proxmark3/armsrc/lfsampling.h
Philippe Teuwen d19754567d summer restructuring:
* .h include only the strict minimum for their own parsing
  * this forces all files to include explicitment their needs and not count on far streched dependencies
  * this helps Makefile to rebuild only the minimum
  * according to this rule, most standalone .h are now gone
  * big app.h is gone
  * remove seldom __cplusplus, if c++ happens, everything will have to be done properly anyway
* all unrequired include were removed
* split common/ into common/ (client+arm) and common_arm/ (os+bootloader)
  * bring zlib to common/
  * bring stuff not really/not yet used in common back to armsrc/ or client/
  * bring liblua into client/
  * bring uart into client/
  * move some portions of code around (dbprint, protocols,...)
* rename unused files into *_disabled.[ch] to make it explicit
* rename soft Uarts between 14a, 14b and iclass, so a standalone could use several without clash
* remove PrintAndLogDevice
* move deprecated-hid-flasher from client to tools
* Makefiles
  * treat deps in armsrc/ as in client/
  * client: stop on warning (-Werror), same as for armsrc/

Tested on:

* all standalone modes
* Linux
2019-08-11 21:42:01 +02:00

81 lines
2.4 KiB
C

#ifndef __LFSAMPLING_H
#define __LFSAMPLING_H
#include "common.h"
#include "pm3_cmd.h"
typedef struct BitstreamOut BitstreamOut;
/**
* acquisition of Cotag LF signal. Similar to other LF, since the Cotag has such long datarate RF/384
* and is Manchester?, we directly gather the manchester data into bigbuff
**/
void doCotagAcquisition(size_t sample_size);
uint32_t doCotagAcquisitionManchester(void);
/**
* acquisition of T55x7 LF signal. Similar to other LF, but adjusted with @marshmellows thresholds
* the data is collected in BigBuf.
**/
void doT55x7Acquisition(size_t sample_size);
/**
* Initializes the FPGA for reader-mode (field on), and acquires the samples.
* @return number of bits sampled
**/
uint32_t SampleLF(bool silent, int sample_size);
/**
* Initializes the FPGA for sniff-mode (field off), and acquires the samples.
* @return number of bits sampled
**/
uint32_t SniffLF();
// adds sample size to default options
uint32_t DoPartialAcquisition(int trigger_threshold, bool silent, int sample_size, uint32_t cancel_after);
/**
* @brief Does sample acquisition, ignoring the config values set in the sample_config.
* This method is typically used by tag-specific readers who just wants to read the samples
* the normal way
* @param trigger_threshold
* @param silent
* @return number of bits sampled
*/
uint32_t DoAcquisition_default(int trigger_threshold, bool silent);
/**
* @brief Does sample acquisition, using the config values set in the sample_config.
* @param trigger_threshold
* @param silent
* @return number of bits sampled
*/
uint32_t DoAcquisition_config(bool silent, int sample_size);
/**
* Setup the FPGA to listen for samples. This method downloads the FPGA bitstream
* if not already loaded, sets divisor and starts up the antenna.
* @param divisor : 1, 88> 255 or negative ==> 134.8 kHz
* 0 or 95 ==> 125 kHz
*
**/
void LFSetupFPGAForADC(int divisor, bool lf_field);
/**
* Called from the USB-handler to set the sampling configuration
* The sampling config is used for std reading and sniffing.
*
* Other functions may read samples and ignore the sampling config,
* such as functions to read the UID from a prox tag or similar.
*
* Values set to '0' implies no change (except for averaging)
* @brief setSamplingConfig
* @param sc
*/
void setSamplingConfig(sample_config *sc);
sample_config *getSamplingConfig();
void printConfig();
#endif // __LFSAMPLING_H