proxmark3/client/cmdhw.c
2019-09-26 16:39:02 +02:00

729 lines
23 KiB
C

//-----------------------------------------------------------------------------
// Copyright (C) 2010 iZsh <izsh at fail0verflow.com>
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Hardware commands
// low-level hardware control
//-----------------------------------------------------------------------------
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include "cmdparser.h" // command_t
#include "comms.h"
#include "usart_defs.h"
#include "ui.h"
#include "cmdhw.h"
#include "cmddata.h"
static int CmdHelp(const char *Cmd);
static int usage_dbg(void) {
PrintAndLogEx(NORMAL, "Usage: hw dbg [h] <debug level>");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h this help");
PrintAndLogEx(NORMAL, " <debug level> (Optional) see list for valid levels");
PrintAndLogEx(NORMAL, " 0 - no debug messages");
PrintAndLogEx(NORMAL, " 1 - error messages");
PrintAndLogEx(NORMAL, " 2 - plus information messages");
PrintAndLogEx(NORMAL, " 3 - plus debug messages");
PrintAndLogEx(NORMAL, " 4 - print even debug messages in timing critical functions");
PrintAndLogEx(NORMAL, " Note: this option therefore may cause malfunction itself");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " hw dbg 3");
return 0;
}
static int usage_hw_detectreader(void) {
PrintAndLogEx(NORMAL, "Start to detect presences of reader field");
PrintAndLogEx(NORMAL, "press pm3 button to change modes and finally exit");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Usage: hw detectreader [h] <L|H>");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h This help");
PrintAndLogEx(NORMAL, " <type> L = 125/134 kHz, H = 13.56 MHz");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " hw detectreader L");
return PM3_SUCCESS;
}
static int usage_hw_setmux(void) {
PrintAndLogEx(NORMAL, "Set the ADC mux to a specific value");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Usage: hw setmux [h] <lopkd | loraw | hipkd | hiraw>");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h This help");
PrintAndLogEx(NORMAL, " <type> Low peak, Low raw, Hi peak, Hi raw");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " hw setmux lopkd");
return PM3_SUCCESS;
}
static int usage_hw_connect(void) {
PrintAndLogEx(NORMAL, "Connects to a Proxmark3 device via specified serial port");
PrintAndLogEx(NORMAL, "Baudrate here is only for physical UART or UART-BT, " _YELLOW_("not")"for USB-CDC or blue shark add-on");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Usage: hw connect [h] [p <port>] [b <baudrate>]");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h This help");
PrintAndLogEx(NORMAL, " p <port> Serial port to connect to, else retry the last used one");
PrintAndLogEx(NORMAL, " b <baudrate> Baudrate");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " hw connect p "SERIAL_PORT_EXAMPLE_H);
PrintAndLogEx(NORMAL, " hw connect p "SERIAL_PORT_EXAMPLE_H" b 115200");
return PM3_SUCCESS;
}
static void lookupChipID(uint32_t iChipID, uint32_t mem_used) {
char asBuff[120];
memset(asBuff, 0, sizeof(asBuff));
uint32_t mem_avail = 0;
PrintAndLogEx(NORMAL, "\n [ Hardware ] ");
switch (iChipID) {
case 0x270B0A40:
sprintf(asBuff, "AT91SAM7S512 Rev A");
break;
case 0x270B0A4F:
sprintf(asBuff, "AT91SAM7S512 Rev B");
break;
case 0x270D0940:
sprintf(asBuff, "AT91SAM7S256 Rev A");
break;
case 0x270B0941:
sprintf(asBuff, "AT91SAM7S256 Rev B");
break;
case 0x270B0942:
sprintf(asBuff, "AT91SAM7S256 Rev C");
break;
case 0x270B0943:
sprintf(asBuff, "AT91SAM7S256 Rev D");
break;
case 0x270C0740:
sprintf(asBuff, "AT91SAM7S128 Rev A");
break;
case 0x270A0741:
sprintf(asBuff, "AT91SAM7S128 Rev B");
break;
case 0x270A0742:
sprintf(asBuff, "AT91SAM7S128 Rev C");
break;
case 0x270A0743:
sprintf(asBuff, "AT91SAM7S128 Rev D");
break;
case 0x27090540:
sprintf(asBuff, "AT91SAM7S64 Rev A");
break;
case 0x27090543:
sprintf(asBuff, "AT91SAM7S64 Rev B");
break;
case 0x27090544:
sprintf(asBuff, "AT91SAM7S64 Rev C");
break;
case 0x27080342:
sprintf(asBuff, "AT91SAM7S321 Rev A");
break;
case 0x27080340:
sprintf(asBuff, "AT91SAM7S32 Rev A");
break;
case 0x27080341:
sprintf(asBuff, "AT91SAM7S32 Rev B");
break;
case 0x27050241:
sprintf(asBuff, "AT9SAM7S161 Rev A");
break;
case 0x27050240:
sprintf(asBuff, "AT91SAM7S16 Rev A");
break;
}
PrintAndLogEx(NORMAL, " --= uC: %s", asBuff);
switch ((iChipID & 0xE0) >> 5) {
case 1:
sprintf(asBuff, "ARM946ES");
break;
case 2:
sprintf(asBuff, "ARM7TDMI");
break;
case 4:
sprintf(asBuff, "ARM920T");
break;
case 5:
sprintf(asBuff, "ARM926EJS");
break;
}
PrintAndLogEx(NORMAL, " --= Embedded Processor: %s", asBuff);
switch ((iChipID & 0xF00) >> 8) {
case 0:
mem_avail = 0;
break;
case 1:
mem_avail = 8;
break;
case 2:
mem_avail = 16;
break;
case 3:
mem_avail = 32;
break;
case 5:
mem_avail = 64;
break;
case 7:
mem_avail = 128;
break;
case 9:
mem_avail = 256;
break;
case 10:
mem_avail = 512;
break;
case 12:
mem_avail = 1024;
break;
case 14:
mem_avail = 2048;
break;
}
uint32_t mem_left = 0;
if (mem_avail > 0)
mem_left = (mem_avail * 1024) - mem_used;
PrintAndLogEx(NORMAL, " --= Nonvolatile Program Memory Size: %uK bytes, Used: %u bytes (%2.0f%%) Free: %u bytes (%2.0f%%)",
mem_avail,
mem_used,
mem_avail == 0 ? 0.0f : (float)mem_used / (mem_avail * 1024) * 100,
mem_left,
mem_avail == 0 ? 0.0f : (float)mem_left / (mem_avail * 1024) * 100
);
switch ((iChipID & 0xF000) >> 12) {
case 0:
sprintf(asBuff, "None");
break;
case 1:
sprintf(asBuff, "8K bytes");
break;
case 2:
sprintf(asBuff, "16K bytes");
break;
case 3:
sprintf(asBuff, "32K bytes");
break;
case 5:
sprintf(asBuff, "64K bytes");
break;
case 7:
sprintf(asBuff, "128K bytes");
break;
case 9:
sprintf(asBuff, "256K bytes");
break;
case 10:
sprintf(asBuff, "512K bytes");
break;
case 12:
sprintf(asBuff, "1024K bytes");
break;
case 14:
sprintf(asBuff, "2048K bytes");
break;
}
PrintAndLogEx(NORMAL, " --= Second Nonvolatile Program Memory Size: %s", asBuff);
switch ((iChipID & 0xF0000) >> 16) {
case 1:
sprintf(asBuff, "1K bytes");
break;
case 2:
sprintf(asBuff, "2K bytes");
break;
case 3:
sprintf(asBuff, "6K bytes");
break;
case 4:
sprintf(asBuff, "112K bytes");
break;
case 5:
sprintf(asBuff, "4K bytes");
break;
case 6:
sprintf(asBuff, "80K bytes");
break;
case 7:
sprintf(asBuff, "160K bytes");
break;
case 8:
sprintf(asBuff, "8K bytes");
break;
case 9:
sprintf(asBuff, "16K bytes");
break;
case 10:
sprintf(asBuff, "32K bytes");
break;
case 11:
sprintf(asBuff, "64K bytes");
break;
case 12:
sprintf(asBuff, "128K bytes");
break;
case 13:
sprintf(asBuff, "256K bytes");
break;
case 14:
sprintf(asBuff, "96K bytes");
break;
case 15:
sprintf(asBuff, "512K bytes");
break;
}
PrintAndLogEx(NORMAL, " --= Internal SRAM Size: %s", asBuff);
switch ((iChipID & 0xFF00000) >> 20) {
case 0x19:
sprintf(asBuff, "AT91SAM9xx Series");
break;
case 0x29:
sprintf(asBuff, "AT91SAM9XExx Series");
break;
case 0x34:
sprintf(asBuff, "AT91x34 Series");
break;
case 0x37:
sprintf(asBuff, "CAP7 Series");
break;
case 0x39:
sprintf(asBuff, "CAP9 Series");
break;
case 0x3B:
sprintf(asBuff, "CAP11 Series");
break;
case 0x40:
sprintf(asBuff, "AT91x40 Series");
break;
case 0x42:
sprintf(asBuff, "AT91x42 Series");
break;
case 0x55:
sprintf(asBuff, "AT91x55 Series");
break;
case 0x60:
sprintf(asBuff, "AT91SAM7Axx Series");
break;
case 0x61:
sprintf(asBuff, "AT91SAM7AQxx Series");
break;
case 0x63:
sprintf(asBuff, "AT91x63 Series");
break;
case 0x70:
sprintf(asBuff, "AT91SAM7Sxx Series");
break;
case 0x71:
sprintf(asBuff, "AT91SAM7XCxx Series");
break;
case 0x72:
sprintf(asBuff, "AT91SAM7SExx Series");
break;
case 0x73:
sprintf(asBuff, "AT91SAM7Lxx Series");
break;
case 0x75:
sprintf(asBuff, "AT91SAM7Xxx Series");
break;
case 0x92:
sprintf(asBuff, "AT91x92 Series");
break;
case 0xF0:
sprintf(asBuff, "AT75Cxx Series");
break;
}
PrintAndLogEx(NORMAL, " --= Architecture Identifier: %s", asBuff);
switch ((iChipID & 0x70000000) >> 28) {
case 0:
sprintf(asBuff, "ROM");
break;
case 1:
sprintf(asBuff, "ROMless or on-chip Flash");
break;
case 2:
sprintf(asBuff, "Embedded Flash Memory");
break;
case 3:
sprintf(asBuff, "ROM and Embedded Flash Memory\nNVPSIZ is ROM size\nNVPSIZ2 is Flash size");
break;
case 4:
sprintf(asBuff, "SRAM emulating ROM");
break;
}
PrintAndLogEx(NORMAL, " --= Nonvolatile Program Memory Type: %s", asBuff);
}
int CmdDbg(const char *Cmd) {
char ctmp = tolower(param_getchar(Cmd, 0));
if (strlen(Cmd) < 1 || ctmp == 'h') return usage_dbg();
uint8_t dbgMode = param_get8ex(Cmd, 0, 0, 10);
if (dbgMode > 4) return usage_dbg();
SendCommandNG(CMD_SET_DBGMODE, &dbgMode, 1);
return PM3_SUCCESS;
}
static int CmdDetectReader(const char *Cmd) {
uint8_t arg = 0;
char c = toupper(Cmd[0]);
switch (c) {
case 'L':
arg = 1;
break;
case 'H':
arg = 2;
break;
default: {
usage_hw_detectreader();
return PM3_EINVARG;
}
}
clearCommandBuffer();
SendCommandNG(CMD_LISTEN_READER_FIELD, (uint8_t *)&arg, sizeof(arg));
return PM3_SUCCESS;
}
// ## FPGA Control
static int CmdFPGAOff(const char *Cmd) {
(void)Cmd; // Cmd is not used so far
clearCommandBuffer();
SendCommandNG(CMD_FPGA_MAJOR_MODE_OFF, NULL, 0);
return PM3_SUCCESS;
}
static int CmdLCD(const char *Cmd) {
int i, j;
sscanf(Cmd, "%x %d", &i, &j);
while (j--) {
clearCommandBuffer();
SendCommandMIX(CMD_LCD, i & 0x1ff, 0, 0, NULL, 0);
}
return PM3_SUCCESS;
}
static int CmdLCDReset(const char *Cmd) {
(void)Cmd; // Cmd is not used so far
clearCommandBuffer();
SendCommandNG(CMD_LCD_RESET, NULL, 0);
return PM3_SUCCESS;
}
static int CmdReadmem(const char *Cmd) {
uint32_t address = strtol(Cmd, NULL, 0);
clearCommandBuffer();
SendCommandNG(CMD_READ_MEM, (uint8_t *)&address, sizeof(address));
return PM3_SUCCESS;
}
static int CmdReset(const char *Cmd) {
(void)Cmd; // Cmd is not used so far
clearCommandBuffer();
SendCommandNG(CMD_HARDWARE_RESET, NULL, 0);
PrintAndLogEx(INFO, "Proxmark3 has been reset.");
return PM3_SUCCESS;
}
/*
* Sets the divisor for LF frequency clock: lets the user choose any LF frequency below
* 600kHz.
*/
static int CmdSetDivisor(const char *Cmd) {
uint8_t arg = param_get8ex(Cmd, 0, 95, 10);
if (arg < 19) {
PrintAndLogEx(ERR, "divisor must be between 19 and 255");
return PM3_EINVARG;
}
// 12 000 000 (12MHz)
clearCommandBuffer();
SendCommandNG(CMD_LF_SET_DIVISOR, (uint8_t *)&arg, sizeof(arg));
PrintAndLogEx(SUCCESS, "Divisor set, expected %.1f kHz", ((double)12000 / (arg + 1)));
return PM3_SUCCESS;
}
static int CmdSetMux(const char *Cmd) {
if (strlen(Cmd) < 5) {
usage_hw_setmux();
return PM3_EINVARG;
}
str_lower((char *)Cmd);
uint8_t arg = 0;
if (strcmp(Cmd, "lopkd") == 0)
arg = 0;
else if (strcmp(Cmd, "loraw") == 0)
arg = 1;
else if (strcmp(Cmd, "hipkd") == 0)
arg = 2;
else if (strcmp(Cmd, "hiraw") == 0)
arg = 3;
else {
usage_hw_setmux();
return PM3_EINVARG;
}
clearCommandBuffer();
SendCommandNG(CMD_SET_ADC_MUX, (uint8_t *)&arg, sizeof(arg));
return PM3_SUCCESS;
}
static int CmdStandalone(const char *Cmd) {
(void)Cmd; // Cmd is not used so far
clearCommandBuffer();
SendCommandNG(CMD_STANDALONE, NULL, 0);
return PM3_SUCCESS;
}
static int CmdTune(const char *Cmd) {
return CmdTuneSamples(Cmd);
}
static int CmdVersion(const char *Cmd) {
(void)Cmd; // Cmd is not used so far
pm3_version(true, false);
return PM3_SUCCESS;
}
static int CmdStatus(const char *Cmd) {
(void)Cmd; // Cmd is not used so far
clearCommandBuffer();
PacketResponseNG resp;
SendCommandNG(CMD_STATUS, NULL, 0);
if (WaitForResponseTimeout(CMD_STATUS, &resp, 2000) == false)
PrintAndLogEx(WARNING, "Status command failed. Communication speed test timed out");
return PM3_SUCCESS;
}
static int CmdPing(const char *Cmd) {
uint32_t len = strtol(Cmd, NULL, 0);
if (len > PM3_CMD_DATA_SIZE)
len = PM3_CMD_DATA_SIZE;
if (len) {
PrintAndLogEx(INFO, "Ping sent with payload len=%d", len);
} else {
PrintAndLogEx(INFO, "Ping sent");
}
clearCommandBuffer();
PacketResponseNG resp;
uint8_t data[PM3_CMD_DATA_SIZE] = {0};
for (uint16_t i = 0; i < len; i++)
data[i] = i & 0xFF;
SendCommandNG(CMD_PING, data, len);
if (WaitForResponseTimeout(CMD_PING, &resp, 1000)) {
bool error = false;
if (len) {
error = memcmp(data, resp.data.asBytes, len) != 0;
PrintAndLogEx((error) ? ERR : SUCCESS, "Ping response " _GREEN_("received") "and content is %s", error ? _RED_("NOT ok") : _GREEN_("ok"));
} else {
PrintAndLogEx((error) ? ERR : SUCCESS, "Ping response " _GREEN_("received"));
}
} else
PrintAndLogEx(WARNING, "Ping response " _RED_("timeout"));
return PM3_SUCCESS;
}
static int CmdConnect(const char *Cmd) {
uint32_t baudrate = USART_BAUD_RATE;
uint8_t cmdp = 0;
char port[FILE_PATH_SIZE] = {0};
while (param_getchar(Cmd, cmdp) != 0x00) {
switch (tolower(param_getchar(Cmd, cmdp))) {
case 'h':
return usage_hw_connect();
case 'p': {
param_getstr(Cmd, cmdp + 1, port, sizeof(port));
cmdp += 2;
break;
}
case 'b':
baudrate = param_get32ex(Cmd, cmdp + 1, USART_BAUD_RATE, 10);
if (baudrate == 0)
return usage_hw_connect();
cmdp += 2;
break;
default:
usage_hw_connect();
return PM3_EINVARG;
}
}
// default back to previous used serial port
if (strlen(port) == 0) {
if (strlen((char *)conn.serial_port_name) == 0) {
return usage_hw_connect();
}
memcpy(port, conn.serial_port_name, sizeof(port));
}
if (session.pm3_present) {
CloseProxmark();
}
// 10 second timeout
OpenProxmark(port, false, 10, false, baudrate);
if (session.pm3_present && (TestProxmark() != PM3_SUCCESS)) {
PrintAndLogEx(ERR, _RED_("ERROR:") "cannot communicate with the Proxmark3\n");
CloseProxmark();
return PM3_ENOTTY;
}
return PM3_SUCCESS;
}
static command_t CommandTable[] = {
{"help", CmdHelp, AlwaysAvailable, "This help"},
{"connect", CmdConnect, AlwaysAvailable, "connect Proxmark3 to serial port"},
{"dbg", CmdDbg, IfPm3Present, "Set Proxmark3 debug level"},
{"detectreader", CmdDetectReader, IfPm3Present, "['l'|'h'] -- Detect external reader field (option 'l' or 'h' to limit to LF or HF)"},
{"fpgaoff", CmdFPGAOff, IfPm3Present, "Set FPGA off"},
{"lcd", CmdLCD, IfPm3Lcd, "<HEX command> <count> -- Send command/data to LCD"},
{"lcdreset", CmdLCDReset, IfPm3Lcd, "Hardware reset LCD"},
{"ping", CmdPing, IfPm3Present, "Test if the Proxmark3 is responsive"},
{"readmem", CmdReadmem, IfPm3Present, "[address] -- Read memory at decimal address from flash"},
{"reset", CmdReset, IfPm3Present, "Reset the Proxmark3"},
{"setlfdivisor", CmdSetDivisor, IfPm3Present, "<19 - 255> -- Drive LF antenna at 12MHz/(divisor+1)"},
{"setmux", CmdSetMux, IfPm3Present, "Set the ADC mux to a specific value"},
{"standalone", CmdStandalone, IfPm3Present, "Jump to the standalone mode"},
{"status", CmdStatus, IfPm3Present, "Show runtime status information about the connected Proxmark3"},
{"tune", CmdTune, IfPm3Present, "Measure antenna tuning"},
{"version", CmdVersion, IfPm3Present, "Show version information about the connected Proxmark3"},
{NULL, NULL, NULL, NULL}
};
static int CmdHelp(const char *Cmd) {
(void)Cmd; // Cmd is not used so far
CmdsHelp(CommandTable);
return PM3_SUCCESS;
}
int CmdHW(const char *Cmd) {
clearCommandBuffer();
return CmdsParse(CommandTable, Cmd);
}
void pm3_version(bool verbose, bool oneliner) {
#if defined(__MINGW64__)
# define PM3CLIENTCOMPILER "MinGW-w64 "
#elif defined(__MINGW32__)
# define PM3CLIENTCOMPILER "MinGW "
#elif defined(__clang__)
# define PM3CLIENTCOMPILER "Clang/LLVM "
#elif defined(__GNUC__) || defined(__GNUG__)
# define PM3CLIENTCOMPILER "GCC "
#else
# define PM3CLIENTCOMPILER "unknown compiler "
#endif
#if defined(__APPLE__) || defined(__MACH__)
# define PM3HOSTOS " OS:OSX"
#elif defined(__ANDROID__) || defined(ANDROID)
// must be tested before __linux__
# define PM3HOSTOS " OS:Android"
#elif defined(__linux__)
# define PM3HOSTOS " OS:Linux"
#elif defined(__FreeBSD__)
# define PM3HOSTOS " OS:FreeBSD"
#elif defined(__NetBSD__)
# define PM3HOSTOS " OS:NetBSD"
#elif defined(__OpenBSD__)
# define PM3HOSTOS " OS:OpenBSD"
#elif defined(__CYGWIN__)
# define PM3HOSTOS " OS:Cygwin"
#elif defined(_WIN64) | defined(__WIN64__)
// must be tested before _WIN32
# define PM3HOSTOS " OS:Windows (64b)"
#elif defined(_WIN32) | defined(__WIN32__)
# define PM3HOSTOS " OS:Windows (32b)"
#else
# define PM3HOSTOS " OS:unknown"
#endif
#if defined(__x86_64__)
# define PM3HOSTARCH " ARCH:x86_64"
#elif defined(__i386__)
# define PM3HOSTARCH " ARCH:x86"
#elif defined(__aarch64__)
# define PM3HOSTARCH " ARCH:aarch64"
#elif defined(__arm__)
# define PM3HOSTARCH " ARCH:arm"
#elif defined(__powerpc64__)
# define PM3HOSTARCH " ARCH:powerpc64"
#elif defined(__mips__)
# define PM3HOSTARCH " ARCH:mips"
#else
# define PM3HOSTARCH " ARCH:unknown"
#endif
if (oneliner) {
// For "proxmark3 -v", simple printf, avoid logging
printf("Client: RRG/Iceman compiled with " PM3CLIENTCOMPILER __VERSION__ PM3HOSTOS PM3HOSTARCH "\n");
return;
}
if (!verbose)
return;
PacketResponseNG resp;
clearCommandBuffer();
SendCommandNG(CMD_VERSION, NULL, 0);
if (WaitForResponseTimeout(CMD_VERSION, &resp, 1000)) {
PrintAndLogEx(NORMAL, "\n" _BLUE_(" [ Proxmark3 RFID instrument ]") "\n");
PrintAndLogEx(NORMAL, "\n [ CLIENT ]");
PrintAndLogEx(NORMAL, " client: RRG/Iceman"); // TODO version info?
PrintAndLogEx(NORMAL, " compiled with " PM3CLIENTCOMPILER __VERSION__ PM3HOSTOS PM3HOSTARCH);
//#if PLATFORM == PM3RDV4
if ( IfPm3Flash() == false && IfPm3Smartcard() == false && IfPm3FpcUsartHost() == false) {
PrintAndLogEx(NORMAL, "\n [ PROXMARK3 ]");
} else {
PrintAndLogEx(NORMAL, "\n [ PROXMARK3 RDV4 ]");
PrintAndLogEx(NORMAL, " external flash: %s", IfPm3Flash() ? _GREEN_("present") : _YELLOW_("absent"));
PrintAndLogEx(NORMAL, " smartcard reader: %s", IfPm3Smartcard() ? _GREEN_("present") : _YELLOW_("absent"));
PrintAndLogEx(NORMAL, "\n [ PROXMARK3 RDV4 Extras ]");
PrintAndLogEx(NORMAL, " FPC USART for BT add-on support: %s", IfPm3FpcUsartHost() ? _GREEN_("present") : _YELLOW_("absent"));
if (IfPm3FpcUsartDevFromUsb()) {
PrintAndLogEx(NORMAL, " FPC USART for developer support: %s", _GREEN_("present"));
}
}
//#endif
PrintAndLogEx(NORMAL, "");
struct p {
uint32_t id;
uint32_t section_size;
uint32_t versionstr_len;
char versionstr[PM3_CMD_DATA_SIZE - 12];
} PACKED;
struct p *payload = (struct p *)&resp.data.asBytes;
PrintAndLogEx(NORMAL, payload->versionstr);
lookupChipID(payload->id, payload->section_size);
}
PrintAndLogEx(NORMAL, "\n");
}