
|
if (key_x && key_y) {
|
|
res = mbedtls_ecp_point_read_string(&ctx->Q, 16, key_x, key_y);
|
|
if (res)
|
|
return res;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ecdsa_init(mbedtls_ecdsa_context *ctx, mbedtls_ecp_group_id curveid, uint8_t *key_d, uint8_t *key_xy) {
|
|
if (!ctx)
|
|
return 1;
|
|
|
|
int res;
|
|
|
|
mbedtls_ecdsa_init(ctx);
|
|
res = mbedtls_ecp_group_load(&ctx->grp, curveid);
|
|
if (res)
|
|
return res;
|
|
|
|
size_t keylen = (ctx->grp.nbits + 7) / 8;
|
|
if (key_d) {
|
|
res = mbedtls_mpi_read_binary(&ctx->d, key_d, keylen);
|
|
if (res)
|
|
return res;
|
|
}
|
|
|
|
if (key_xy) {
|
|
res = mbedtls_ecp_point_read_binary(&ctx->grp, &ctx->Q, key_xy, keylen * 2 + 1);
|
|
if (res)
|
|
return res;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int ecdsa_key_create(mbedtls_ecp_group_id curveid, uint8_t *key_d, uint8_t *key_xy) {
|
|
int res;
|
|
mbedtls_ecdsa_context ctx;
|
|
ecdsa_init(&ctx, curveid, NULL, NULL);
|
|
|
|
|
|
mbedtls_entropy_context entropy;
|
|
mbedtls_ctr_drbg_context ctr_drbg;
|
|
const char *pers = "ecdsaproxmark";
|
|
|
|
mbedtls_entropy_init(&entropy);
|
|
mbedtls_ctr_drbg_init(&ctr_drbg);
|
|
|
|
res = mbedtls_ctr_drbg_seed(&ctr_drbg, mbedtls_entropy_func, &entropy, (const unsigned char *)pers, strlen(pers));
|
|
if (res)
|
|
goto exit;
|
|
|
|
res = mbedtls_ecdsa_genkey(&ctx, curveid, mbedtls_ctr_drbg_random, &ctr_drbg);
|
|
if (res)
|
|
goto exit;
|
|
|
|
size_t keylen = (ctx.grp.nbits + 7) / 8;
|
|
res = mbedtls_mpi_write_binary(&ctx.d, key_d, keylen);
|
|
if (res)
|
|
goto exit;
|
|
|
|
size_t public_keylen = 0;
|
|
uint8_t public_key[200] = {0};
|
|
res = mbedtls_ecp_point_write_binary(&ctx.grp, &ctx.Q, MBEDTLS_ECP_PF_UNCOMPRESSED, &public_keylen, public_key, sizeof(public_key));
|
|
if (res)
|
|
goto exit;
|
|
|
|
if (public_keylen != 1 + 2 * keylen) { // 0x04 <key x><key y>
|
|
res = 1;
|
|
goto exit;
|
|
}
|
|
memcpy(key_xy, public_key, public_keylen);
|
|
|
|
exit:
|
|
mbedtls_entropy_free(&entropy);
|
|
mbedtls_ctr_drbg_free(&ctr_drbg);
|
|
mbedtls_ecdsa_free(&ctx);
|
|
return res;
|
|
}
|
|
|
|
char *ecdsa_get_error(int ret) {
|
|
static char retstr[300];
|
|
memset(retstr, 0x00, sizeof(retstr));
|
|
mbedtls_strerror(ret, retstr, sizeof(retstr));
|
|
return retstr;
|
|
}
|
|
|
|
int ecdsa_public_key_from_pk(mbedtls_pk_context *pk, mbedtls_ecp_group_id curveid, uint8_t *key, size_t keylen) {
|
|
int res = 0;
|
|
size_t realkeylen = 0;
|
|
|
|
mbedtls_ecdsa_context ctx;
|
|
mbedtls_ecdsa_init(&ctx);
|
|
|
|
res = mbedtls_ecp_group_load(&ctx.grp, curveid);
|
|
if (res)
|
|
goto exit;
|
|
|
|
size_t private_keylen = (ctx.grp.nbits + 7) / 8;
|
|
if (keylen < 1 + 2 * private_keylen) {
|
|
res = 1;
|
|
goto exit;
|
|
}
|
|
|
|
res = mbedtls_ecdsa_from_keypair(&ctx, mbedtls_pk_ec(*pk));
|
|
if (res)
|
|
goto exit;
|
|
|
|
res = mbedtls_ecp_point_write_binary(&ctx.grp, &ctx.Q, MBEDTLS_ECP_PF_UNCOMPRESSED, &realkeylen, key, keylen);
|
|
if (realkeylen != 1 + 2 * private_keylen)
|
|
res = 2;
|
|
exit:
|
|
mbedtls_ecdsa_free(&ctx);
|
|
return res;
|
|
}
|
|
|
|
int ecdsa_signature_create(mbedtls_ecp_group_id curveid, uint8_t *key_d, uint8_t *key_xy, uint8_t *input, int length, uint8_t *signature, size_t *signaturelen, bool hash) {
|
|
int res;
|
|
*signaturelen = 0;
|
|
|
|
uint8_t shahash[32] = {0};
|
|
res = sha256hash(input, length, shahash);
|
|
if (res)
|
|
return res;
|
|
|
|
mbedtls_entropy_context entropy;
|
|
mbedtls_ctr_drbg_context ctr_drbg;
|
|
const char *pers = "ecdsaproxmark";
|
|
|
|
mbedtls_entropy_init(&entropy);
|
|
mbedtls_ctr_drbg_init(&ctr_drbg);
|
|
|
|
res = mbedtls_ctr_drbg_seed(&ctr_drbg, mbedtls_entropy_func, &entropy, (const unsigned char *)pers, strlen(pers));
|
|
if (res)
|
|
goto exit;
|
|
|
|
mbedtls_ecdsa_context ctx;
|
|
ecdsa_init(&ctx, curveid, key_d, key_xy);
|
|
res = mbedtls_ecdsa_write_signature(
|
|
&ctx,
|
|
MBEDTLS_MD_SHA256,
|
|
hash ? shahash : input,
|
|
hash ? sizeof(shahash) : length,
|
|
signature,
|
|
signaturelen,
|
|
mbedtls_ctr_drbg_random,
|
|
&ctr_drbg
|
|
);
|
|
|
|
|
|
exit:
|
|
mbedtls_ctr_drbg_free(&ctr_drbg);
|
|
mbedtls_ecdsa_free(&ctx);
|
|
return res;
|
|
}
|
|
|
|
static int ecdsa_signature_create_test(mbedtls_ecp_group_id curveid, const char *key_d, const char *key_x, const char *key_y, const char *random, uint8_t *input, int length, uint8_t *signature, size_t *signaturelen) {
|
|
int res;
|
|
*signaturelen = 0;
|
|
|
|
uint8_t shahash[32] = {0};
|
|
res = sha256hash(input, length, shahash);
|
|
if (res)
|
|
return res;
|
|
|
|
int rndlen = 0;
|
|
param_gethex_to_eol(random, 0, fixed_rand_value, sizeof(fixed_rand_value), &rndlen);
|
|
|
|
mbedtls_ecdsa_context ctx;
|
|
ecdsa_init_str(&ctx, curveid, key_d, key_x, key_y);
|
|
res = mbedtls_ecdsa_write_signature(&ctx, MBEDTLS_MD_SHA256, shahash, sizeof(shahash), signature, signaturelen, fixed_rand, NULL);
|
|
|
|
mbedtls_ecdsa_free(&ctx);
|
|
return res;
|
|
}
|
|
|
|
static int ecdsa_signature_verify_keystr(mbedtls_ecp_group_id curveid, const char *key_x, const char *key_y, uint8_t *input, int length, uint8_t *signature, size_t signaturelen, bool hash) {
|
|
int res;
|
|
uint8_t shahash[32] = {0};
|
|
res = sha256hash(input, length, shahash);
|
|
if (res)
|
|
return res;
|
|
|
|
mbedtls_ecdsa_context ctx;
|
|
ecdsa_init_str(&ctx, curveid, NULL, key_x, key_y);
|
|
res = mbedtls_ecdsa_read_signature(
|
|
&ctx,
|
|
hash ? shahash : input,
|
|
hash ? sizeof(shahash) : length,
|
|
signature,
|
|
signaturelen
|
|
);
|
|
|
|
mbedtls_ecdsa_free(&ctx);
|
|
return res;
|
|
}
|
|
|
|
int ecdsa_signature_verify(mbedtls_ecp_group_id curveid, uint8_t *key_xy, uint8_t *input, int length, uint8_t *signature, size_t signaturelen, bool hash) {
|
|
int res;
|
|
uint8_t shahash[32] = {0};
|
|
if (hash) {
|
|
res = sha256hash(input, length, shahash);
|
|
if (res)
|
|
return res;
|
|
}
|
|
|
|
mbedtls_ecdsa_context ctx;
|
|
res = ecdsa_init(&ctx, curveid, NULL, key_xy);
|
|
res = mbedtls_ecdsa_read_signature(
|
|
&ctx,
|
|
hash ? shahash : input,
|
|
hash ? sizeof(shahash) : length,
|
|
signature,
|
|
signaturelen
|
|
);
|
|
|
|
mbedtls_ecdsa_free(&ctx);
|
|
return res;
|
|
}
|
|
|
|
|
|
int ecdsa_signature_r_s_verify(mbedtls_ecp_group_id curveid, uint8_t *key_xy, uint8_t *input, int length, uint8_t *r_s, size_t r_s_len, bool hash) {
|
|
int res;
|
|
uint8_t signature[MBEDTLS_ECDSA_MAX_LEN];
|
|
size_t signature_len;
|
|
|
|
// convert r & s to ASN.1 signature
|
|
mbedtls_mpi r, s;
|
|
mbedtls_mpi_init(&r);
|
|
mbedtls_mpi_init(&s);
|
|
mbedtls_mpi_read_binary(&r, r_s, r_s_len / 2);
|
|
mbedtls_mpi_read_binary(&s, r_s + r_s_len / 2, r_s_len / 2);
|
|
|
|
res = ecdsa_signature_to_asn1(&r, &s, signature, &signature_len);
|
|
if (res < 0) {
|
|
return res;
|
|
}
|
|
|
|
res = ecdsa_signature_verify(curveid, key_xy, input, length, signature, signature_len, hash);
|
|
|
|
mbedtls_mpi_free(&r);
|
|
mbedtls_mpi_free(&s);
|
|
|
|
return res;
|
|
}
|
|
|
|
|
|
#define T_PRIVATE_KEY "C477F9F65C22CCE20657FAA5B2D1D8122336F851A508A1ED04E479C34985BF96"
|
|
#define T_Q_X "B7E08AFDFE94BAD3F1DC8C734798BA1C62B3A0AD1E9EA2A38201CD0889BC7A19"
|
|
#define T_Q_Y "3603F747959DBF7A4BB226E41928729063ADC7AE43529E61B563BBC606CC5E09"
|
|
#define T_K "7A1A7E52797FC8CAAA435D2A4DACE39158504BF204FBE19F14DBB427FAEE50AE"
|
|
#define T_R "2B42F576D07F4165FF65D1F3B1500F81E44C316F1F0B3EF57325B69ACA46104F"
|
|
#define T_S "DC42C2122D6392CD3E3A993A89502A8198C1886FE69D262C4B329BDB6B63FAF1"
|
|
|
|
int ecdsa_nist_test(bool verbose) {
|
|
int res;
|
|
uint8_t input[] = "Example of ECDSA with P-256";
|
|
mbedtls_ecp_group_id curveid = MBEDTLS_ECP_DP_SECP256R1;
|
|
int length = strlen((char *)input);
|
|
uint8_t signature[300] = {0};
|
|
size_t siglen = 0;
|
|
|
|
// NIST ecdsa test
|
|
if (verbose)
|
|
printf(" ECDSA NIST test: ");
|
|
// make signature
|
|
res = ecdsa_signature_create_test(curveid, T_PRIVATE_KEY, T_Q_X, T_Q_Y, T_K, input, length, signature, &siglen);
|
|
// printf("res: %x signature[%x]: %s\n", (res<0)?-res:res, siglen, sprint_hex(signature, siglen));
|
|
if (res)
|
|
goto exit;
|
|
|
|
// check vectors
|
|
uint8_t rval[300] = {0};
|
|
uint8_t sval[300] = {0};
|
|
res = ecdsa_asn1_get_signature(signature, siglen, rval, sval);
|
|
if (res)
|
|
goto exit;
|
|
|
|
int slen = 0;
|
|
uint8_t rval_s[33] = {0};
|
|
param_gethex_to_eol(T_R, 0, rval_s, sizeof(rval_s), &slen);
|
|
uint8_t sval_s[33] = {0};
|
|
param_gethex_to_eol(T_S, 0, sval_s, sizeof(sval_s), &slen);
|
|
if (strncmp((char *)rval, (char *)rval_s, 32) || strncmp((char *)sval, (char *)sval_s, 32)) {
|
|
printf("R or S check error\n");
|
|
res = 100;
|
|
goto exit;
|
|
}
|
|
|
|
// verify signature
|
|
res = ecdsa_signature_verify_keystr(curveid, T_Q_X, T_Q_Y, input, length, signature, siglen, true);
|
|
if (res)
|
|
goto exit;
|
|
|
|
// verify wrong signature
|
|
input[0] ^= 0xFF;
|
|
res = ecdsa_signature_verify_keystr(curveid, T_Q_X, T_Q_Y, input, length, signature, siglen, true);
|
|
if (!res) {
|
|
res = 1;
|
|
goto exit;
|
|
}
|
|
|
|
if (verbose) {
|
|
printf("passed\n");
|
|
printf(" ECDSA binary signature create/check test: ");
|
|
}
|
|
|
|
// random ecdsa test
|
|
uint8_t key_d[32] = {0};
|
|
uint8_t key_xy[32 * 2 + 2] = {0};
|
|
memset(signature, 0x00, sizeof(signature));
|
|
siglen = 0;
|
|
|
|
res = ecdsa_key_create(curveid, key_d, key_xy);
|
|
if (res)
|
|
goto exit;
|
|
|
|
res = ecdsa_signature_create(curveid, key_d, key_xy, input, length, signature, &siglen, true);
|
|
if (res)
|
|
goto exit;
|
|
|
|
res = ecdsa_signature_verify(curveid, key_xy, input, length, signature, siglen, true);
|
|
if (res)
|
|
goto exit;
|
|
|
|
input[0] ^= 0xFF;
|
|
res = ecdsa_signature_verify(curveid, key_xy, input, length, signature, siglen, true);
|
|
if (!res)
|
|
goto exit;
|
|
|
|
if (verbose)
|
|
printf("passed\n\n");
|
|
|
|
return 0;
|
|
exit:
|
|
if (verbose)
|
|
printf("failed\n\n");
|
|
return res;
|
|
}
|