proxmark3/client/cmdhfmfu.c
2019-08-21 14:41:33 +02:00

2768 lines
103 KiB
C

//-----------------------------------------------------------------------------
// Ultralight Code (c) 2013,2014 Midnitesnake & Andy Davies of Pentura
// 2015,2016,2017 Iceman, Marshmellow
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// High frequency MIFARE ULTRALIGHT (C) commands
//-----------------------------------------------------------------------------
#include "cmdhfmfu.h"
#include <ctype.h>
#include "cmdparser.h"
#include "commonutil.h"
#include "crypto/libpcrypto.h"
#include "mbedtls/des.h"
#include "cmdhfmf.h"
#include "cmdhf14a.h"
#include "comms.h"
#include "fileutils.h"
#include "protocols.h"
#define MAX_UL_BLOCKS 0x0F
#define MAX_ULC_BLOCKS 0x2B
#define MAX_ULEV1a_BLOCKS 0x13
#define MAX_ULEV1b_BLOCKS 0x28
#define MAX_NTAG_203 0x29
#define MAX_NTAG_210 0x13
#define MAX_NTAG_212 0x28
#define MAX_NTAG_213 0x2C
#define MAX_NTAG_215 0x86
#define MAX_NTAG_216 0xE6
#define MAX_NTAG_I2C_1K 0xE9
#define MAX_MY_D_NFC 0xFF
#define MAX_MY_D_MOVE 0x25
#define MAX_MY_D_MOVE_LEAN 0x0F
#define MAX_UL_NANO_40 0x0A
static int CmdHelp(const char *Cmd);
static int usage_hf_mfu_info(void) {
PrintAndLogEx(NORMAL, "It gathers information about the tag and tries to detect what kind it is.");
PrintAndLogEx(NORMAL, "Sometimes the tags are locked down, and you may need a key to be able to read the information");
PrintAndLogEx(NORMAL, "The following tags can be identified:\n");
PrintAndLogEx(NORMAL, "Ultralight, Ultralight-C, Ultralight EV1, NTAG 203, NTAG 210,");
PrintAndLogEx(NORMAL, "NTAG 212, NTAG 213, NTAG 215, NTAG 216, NTAG I2C 1K & 2K");
PrintAndLogEx(NORMAL, "my-d, my-d NFC, my-d move, my-d move NFC\n");
PrintAndLogEx(NORMAL, "Usage: hf mfu info k <key> l");
PrintAndLogEx(NORMAL, " Options : ");
PrintAndLogEx(NORMAL, " k <key> : (optional) key for authentication [UL-C 16bytes, EV1/NTAG 4bytes]");
PrintAndLogEx(NORMAL, " l : (optional) swap entered key's endianness");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " hf mfu info");
PrintAndLogEx(NORMAL, " hf mfu info k 00112233445566778899AABBCCDDEEFF");
PrintAndLogEx(NORMAL, " hf mfu info k AABBCCDD");
return PM3_SUCCESS;
}
static int usage_hf_mfu_dump(void) {
PrintAndLogEx(NORMAL, "Reads all pages from Ultralight, Ultralight-C, Ultralight EV1");
PrintAndLogEx(NORMAL, "NTAG 203, NTAG 210, NTAG 212, NTAG 213, NTAG 215, NTAG 216");
PrintAndLogEx(NORMAL, "and saves binary dump into the file `filename.bin` or `cardUID.bin`");
PrintAndLogEx(NORMAL, "It autodetects card type.\n");
PrintAndLogEx(NORMAL, "Usage: hf mfu dump k <key> l f <filename w/o .bin> p <page#> q <#pages>");
PrintAndLogEx(NORMAL, " Options :");
PrintAndLogEx(NORMAL, " k <key> : (optional) key for authentication [UL-C 16bytes, EV1/NTAG 4bytes]");
PrintAndLogEx(NORMAL, " l : (optional) swap entered key's endianness");
PrintAndLogEx(NORMAL, " f <FN > : filename w/o .bin to save the dump as");
PrintAndLogEx(NORMAL, " p <Pg > : starting Page number to manually set a page to start the dump at");
PrintAndLogEx(NORMAL, " q <qty> : number of Pages to manually set how many pages to dump");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " hf mfu dump");
PrintAndLogEx(NORMAL, " hf mfu dump n myfile");
PrintAndLogEx(NORMAL, " hf mfu dump k 00112233445566778899AABBCCDDEEFF");
PrintAndLogEx(NORMAL, " hf mfu dump k AABBCCDD\n");
return PM3_SUCCESS;
}
static int usage_hf_mfu_restore(void) {
PrintAndLogEx(NORMAL, "Restore dumpfile onto card.");
PrintAndLogEx(NORMAL, "Usage: hf mfu restore [h] [l] [s] k <key> n <filename w/o .bin> ");
PrintAndLogEx(NORMAL, " Options :");
PrintAndLogEx(NORMAL, " k <key> : (optional) key for authentication [UL-C 16bytes, EV1/NTAG 4bytes]");
PrintAndLogEx(NORMAL, " l : (optional) swap entered key's endianness");
PrintAndLogEx(NORMAL, " s : (optional) enable special write UID -MAGIC TAG ONLY-");
PrintAndLogEx(NORMAL, " e : (optional) enable special write version/signature -MAGIC NTAG 21* ONLY-");
PrintAndLogEx(NORMAL, " r : (optional) use the password found in dumpfile to configure tag. requires 'e' parameter to work");
PrintAndLogEx(NORMAL, " f <FN> : filename w/o .bin to restore");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " hf mfu restore s f myfile");
PrintAndLogEx(NORMAL, " hf mfu restore k AABBCCDD s f myfile\n");
PrintAndLogEx(NORMAL, " hf mfu restore k AABBCCDD s e r f myfile\n");
return PM3_SUCCESS;
}
static int usage_hf_mfu_rdbl(void) {
PrintAndLogEx(NORMAL, "Read a block and print. It autodetects card type.\n");
PrintAndLogEx(NORMAL, "Usage: hf mfu rdbl b <block number> k <key> l\n");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " b <no> : block to read");
PrintAndLogEx(NORMAL, " k <key> : (optional) key for authentication [UL-C 16bytes, EV1/NTAG 4bytes]");
PrintAndLogEx(NORMAL, " l : (optional) swap entered key's endianness");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " hf mfu rdbl b 0");
PrintAndLogEx(NORMAL, " hf mfu rdbl b 0 k 00112233445566778899AABBCCDDEEFF");
PrintAndLogEx(NORMAL, " hf mfu rdbl b 0 k AABBCCDD\n");
return PM3_SUCCESS;
}
static int usage_hf_mfu_wrbl(void) {
PrintAndLogEx(NORMAL, "Write a block. It autodetects card type.\n");
PrintAndLogEx(NORMAL, "Usage: hf mfu wrbl b <block number> d <data> k <key> l\n");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " b <no> : block to write");
PrintAndLogEx(NORMAL, " d <data> : block data - (8 hex symbols)");
PrintAndLogEx(NORMAL, " k <key> : (optional) key for authentication [UL-C 16bytes, EV1/NTAG 4bytes]");
PrintAndLogEx(NORMAL, " l : (optional) swap entered key's endianness");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " hf mfu wrbl b 0 d 01234567");
PrintAndLogEx(NORMAL, " hf mfu wrbl b 0 d 01234567 k AABBCCDD\n");
return PM3_SUCCESS;
}
static int usage_hf_mfu_eload(void) {
PrintAndLogEx(NORMAL, "It loads emul dump from the file `filename.eml`");
PrintAndLogEx(NORMAL, "Hint: See script dumptoemul-mfu.lua to convert the .bin to the eml");
PrintAndLogEx(NORMAL, "Usage: hf mfu eload u <file name w/o `.eml`> [numblocks]");
PrintAndLogEx(NORMAL, " Options:");
PrintAndLogEx(NORMAL, " h : this help");
PrintAndLogEx(NORMAL, " u : UL (required)");
PrintAndLogEx(NORMAL, " [filename] : without `.eml` (required)");
PrintAndLogEx(NORMAL, " numblocks : number of blocks to load from eml file (optional)");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, " sample: hf mfu eload u filename");
PrintAndLogEx(NORMAL, " hf mfu eload u filename 57");
return PM3_SUCCESS;
}
static int usage_hf_mfu_sim(void) {
PrintAndLogEx(NORMAL, "\nEmulating Ultralight tag from emulator memory\n");
PrintAndLogEx(NORMAL, "\nBe sure to load the emulator memory first!\n");
PrintAndLogEx(NORMAL, "Usage: hf mfu sim t 7 u <uid>");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h : this help");
PrintAndLogEx(NORMAL, " t 7 : 7 = NTAG or Ultralight sim (required)");
PrintAndLogEx(NORMAL, " u <uid> : 4 or 7 byte UID (optional)");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " hf mfu sim t 7");
PrintAndLogEx(NORMAL, " hf mfu sim t 7 u 1122344556677\n");
return PM3_SUCCESS;
}
static int usage_hf_mfu_ucauth(void) {
PrintAndLogEx(NORMAL, "Usage: hf mfu cauth k <key number>");
PrintAndLogEx(NORMAL, " 0 (default): 3DES standard key");
PrintAndLogEx(NORMAL, " 1 : all 0x00 key");
PrintAndLogEx(NORMAL, " 2 : 0x00-0x0F key");
PrintAndLogEx(NORMAL, " 3 : nfc key");
PrintAndLogEx(NORMAL, " 4 : all 0x01 key");
PrintAndLogEx(NORMAL, " 5 : all 0xff key");
PrintAndLogEx(NORMAL, " 6 : 0x00-0xFF key");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " hf mfu cauth k");
PrintAndLogEx(NORMAL, " hf mfu cauth k 3");
return PM3_SUCCESS;
}
static int usage_hf_mfu_ucsetpwd(void) {
PrintAndLogEx(NORMAL, "Usage: hf mfu setpwd <password (32 hex symbols)>");
PrintAndLogEx(NORMAL, " [password] - (32 hex symbols)");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " hf mfu setpwd 000102030405060708090a0b0c0d0e0f");
PrintAndLogEx(NORMAL, "");
return PM3_SUCCESS;
}
static int usage_hf_mfu_ucsetuid(void) {
PrintAndLogEx(NORMAL, "Usage: hf mfu setuid <uid (14 hex symbols)>");
PrintAndLogEx(NORMAL, " [uid] - (14 hex symbols)");
PrintAndLogEx(NORMAL, "\nThis only works for Magic Ultralight tags.");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " hf mfu setuid 11223344556677");
PrintAndLogEx(NORMAL, "");
return PM3_SUCCESS;
}
static int usage_hf_mfu_gendiverse(void) {
PrintAndLogEx(NORMAL, "Usage: hf mfu gen [h] [r] <uid (8 hex symbols)>");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h : this help");
PrintAndLogEx(NORMAL, " r : read uid from tag");
PrintAndLogEx(NORMAL, " <uid> : 4 byte UID (optional)");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " hf mfu gen r");
PrintAndLogEx(NORMAL, " hf mfu gen 11223344");
PrintAndLogEx(NORMAL, "");
return PM3_SUCCESS;
}
static int usage_hf_mfu_pwdgen(void) {
PrintAndLogEx(NORMAL, "Usage: hf mfu pwdgen [h|t] [r] <uid (14 hex symbols)>");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h : this help");
PrintAndLogEx(NORMAL, " t : selftest");
PrintAndLogEx(NORMAL, " r : read uid from tag");
PrintAndLogEx(NORMAL, " <uid> : 7 byte UID (optional)");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " hf mfu pwdgen r");
PrintAndLogEx(NORMAL, " hf mfu pwdgen 11223344556677");
PrintAndLogEx(NORMAL, " hf mfu pwdgen t");
PrintAndLogEx(NORMAL, "");
return PM3_SUCCESS;
}
uint8_t default_3des_keys[][16] = {
{ 0x42, 0x52, 0x45, 0x41, 0x4b, 0x4d, 0x45, 0x49, 0x46, 0x59, 0x4f, 0x55, 0x43, 0x41, 0x4e, 0x21 }, // 3des std key
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // all zeroes
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f }, // 0x00-0x0F
{ 0x49, 0x45, 0x4D, 0x4B, 0x41, 0x45, 0x52, 0x42, 0x21, 0x4E, 0x41, 0x43, 0x55, 0x4F, 0x59, 0x46 }, // NFC-key
{ 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01 }, // all ones
{ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }, // all FF
{ 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF } // 11 22 33
};
uint8_t default_pwd_pack[][4] = {
{0xFF, 0xFF, 0xFF, 0xFF}, // PACK 0x00,0x00 -- factory default
};
#define PUBLIC_ECDA_KEYLEN 33
// known public keys for the originality check (source: https://github.com/alexbatalov/node-nxp-originality-verifier)
// ref: AN11350 NTAG 21x Originality Signature Validation
// ref: AN11341 MIFARE Ultralight EV1 Originality Signature Validation
uint8_t public_keys[2][PUBLIC_ECDA_KEYLEN] = {
// UL, NTAG21x and NDEF
{
0x04, 0x49, 0x4e, 0x1a, 0x38, 0x6d, 0x3d, 0x3c,
0xfe, 0x3d, 0xc1, 0x0e, 0x5d, 0xe6, 0x8a, 0x49,
0x9b, 0x1c, 0x20, 0x2d, 0xb5, 0xb1, 0x32, 0x39,
0x3e, 0x89, 0xed, 0x19, 0xfe, 0x5b, 0xe8, 0xbc, 0x61
},
// UL EV1
{
0x04, 0x90, 0x93, 0x3b, 0xdc, 0xd6, 0xe9, 0x9b,
0x4e, 0x25, 0x5e, 0x3d, 0xa5, 0x53, 0x89, 0xa8,
0x27, 0x56, 0x4e, 0x11, 0x71, 0x8e, 0x01, 0x72,
0x92, 0xfa, 0xf2, 0x32, 0x26, 0xa9, 0x66, 0x14, 0xb8
}
};
uint32_t UL_TYPES_ARRAY[] = {
UNKNOWN, UL, UL_C, UL_EV1_48, UL_EV1_128, NTAG,
NTAG_203, NTAG_210, NTAG_212, NTAG_213, NTAG_215, NTAG_216,
MY_D, MY_D_NFC, MY_D_MOVE, MY_D_MOVE_NFC, MY_D_MOVE_LEAN, FUDAN_UL,
UL_EV1, NTAG_213_F, NTAG_216_F, UL_NANO_40, NTAG_I2C_1K
};
uint8_t UL_MEMORY_ARRAY[ARRAYLEN(UL_TYPES_ARRAY)] = {
MAX_UL_BLOCKS, MAX_UL_BLOCKS, MAX_ULC_BLOCKS, MAX_ULEV1a_BLOCKS, MAX_ULEV1b_BLOCKS, MAX_NTAG_203,
MAX_NTAG_203, MAX_NTAG_210, MAX_NTAG_212, MAX_NTAG_213, MAX_NTAG_215, MAX_NTAG_216,
MAX_UL_BLOCKS, MAX_MY_D_NFC, MAX_MY_D_MOVE, MAX_MY_D_MOVE, MAX_MY_D_MOVE_LEAN, MAX_UL_BLOCKS,
MAX_ULEV1a_BLOCKS, MAX_NTAG_213, MAX_NTAG_216, MAX_UL_NANO_40, MAX_NTAG_I2C_1K
};
//------------------------------------
// Pwd & Pack generation Stuff
//------------------------------------
const uint32_t c_D[] = {
0x6D835AFC, 0x7D15CD97, 0x0942B409, 0x32F9C923, 0xA811FB02, 0x64F121E8,
0xD1CC8B4E, 0xE8873E6F, 0x61399BBB, 0xF1B91926, 0xAC661520, 0xA21A31C9,
0xD424808D, 0xFE118E07, 0xD18E728D, 0xABAC9E17, 0x18066433, 0x00E18E79,
0x65A77305, 0x5AE9E297, 0x11FC628C, 0x7BB3431F, 0x942A8308, 0xB2F8FD20,
0x5728B869, 0x30726D5A
};
static void transform_D(uint8_t *ru) {
//Transform
uint8_t i;
uint8_t p = 0;
uint32_t v1 = ((ru[3] << 24) | (ru[2] << 16) | (ru[1] << 8) | ru[0]) + c_D[p++];
uint32_t v2 = ((ru[7] << 24) | (ru[6] << 16) | (ru[5] << 8) | ru[4]) + c_D[p++];
for (i = 0; i < 12; i += 2) {
uint32_t xor1 = v1 ^ v2;
uint32_t t1 = ROTL(xor1, v2 & 0x1F) + c_D[p++];
uint32_t xor2 = v2 ^ t1;
uint32_t t2 = ROTL(xor2, t1 & 0x1F) + c_D[p++];
uint32_t xor3 = t1 ^ t2;
uint32_t xor4 = t2 ^ v1;
v1 = ROTL(xor3, t2 & 0x1F) + c_D[p++];
v2 = ROTL(xor4, v1 & 0x1F) + c_D[p++];
}
//Re-use ru
ru[0] = v1 & 0xFF;
ru[1] = (v1 >> 8) & 0xFF;
ru[2] = (v1 >> 16) & 0xFF;
ru[3] = (v1 >> 24) & 0xFF;
ru[4] = v2 & 0xFF;
ru[5] = (v2 >> 8) & 0xFF;
ru[6] = (v2 >> 16) & 0xFF;
ru[7] = (v2 >> 24) & 0xFF;
}
// Certain pwd generation algo nickname A.
uint32_t ul_ev1_pwdgenA(uint8_t *uid) {
uint8_t pos = (uid[3] ^ uid[4] ^ uid[5] ^ uid[6]) % 32;
uint32_t xortable[] = {
0x4f2711c1, 0x07D7BB83, 0x9636EF07, 0xB5F4460E, 0xF271141C, 0x7D7BB038, 0x636EF871, 0x5F4468E3,
0x271149C7, 0xD7BB0B8F, 0x36EF8F1E, 0xF446863D, 0x7114947A, 0x7BB0B0F5, 0x6EF8F9EB, 0x44686BD7,
0x11494fAF, 0xBB0B075F, 0xEF8F96BE, 0x4686B57C, 0x1494F2F9, 0xB0B07DF3, 0xF8F963E6, 0x686B5FCC,
0x494F2799, 0x0B07D733, 0x8F963667, 0x86B5F4CE, 0x94F2719C, 0xB07D7B38, 0xF9636E70, 0x6B5F44E0
};
uint8_t entry[] = {0x00, 0x00, 0x00, 0x00};
uint8_t pwd[] = {0x00, 0x00, 0x00, 0x00};
num_to_bytes(xortable[pos], 4, entry);
pwd[0] = entry[0] ^ uid[1] ^ uid[2] ^ uid[3];
pwd[1] = entry[1] ^ uid[0] ^ uid[2] ^ uid[4];
pwd[2] = entry[2] ^ uid[0] ^ uid[1] ^ uid[5];
pwd[3] = entry[3] ^ uid[6];
return (uint32_t)bytes_to_num(pwd, 4);
}
// Certain pwd generation algo nickname B. (very simple)
static uint32_t ul_ev1_pwdgenB(uint8_t *uid) {
uint8_t pwd[] = {0x00, 0x00, 0x00, 0x00};
pwd[0] = uid[1] ^ uid[3] ^ 0xAA;
pwd[1] = uid[2] ^ uid[4] ^ 0x55;
pwd[2] = uid[3] ^ uid[5] ^ 0xAA;
pwd[3] = uid[4] ^ uid[6] ^ 0x55;
return (uint32_t)bytes_to_num(pwd, 4);
}
// Certain pwd generation algo nickname C.
uint32_t ul_ev1_pwdgenC(uint8_t *uid) {
uint32_t pwd = 0;
uint8_t base[] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x28,
0x63, 0x29, 0x20, 0x43, 0x6f, 0x70, 0x79, 0x72,
0x69, 0x67, 0x68, 0x74, 0x20, 0x4c, 0x45, 0x47,
0x4f, 0x20, 0x32, 0x30, 0x31, 0x34, 0xaa, 0xaa
};
memcpy(base, uid, 7);
for (int i = 0; i < 32; i += 4) {
uint32_t b = *(uint32_t *)(base + i);
pwd = b + ROTR(pwd, 25) + ROTR(pwd, 10) - pwd;
}
return BSWAP_32(pwd);
}
// Certain pwd generation algo nickname D.
// a.k.a xzy
uint32_t ul_ev1_pwdgenD(uint8_t *uid) {
uint8_t i;
//Rotate
uint8_t r = (uid[1] + uid[3] + uid[5]) & 7; //Rotation offset
uint8_t ru[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; //Rotated UID
for (i = 0; i < 7; i++)
ru[(i + r) & 7] = uid[i];
transform_D(ru);
//Calc key
uint32_t pwd = 0; //Key as int
r = (ru[0] + ru[2] + ru[4] + ru[6]) & 3; //Offset
for (i = 0; i < 4; i++)
pwd = ru[i + r] + (pwd << 8);
return BSWAP_32(pwd);
}
// pack generation for algo 1-3
uint16_t ul_ev1_packgenA(uint8_t *uid) {
uint16_t pack = (uid[0] ^ uid[1] ^ uid[2]) << 8 | (uid[2] ^ 8);
return pack;
}
uint16_t ul_ev1_packgenB(uint8_t *uid) {
return 0x8080;
}
uint16_t ul_ev1_packgenC(uint8_t *uid) {
return 0xaa55;
}
uint16_t ul_ev1_packgenD(uint8_t *uid) {
uint8_t i;
//Rotate
uint8_t r = (uid[2] + uid[5]) & 7; //Rotation offset
uint8_t ru[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; //Rotated UID
for (i = 0; i < 7; i++)
ru[(i + r) & 7] = uid[i];
transform_D(ru);
//Calc pack
uint32_t p = 0;
for (i = 0; i < 8; i++)
p += ru[i] * 13;
p ^= 0x5555;
return BSWAP_16(p & 0xFFFF);
}
static int ul_ev1_pwdgen_selftest() {
uint8_t uid1[] = {0x04, 0x11, 0x12, 0x11, 0x12, 0x11, 0x10};
uint32_t pwd1 = ul_ev1_pwdgenA(uid1);
PrintAndLogEx(NORMAL, "UID | %s | %08X | %s", sprint_hex(uid1, 7), pwd1, (pwd1 == 0x8432EB17) ? "OK" : "->8432EB17<-");
uint8_t uid2[] = {0x04, 0x1f, 0x98, 0xea, 0x1e, 0x3e, 0x81};
uint32_t pwd2 = ul_ev1_pwdgenB(uid2);
PrintAndLogEx(NORMAL, "UID | %s | %08X | %s", sprint_hex(uid2, 7), pwd2, (pwd2 == 0x5fd37eca) ? "OK" : "->5fd37eca<--");
uint8_t uid3[] = {0x04, 0x62, 0xB6, 0x8A, 0xB4, 0x42, 0x80};
uint32_t pwd3 = ul_ev1_pwdgenC(uid3);
PrintAndLogEx(NORMAL, "UID | %s | %08X | %s", sprint_hex(uid3, 7), pwd3, (pwd3 == 0x5a349515) ? "OK" : "->5a349515<--");
uint8_t uid4[] = {0x04, 0xC5, 0xDF, 0x4A, 0x6D, 0x51, 0x80};
uint32_t pwd4 = ul_ev1_pwdgenD(uid4);
PrintAndLogEx(NORMAL, "UID | %s | %08X | %s", sprint_hex(uid4, 7), pwd4, (pwd4 == 0x72B1EC61) ? "OK" : "->72B1EC61<--");
return 0;
}
//------------------------------------
// get version nxp product type
static char *getProductTypeStr(uint8_t id) {
static char buf[20];
char *retStr = buf;
switch (id) {
case 3:
sprintf(retStr, "%02X, Ultralight", id);
break;
case 4:
sprintf(retStr, "%02X, NTAG", id);
break;
default:
sprintf(retStr, "%02X, unknown", id);
break;
}
return buf;
}
/*
The 7 MSBits (=n) code the storage size itself based on 2^n,
the LSBit is set to '0' if the size is exactly 2^n
and set to '1' if the storage size is between 2^n and 2^(n+1).
*/
static char *getUlev1CardSizeStr(uint8_t fsize) {
static char buf[40];
char *retStr = buf;
memset(buf, 0, sizeof(buf));
uint16_t usize = 1 << ((fsize >> 1) + 1);
uint16_t lsize = 1 << (fsize >> 1);
// is LSB set?
if (fsize & 1)
sprintf(retStr, "%02X, (%u <-> %u bytes)", fsize, usize, lsize);
else
sprintf(retStr, "%02X, (%u bytes)", fsize, lsize);
return buf;
}
static void ul_switch_on_field(void) {
clearCommandBuffer();
SendCommandMIX(CMD_HF_ISO14443A_READER, ISO14A_CONNECT | ISO14A_NO_DISCONNECT | ISO14A_NO_RATS, 0, 0, NULL, 0);
}
static int ul_send_cmd_raw(uint8_t *cmd, uint8_t cmdlen, uint8_t *response, uint16_t responseLength) {
clearCommandBuffer();
SendCommandOLD(CMD_HF_ISO14443A_READER, ISO14A_RAW | ISO14A_NO_DISCONNECT | ISO14A_APPEND_CRC | ISO14A_NO_RATS, cmdlen, 0, cmd, cmdlen);
PacketResponseNG resp;
if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500)) return -1;
if (!resp.oldarg[0] && responseLength) return -1;
uint16_t resplen = (resp.oldarg[0] < responseLength) ? resp.oldarg[0] : responseLength;
memcpy(response, resp.data.asBytes, resplen);
return resplen;
}
static int ul_select(iso14a_card_select_t *card) {
ul_switch_on_field();
PacketResponseNG resp;
bool ans = false;
ans = WaitForResponseTimeout(CMD_ACK, &resp, 1500);
if (!ans || resp.oldarg[0] < 1) {
PrintAndLogEx(WARNING, "iso14443a card select failed");
DropField();
return 0;
}
memcpy(card, resp.data.asBytes, sizeof(iso14a_card_select_t));
return 1;
}
// This read command will at least return 16bytes.
static int ul_read(uint8_t page, uint8_t *response, uint16_t responseLength) {
uint8_t cmd[] = {ISO14443A_CMD_READBLOCK, page};
int len = ul_send_cmd_raw(cmd, sizeof(cmd), response, responseLength);
return len;
}
static int ul_comp_write(uint8_t page, uint8_t *data, uint8_t datalen) {
if (data == NULL)
return -1;
uint8_t cmd[18];
memset(cmd, 0x00, sizeof(cmd));
datalen = (datalen > 16) ? 16 : datalen;
cmd[0] = ISO14443A_CMD_WRITEBLOCK;
cmd[1] = page;
memcpy(cmd + 2, data, datalen);
uint8_t response[1] = {0xFF};
ul_send_cmd_raw(cmd, 2 + datalen, response, sizeof(response));
// ACK
if (response[0] == 0x0a) return 0;
// NACK
return -1;
}
static int ulc_requestAuthentication(uint8_t *nonce, uint16_t nonceLength) {
uint8_t cmd[] = {MIFARE_ULC_AUTH_1, 0x00};
int len = ul_send_cmd_raw(cmd, sizeof(cmd), nonce, nonceLength);
return len;
}
static int ulc_authentication(uint8_t *key, bool switch_off_field) {
clearCommandBuffer();
SendCommandOLD(CMD_HF_MIFAREUC_AUTH, switch_off_field, 0, 0, key, 16);
PacketResponseNG resp;
if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500)) return 0;
if (resp.oldarg[0] == 1) return 1;
return 0;
}
static int ulev1_requestAuthentication(uint8_t *pwd, uint8_t *pack, uint16_t packLength) {
uint8_t cmd[] = {MIFARE_ULEV1_AUTH, pwd[0], pwd[1], pwd[2], pwd[3]};
int len = ul_send_cmd_raw(cmd, sizeof(cmd), pack, packLength);
// NACK tables different tags, but between 0-9 is a NEGATIVE response.
// ACK == 0xA
if (len == 1 && pack[0] <= 0x09)
return -1;
return len;
}
static int ul_auth_select(iso14a_card_select_t *card, TagTypeUL_t tagtype, bool hasAuthKey, uint8_t *authkey, uint8_t *pack, uint8_t packSize) {
if (hasAuthKey && (tagtype & UL_C)) {
//will select card automatically and close connection on error
if (!ulc_authentication(authkey, false)) {
PrintAndLogEx(WARNING, "Authentication Failed UL-C");
return PM3_ESOFT;
}
} else {
if (!ul_select(card)) return PM3_ESOFT;
if (hasAuthKey) {
if (ulev1_requestAuthentication(authkey, pack, packSize) == -1) {
DropField();
PrintAndLogEx(WARNING, "Authentication Failed UL-EV1/NTAG");
return PM3_ESOFT;
}
}
}
return PM3_SUCCESS;
}
static int ulev1_getVersion(uint8_t *response, uint16_t responseLength) {
uint8_t cmd[] = {MIFARE_ULEV1_VERSION};
int len = ul_send_cmd_raw(cmd, sizeof(cmd), response, responseLength);
return len;
}
static int ulev1_readCounter(uint8_t counter, uint8_t *response, uint16_t responseLength) {
uint8_t cmd[] = {MIFARE_ULEV1_READ_CNT, counter};
int len = ul_send_cmd_raw(cmd, sizeof(cmd), response, responseLength);
return len;
}
static int ulev1_readTearing(uint8_t counter, uint8_t *response, uint16_t responseLength) {
uint8_t cmd[] = {MIFARE_ULEV1_CHECKTEAR, counter};
int len = ul_send_cmd_raw(cmd, sizeof(cmd), response, responseLength);
return len;
}
static int ulev1_readSignature(uint8_t *response, uint16_t responseLength) {
uint8_t cmd[] = {MIFARE_ULEV1_READSIG, 0x00};
int len = ul_send_cmd_raw(cmd, sizeof(cmd), response, responseLength);
return len;
}
// Fudan check checks for which error is given for a command with incorrect crc
// NXP UL chip responds with 01, fudan 00.
// other possible checks:
// send a0 + crc
// UL responds with 00, fudan doesn't respond
// or
// send a200 + crc
// UL doesn't respond, fudan responds with 00
// or
// send 300000 + crc (read with extra byte(s))
// UL responds with read of page 0, fudan doesn't respond.
//
// make sure field is off before calling this function
static int ul_fudan_check(void) {
iso14a_card_select_t card;
if (!ul_select(&card))
return UL_ERROR;
uint8_t cmd[4] = {0x30, 0x00, 0x02, 0xa7}; //wrong crc on purpose should be 0xa8
clearCommandBuffer();
SendCommandOLD(CMD_HF_ISO14443A_READER, ISO14A_RAW | ISO14A_NO_DISCONNECT | ISO14A_NO_RATS, 4, 0, cmd, sizeof(cmd));
PacketResponseNG resp;
if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500)) return UL_ERROR;
if (resp.oldarg[0] != 1) return UL_ERROR;
return (!resp.data.asBytes[0]) ? FUDAN_UL : UL; //if response == 0x00 then Fudan, else Genuine NXP
}
static int ul_print_default(uint8_t *data) {
uint8_t uid[7];
uid[0] = data[0];
uid[1] = data[1];
uid[2] = data[2];
uid[3] = data[4];
uid[4] = data[5];
uid[5] = data[6];
uid[6] = data[7];
PrintAndLogEx(NORMAL, " UID : %s ", sprint_hex(uid, 7));
PrintAndLogEx(NORMAL, " UID[0] : %02X, %s", uid[0], getTagInfo(uid[0]));
if (uid[0] == 0x05 && ((uid[1] & 0xf0) >> 4) == 2) { // is infineon and 66RxxP
uint8_t chip = (data[8] & 0xC7); // 11000111 mask, bit 3,4,5 RFU
switch (chip) {
case 0xC2:
PrintAndLogEx(NORMAL, " IC type : SLE 66R04P 770 Bytes");
break; //77 pages
case 0xC4:
PrintAndLogEx(NORMAL, " IC type : SLE 66R16P 2560 Bytes");
break; //256 pages
case 0xC6:
PrintAndLogEx(NORMAL, " IC type : SLE 66R32P 5120 Bytes");
break; //512 pages /2 sectors
}
}
// CT (cascade tag byte) 0x88 xor SN0 xor SN1 xor SN2
int crc0 = 0x88 ^ uid[0] ^ uid[1] ^ uid[2];
if (data[3] == crc0)
PrintAndLogEx(NORMAL, " BCC0 : %02X, Ok", data[3]);
else
PrintAndLogEx(NORMAL, " BCC0 : %02X, crc should be %02X", data[3], crc0);
int crc1 = uid[3] ^ uid[4] ^ uid[5] ^ uid[6];
if (data[8] == crc1)
PrintAndLogEx(NORMAL, " BCC1 : %02X, Ok", data[8]);
else
PrintAndLogEx(NORMAL, " BCC1 : %02X, crc should be %02X", data[8], crc1);
PrintAndLogEx(NORMAL, " Internal : %02X, %sdefault", data[9], (data[9] == 0x48) ? "" : "not ");
PrintAndLogEx(NORMAL, " Lock : %s - %s",
sprint_hex(data + 10, 2),
sprint_bin(data + 10, 2)
);
PrintAndLogEx(NORMAL, "OneTimePad : %s - %s\n",
sprint_hex(data + 12, 4),
sprint_bin(data + 12, 4)
);
return PM3_SUCCESS;
}
static int ndef_print_CC(uint8_t *data) {
// no NDEF message
if (data[0] != 0xE1)
return PM3_ESOFT;
//NFC Forum Type 1,2,3,4
//
// 4 has 1.1 (11)
// b7, b6 major version
// b5, b4 minor version
// b3, b2 read
// 00 always, 01 rfu, 10 proprietary, 11 rfu
// b1, b0 write
// 00 always, 01 rfo, 10 proprietary, 11 never
uint8_t cc_write = data[1] & 0x03;
uint8_t cc_read = (data[1] & 0x0C) >> 2;
uint8_t cc_minor = (data[1] & 0x30) >> 4;
uint8_t cc_major = (data[1] & 0xC0) >> 6;
char wStr[50];
switch (cc_write) {
case 0:
sprintf(wStr, "Write access granted without any security");
break;
case 1:
sprintf(wStr, "RFU");
break;
case 2:
sprintf(wStr, "Proprietary");
break;
case 3:
sprintf(wStr, "No write access");
break;
}
char rStr[46];
switch (cc_read) {
case 0:
sprintf(rStr, "Read access granted without any security");
break;
case 1:
case 3:
sprintf(rStr, "RFU");
break;
case 2:
sprintf(rStr, "Proprietary");
break;
}
PrintAndLogEx(NORMAL, "--- NDEF Message");
PrintAndLogEx(NORMAL, "Capability Container: %s", sprint_hex(data, 4));
PrintAndLogEx(NORMAL, " %02X : NDEF Magic Number", data[0]);
// PrintAndLogEx(NORMAL, " %02X : version %d.%d supported by tag", data[1], (data[1] & 0xF0) >> 4, data[1] & 0x0F);
PrintAndLogEx(NORMAL, " %02X : version %d.%d supported by tag", data[1], cc_major, cc_minor);
PrintAndLogEx(NORMAL, " : %s / %s", rStr, wStr);
PrintAndLogEx(NORMAL, " %02X : Physical Memory Size: %d bytes", data[2], data[2] * 8);
if (data[2] == 0x06)
PrintAndLogEx(NORMAL, " %02X : NDEF Memory Size: %d bytes", data[2], 48);
else if (data[2] == 0x12)
PrintAndLogEx(NORMAL, " %02X : NDEF Memory Size: %d bytes", data[2], 144);
else if (data[2] == 0x3E)
PrintAndLogEx(NORMAL, " %02X : NDEF Memory Size: %d bytes", data[2], 496);
else if (data[2] == 0x6D)
PrintAndLogEx(NORMAL, " %02X : NDEF Memory Size: %d bytes", data[2], 872);
uint8_t msb3 = (data[3] & 0xE0) >> 5;
uint8_t sf = (data[3] & 0x10) >> 4;
uint8_t lb = (data[3] & 0x08) >> 3;
uint8_t mlrule = (data[3] & 0x06) >> 1;
uint8_t mbread = (data[3] & 0x01);
PrintAndLogEx(NORMAL, " Additional feature information");
PrintAndLogEx(NORMAL, " %02X", data[3]);
PrintAndLogEx(NORMAL, " 00000000");
PrintAndLogEx(NORMAL, " xxx - %02X : RFU (%s)", msb3, (msb3 == 0) ? _GREEN_("OK") : _RED_("Fail"));
PrintAndLogEx(NORMAL, " x - %02X : %s special frame", sf, (sf) ? "support" : "don\'t support");
PrintAndLogEx(NORMAL, " x - %02X : %s lock block", lb, (lb) ? "support" : "don\'t support");
PrintAndLogEx(NORMAL, " xx - %02X : RFU (%s)", mlrule, (mlrule == 0) ? _GREEN_("OK") : _RED_("Fail"));
PrintAndLogEx(NORMAL, " x - %02X : IC %s multiple block reads", mbread, (mbread) ? "support" : "don\'t support");
return PM3_SUCCESS;
}
int ul_print_type(uint32_t tagtype, uint8_t spaces) {
char spc[11] = " ";
spc[10] = 0x00;
char *spacer = spc + (10 - spaces);
if (tagtype & UL)
PrintAndLogEx(NORMAL, "%sTYPE : MIFARE Ultralight (MF0ICU1) %s", spacer, (tagtype & MAGIC) ? "<magic>" : "");
else if (tagtype & UL_C)
PrintAndLogEx(NORMAL, "%sTYPE : MIFARE Ultralight C (MF0ULC) %s", spacer, (tagtype & MAGIC) ? "<magic>" : "");
else if (tagtype & UL_NANO_40)
PrintAndLogEx(NORMAL, "%sTYPE : MIFARE Ultralight Nano 40bytes (MF0UNH00)", spacer);
else if (tagtype & UL_EV1_48)
PrintAndLogEx(NORMAL, "%sTYPE : MIFARE Ultralight EV1 48bytes (MF0UL1101)", spacer);
else if (tagtype & UL_EV1_128)
PrintAndLogEx(NORMAL, "%sTYPE : MIFARE Ultralight EV1 128bytes (MF0UL2101)", spacer);
else if (tagtype & UL_EV1)
PrintAndLogEx(NORMAL, "%sTYPE : MIFARE Ultralight EV1 UNKNOWN", spacer);
else if (tagtype & NTAG)
PrintAndLogEx(NORMAL, "%sTYPE : NTAG UNKNOWN", spacer);
else if (tagtype & NTAG_203)
PrintAndLogEx(NORMAL, "%sTYPE : NTAG 203 144bytes (NT2H0301F0DT)", spacer);
else if (tagtype & NTAG_210)
PrintAndLogEx(NORMAL, "%sTYPE : NTAG 210 48bytes (NT2L1011G0DU)", spacer);
else if (tagtype & NTAG_212)
PrintAndLogEx(NORMAL, "%sTYPE : NTAG 212 128bytes (NT2L1211G0DU)", spacer);
else if (tagtype & NTAG_213)
PrintAndLogEx(NORMAL, "%sTYPE : NTAG 213 144bytes (NT2H1311G0DU)", spacer);
else if (tagtype & NTAG_213_F)
PrintAndLogEx(NORMAL, "%sTYPE : NTAG 213F 144bytes (NT2H1311F0DTL)", spacer);
else if (tagtype & NTAG_215)
PrintAndLogEx(NORMAL, "%sTYPE : NTAG 215 504bytes (NT2H1511G0DU)", spacer);
else if (tagtype & NTAG_216)
PrintAndLogEx(NORMAL, "%sTYPE : NTAG 216 888bytes (NT2H1611G0DU)", spacer);
else if (tagtype & NTAG_216_F)
PrintAndLogEx(NORMAL, "%sTYPE : NTAG 216F 888bytes (NT2H1611F0DTL)", spacer);
else if (tagtype & NTAG_I2C_1K)
PrintAndLogEx(NORMAL, "%sTYPE : NTAG I2C 888bytes (NT3H1101FHK)", spacer);
else if (tagtype & NTAG_I2C_2K)
PrintAndLogEx(NORMAL, "%sTYPE : NTAG I2C 1904bytes (NT3H1201FHK)", spacer);
else if (tagtype & NTAG_I2C_1K_PLUS)
PrintAndLogEx(NORMAL, "%sTYPE : NTAG I2C plus 888bytes (NT3H2111FHK)", spacer);
else if (tagtype & NTAG_I2C_2K_PLUS)
PrintAndLogEx(NORMAL, "%sTYPE : NTAG I2C plus 1912bytes (NT3H2211FHK)", spacer);
else if (tagtype & MY_D)
PrintAndLogEx(NORMAL, "%sTYPE : INFINEON my-d\x99 (SLE 66RxxS)", spacer);
else if (tagtype & MY_D_NFC)
PrintAndLogEx(NORMAL, "%sTYPE : INFINEON my-d\x99 NFC (SLE 66RxxP)", spacer);
else if (tagtype & MY_D_MOVE)
PrintAndLogEx(NORMAL, "%sTYPE : INFINEON my-d\x99 move (SLE 66R01P)", spacer);
else if (tagtype & MY_D_MOVE_NFC)
PrintAndLogEx(NORMAL, "%sTYPE : INFINEON my-d\x99 move NFC (SLE 66R01P)", spacer);
else if (tagtype & MY_D_MOVE_LEAN)
PrintAndLogEx(NORMAL, "%sTYPE : INFINEON my-d\x99 move lean (SLE 66R01L)", spacer);
else if (tagtype & FUDAN_UL)
PrintAndLogEx(NORMAL, "%sTYPE : FUDAN Ultralight Compatible (or other compatible) %s", spacer, (tagtype & MAGIC) ? "<magic>" : "");
else
PrintAndLogEx(NORMAL, "%sTYPE : Unknown %06x", spacer, tagtype);
return PM3_SUCCESS;
}
static int ulc_print_3deskey(uint8_t *data) {
PrintAndLogEx(NORMAL, " deskey1 [44/0x2C] : %s [s]", sprint_hex(data, 4), sprint_ascii(data, 4));
PrintAndLogEx(NORMAL, " deskey1 [45/0x2D] : %s [s]", sprint_hex(data + 4, 4), sprint_ascii(data + 4, 4));
PrintAndLogEx(NORMAL, " deskey2 [46/0x2E] : %s [s]", sprint_hex(data + 8, 4), sprint_ascii(data + 8, 4));
PrintAndLogEx(NORMAL, " deskey2 [47/0x2F] : %s [s]", sprint_hex(data + 12, 4), sprint_ascii(data + 12, 4));
PrintAndLogEx(NORMAL, "\n 3des key : %s", sprint_hex(SwapEndian64(data, 16, 8), 16));
return PM3_SUCCESS;
}
static int ulc_print_configuration(uint8_t *data) {
PrintAndLogEx(NORMAL, "--- UL-C Configuration");
PrintAndLogEx(NORMAL, " Higher Lockbits [40/0x28] : %s - %s", sprint_hex(data, 4), sprint_bin(data, 2));
PrintAndLogEx(NORMAL, " Counter [41/0x29] : %s - %s", sprint_hex(data + 4, 4), sprint_bin(data + 4, 2));
bool validAuth = (data[8] >= 0x03 && data[8] <= 0x30);
if (validAuth)
PrintAndLogEx(NORMAL, " Auth0 [42/0x2A] : %s page %d/0x%02X and above need authentication", sprint_hex(data + 8, 4), data[8], data[8]);
else {
if (data[8] == 0) {
PrintAndLogEx(NORMAL, " Auth0 [42/0x2A] : %s default", sprint_hex(data + 8, 4));
} else {
PrintAndLogEx(NORMAL, " Auth0 [42/0x2A] : %s auth byte is out-of-range", sprint_hex(data + 8, 4));
}
}
PrintAndLogEx(NORMAL, " Auth1 [43/0x2B] : %s %s",
sprint_hex(data + 12, 4),
(data[12] & 1) ? "write access restricted" : "read and write access restricted"
);
return PM3_SUCCESS;
}
static int ulev1_print_configuration(uint32_t tagtype, uint8_t *data, uint8_t startPage) {
PrintAndLogEx(NORMAL, "\n--- Tag Configuration");
bool strg_mod_en = (data[0] & 2);
uint8_t authlim = (data[4] & 0x07);
bool nfc_cnf_en = (data[4] & 0x08);
bool nfc_cnf_prot_pwd = (data[4] & 0x10);
bool cfglck = (data[4] & 0x40);
bool prot = (data[4] & 0x80);
uint8_t vctid = data[5];
PrintAndLogEx(NORMAL, " cfg0 [%u/0x%02X] : %s", startPage, startPage, sprint_hex(data, 4));
if ((tagtype & (NTAG_213_F | NTAG_216_F))) {
uint8_t mirror_conf = (data[0] & 0xC0);
uint8_t mirror_byte = (data[0] & 0x30);
bool sleep_en = (data[0] & 0x08);
strg_mod_en = (data[0] & 0x04);
uint8_t fdp_conf = (data[0] & 0x03);
switch (mirror_conf) {
case 0:
PrintAndLogEx(NORMAL, " - no ASCII mirror");
break;
case 1:
PrintAndLogEx(NORMAL, " - UID ASCII mirror");
break;
case 2:
PrintAndLogEx(NORMAL, " - NFC counter ASCII mirror");
break;
case 3:
PrintAndLogEx(NORMAL, " - UID and NFC counter ASCII mirror");
break;
default:
break;
}
PrintAndLogEx(NORMAL, " - SLEEP mode %s", (sleep_en) ? "enabled" : "disabled");
switch (fdp_conf) {
case 0:
PrintAndLogEx(NORMAL, " - no field detect");
break;
case 1:
PrintAndLogEx(NORMAL, " - enabled by first State-of-Frame (start of communication)");
break;
case 2:
PrintAndLogEx(NORMAL, " - enabled by selection of the tag");
break;
case 3:
PrintAndLogEx(NORMAL, " - enabled by field presence");
break;
default:
break;
}
// valid mirror start page and byte position within start page.
if (tagtype & NTAG_213_F) {
switch (mirror_conf) {
case 1:
{ PrintAndLogEx(NORMAL, " mirror start block %02X | byte pos %02X - %s", data[2], mirror_byte, (data[2] >= 0x4 && data[2] <= 0x24) ? "OK" : "Invalid value"); break;}
case 2:
{ PrintAndLogEx(NORMAL, " mirror start block %02X | byte pos %02X - %s", data[2], mirror_byte, (data[2] >= 0x4 && data[2] <= 0x26) ? "OK" : "Invalid value"); break;}
case 3:
{ PrintAndLogEx(NORMAL, " mirror start block %02X | byte pos %02X - %s", data[2], mirror_byte, (data[2] >= 0x4 && data[2] <= 0x22) ? "OK" : "Invalid value"); break;}
default:
break;
}
} else if (tagtype & NTAG_216_F) {
switch (mirror_conf) {
case 1:
{ PrintAndLogEx(NORMAL, " mirror start block %02X | byte pos %02X - %s", data[2], mirror_byte, (data[2] >= 0x4 && data[2] <= 0xDE) ? "OK" : "Invalid value"); break;}
case 2:
{ PrintAndLogEx(NORMAL, " mirror start block %02X | byte pos %02X - %s", data[2], mirror_byte, (data[2] >= 0x4 && data[2] <= 0xE0) ? "OK" : "Invalid value"); break;}
case 3:
{ PrintAndLogEx(NORMAL, " mirror start block %02X | byte pos %02X - %s", data[2], mirror_byte, (data[2] >= 0x4 && data[2] <= 0xDC) ? "OK" : "Invalid value"); break;}
default:
break;
}
}
}
PrintAndLogEx(NORMAL, " - strong modulation mode %s", (strg_mod_en) ? "enabled" : "disabled");
if (data[3] < 0xff)
PrintAndLogEx(NORMAL, " - page %d and above need authentication", data[3]);
else
PrintAndLogEx(NORMAL, " - pages don't need authentication");
PrintAndLogEx(NORMAL, " cfg1 [%u/0x%02X] : %s", startPage + 1, startPage + 1, sprint_hex(data + 4, 4));
if (authlim == 0)
PrintAndLogEx(NORMAL, " - Unlimited password attempts");
else
PrintAndLogEx(NORMAL, " - Max number of password attempts is %d", authlim);
PrintAndLogEx(NORMAL, " - NFC counter %s", (nfc_cnf_en) ? "enabled" : "disabled");
PrintAndLogEx(NORMAL, " - NFC counter %s", (nfc_cnf_prot_pwd) ? "not protected" : "password protection enabled");
PrintAndLogEx(NORMAL, " - user configuration %s", cfglck ? "permanently locked" : "writeable");
PrintAndLogEx(NORMAL, " - %s access is protected with password", prot ? "read and write" : "write");
PrintAndLogEx(NORMAL, " - %02X, Virtual Card Type Identifier is %s default", vctid, (vctid == 0x05) ? "" : "not");
PrintAndLogEx(NORMAL, " PWD [%u/0x%02X] : %s- (cannot be read)", startPage + 2, startPage + 2, sprint_hex(data + 8, 4));
PrintAndLogEx(NORMAL, " PACK [%u/0x%02X] : %s - (cannot be read)", startPage + 3, startPage + 3, sprint_hex(data + 12, 2));
PrintAndLogEx(NORMAL, " RFU [%u/0x%02X] : %s- (cannot be read)", startPage + 3, startPage + 3, sprint_hex(data + 14, 2));
return PM3_SUCCESS;
}
static int ulev1_print_counters() {
PrintAndLogEx(NORMAL, "--- Tag Counters");
uint8_t tear[1] = {0};
uint8_t counter[3] = {0, 0, 0};
uint16_t len = 0;
for (uint8_t i = 0; i < 3; ++i) {
ulev1_readTearing(i, tear, sizeof(tear));
len = ulev1_readCounter(i, counter, sizeof(counter));
if (len == 3) {
PrintAndLogEx(NORMAL, " [%0d] : %s", i, sprint_hex(counter, 3));
PrintAndLogEx(NORMAL, " - %02X tearing %s", tear[0], (tear[0] == 0xBD) ? "Ok" : "failure");
}
}
return len;
}
static int ulev1_print_signature(TagTypeUL_t tagtype, uint8_t *uid, uint8_t *signature, size_t signature_len) {
uint8_t public_key = 0;
if (tagtype == UL_EV1_48 || tagtype == UL_EV1_128) {
public_key = 1;
}
int res = ecdsa_signature_r_s_verify(MBEDTLS_ECP_DP_SECP128R1, public_keys[public_key], uid, 7, signature, signature_len, false);
bool is_valid = (res == 0);
PrintAndLogEx(NORMAL, "\n--- Tag Signature");
PrintAndLogEx(NORMAL, "IC signature public key name : NXP NTAG21x (2013)");
PrintAndLogEx(NORMAL, "IC signature public key value : %s", sprint_hex(public_keys[public_key], PUBLIC_ECDA_KEYLEN));
PrintAndLogEx(NORMAL, " Elliptic curve parameters : NID_secp128r1");
PrintAndLogEx(NORMAL, " TAG IC Signature : %s", sprint_hex(signature, signature_len));
PrintAndLogEx(NORMAL, "Signature verified %s", (is_valid) ? _GREEN_("successful") : _RED_("failed"));
return PM3_SUCCESS;
}
static int ulev1_print_version(uint8_t *data) {
PrintAndLogEx(NORMAL, "\n--- Tag Version");
PrintAndLogEx(NORMAL, " Raw bytes : %s", sprint_hex(data, 8));
PrintAndLogEx(NORMAL, " Vendor ID : %02X, %s", data[1], getTagInfo(data[1]));
PrintAndLogEx(NORMAL, " Product type : %s", getProductTypeStr(data[2]));
PrintAndLogEx(NORMAL, " Product subtype : %02X, %s", data[3], (data[3] == 1) ? "17 pF" : "50pF");
PrintAndLogEx(NORMAL, " Major version : %02X", data[4]);
PrintAndLogEx(NORMAL, " Minor version : %02X", data[5]);
PrintAndLogEx(NORMAL, " Size : %s", getUlev1CardSizeStr(data[6]));
PrintAndLogEx(NORMAL, " Protocol type : %02X %s", data[7], (data[7] == 0x3) ? "(ISO14443-3 Compliant)" : "");
return PM3_SUCCESS;
}
/*
static int ulc_magic_test(){
// Magic Ultralight test
// Magic UL-C, by observation,
// 1) it seems to have a static nonce response to 0x1A command.
// 2) the deskey bytes is not-zero:d out on as datasheet states.
// 3) UID - changeable, not only, but pages 0-1-2-3.
// 4) use the ul_magic_test ! magic tags answers specially!
int returnValue = UL_ERROR;
iso14a_card_select_t card;
uint8_t nonce1[11] = {0x00};
uint8_t nonce2[11] = {0x00};
int status = ul_select(&card);
if ( !status ){
return UL_ERROR;
}
status = ulc_requestAuthentication(nonce1, sizeof(nonce1));
if ( status > 0 ) {
status = ulc_requestAuthentication(nonce2, sizeof(nonce2));
returnValue = ( !memcmp(nonce1, nonce2, 11) ) ? UL_C_MAGIC : UL_C;
} else {
returnValue = UL;
}
DropField();
return returnValue;
}
*/
static int ul_magic_test() {
// Magic Ultralight tests
// 1) take present UID, and try to write it back. OBSOLETE
// 2) make a wrong length write to page0, and see if tag answers with ACK/NACK:
iso14a_card_select_t card;
if (!ul_select(&card))
return UL_ERROR;
int status = ul_comp_write(0, NULL, 0);
DropField();
if (status == 0)
return MAGIC;
return 0;
}
uint32_t GetHF14AMfU_Type(void) {
TagTypeUL_t tagtype = UNKNOWN;
iso14a_card_select_t card;
if (!ul_select(&card)) return UL_ERROR;
// Ultralight - ATQA / SAK
if (card.atqa[1] != 0x00 || card.atqa[0] != 0x44 || card.sak != 0x00) {
//PrintAndLogEx(NORMAL, "Tag is not Ultralight | NTAG | MY-D [ATQA: %02X %02X SAK: %02X]\n", card.atqa[1], card.atqa[0], card.sak);
DropField();
return UL_ERROR;
}
if (card.uid[0] != 0x05) {
uint8_t version[10] = {0x00};
int len = ulev1_getVersion(version, sizeof(version));
DropField();
switch (len) {
case 0x0A: {
if (memcmp(version, "\x00\x04\x03\x01\x01\x00\x0B", 7) == 0) { tagtype = UL_EV1_48; break; }
else if (memcmp(version, "\x00\x04\x03\x01\x02\x00\x0B", 7) == 0) { tagtype = UL_NANO_40; break; }
else if (memcmp(version, "\x00\x04\x03\x02\x01\x00\x0B", 7) == 0) { tagtype = UL_EV1_48; break; }
else if (memcmp(version, "\x00\x04\x03\x01\x01\x00\x0E", 7) == 0) { tagtype = UL_EV1_128; break; }
else if (memcmp(version, "\x00\x04\x03\x02\x01\x00\x0E", 7) == 0) { tagtype = UL_EV1_128; break; }
else if (memcmp(version, "\x00\x04\x04\x01\x01\x00\x0B", 7) == 0) { tagtype = NTAG_210; break; }
else if (memcmp(version, "\x00\x04\x04\x01\x01\x00\x0E", 7) == 0) { tagtype = NTAG_212; break; }
else if (memcmp(version, "\x00\x04\x04\x02\x01\x00\x0F", 7) == 0) { tagtype = NTAG_213; break; }
else if (memcmp(version, "\x00\x04\x04\x02\x01\x00\x11", 7) == 0) { tagtype = NTAG_215; break; }
else if (memcmp(version, "\x00\x04\x04\x02\x01\x00\x13", 7) == 0) { tagtype = NTAG_216; break; }
else if (memcmp(version, "\x00\x04\x04\x04\x01\x00\x0F", 7) == 0) { tagtype = NTAG_213_F; break; }
else if (memcmp(version, "\x00\x04\x04\x04\x01\x00\x13", 7) == 0) { tagtype = NTAG_216_F; break; }
else if (memcmp(version, "\x00\x04\x04\x05\x02\x01\x13", 7) == 0) { tagtype = NTAG_I2C_1K; break; }
else if (memcmp(version, "\x00\x04\x04\x05\x02\x01\x15", 7) == 0) { tagtype = NTAG_I2C_2K; break; }
else if (memcmp(version, "\x00\x04\x04\x05\x02\x02\x13", 7) == 0) { tagtype = NTAG_I2C_1K_PLUS; break; }
else if (memcmp(version, "\x00\x04\x04\x05\x02\x02\x15", 7) == 0) { tagtype = NTAG_I2C_2K_PLUS; break; }
else if (version[2] == 0x04) { tagtype = NTAG; break; }
else if (version[2] == 0x03) { tagtype = UL_EV1; }
break;
}
case 0x01:
tagtype = UL_C;
break;
case 0x00:
tagtype = UL;
break;
case -1 :
tagtype = (UL | UL_C | NTAG_203);
break; // could be UL | UL_C magic tags
default :
tagtype = UNKNOWN;
break;
}
// UL vs UL-C vs ntag203 test
if (tagtype & (UL | UL_C | NTAG_203)) {
if (!ul_select(&card)) return UL_ERROR;
// do UL_C check first...
uint8_t nonce[11] = {0x00};
int status = ulc_requestAuthentication(nonce, sizeof(nonce));
DropField();
if (status > 1) {
tagtype = UL_C;
} else {
// need to re-select after authentication error
if (!ul_select(&card)) return UL_ERROR;
uint8_t data[16] = {0x00};
// read page 0x26-0x29 (last valid ntag203 page)
status = ul_read(0x26, data, sizeof(data));
if (status <= 1) {
tagtype = UL;
} else {
// read page 0x30 (should error if it is a ntag203)
status = ul_read(0x30, data, sizeof(data));
if (status <= 1) {
tagtype = NTAG_203;
} else {
tagtype = UNKNOWN;
}
}
DropField();
}
}
if (tagtype & UL) {
tagtype = ul_fudan_check();
DropField();
}
} else {
DropField();
// Infinition MY-D tests Exam high nibble
uint8_t nib = (card.uid[1] & 0xf0) >> 4;
switch (nib) {
// case 0: tagtype = SLE66R35E7; break; //or SLE 66R35E7 - mifare compat... should have different sak/atqa for mf 1k
case 1:
tagtype = MY_D;
break; // or SLE 66RxxS ... up to 512 pages of 8 user bytes...
case 2:
tagtype = (MY_D_NFC);
break; // or SLE 66RxxP ... up to 512 pages of 8 user bytes... (or in nfc mode FF pages of 4 bytes)
case 3:
tagtype = (MY_D_MOVE | MY_D_MOVE_NFC);
break; // or SLE 66R01P // 38 pages of 4 bytes //notice: we can not currently distinguish between these two
case 7:
tagtype = MY_D_MOVE_LEAN;
break; // or SLE 66R01L // 16 pages of 4 bytes
}
}
tagtype |= ul_magic_test();
if (tagtype == (UNKNOWN | MAGIC)) tagtype = (UL_MAGIC);
return tagtype;
}
//
// extended tag information
//
static int CmdHF14AMfUInfo(const char *Cmd) {
uint8_t authlim = 0xff;
uint8_t data[16] = {0x00};
iso14a_card_select_t card;
int status;
bool errors = false;
bool hasAuthKey = false;
bool locked = false;
bool swapEndian = false;
uint8_t cmdp = 0;
uint8_t dataLen = 0;
uint8_t authenticationkey[16] = {0x00};
uint8_t *authkeyptr = authenticationkey;
uint8_t pwd[4] = {0, 0, 0, 0};
uint8_t *key = pwd;
uint8_t pack[4] = {0, 0, 0, 0};
int len;
uint8_t uid[7];
char tempStr[50];
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (tolower(param_getchar(Cmd, cmdp))) {
case 'h':
return usage_hf_mfu_info();
case 'k':
dataLen = param_getstr(Cmd, cmdp + 1, tempStr, sizeof(tempStr));
if (dataLen == 32 || dataLen == 8) { //ul-c or ev1/ntag key length
errors = param_gethex(tempStr, 0, authenticationkey, dataLen);
dataLen /= 2; // handled as bytes from now on
} else {
PrintAndLogEx(WARNING, "ERROR: Key is incorrect length\n");
errors = true;
}
cmdp += 2;
hasAuthKey = true;
break;
case 'l':
swapEndian = true;
cmdp++;
break;
default:
PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = true;
break;
}
}
//Validations
if (errors) return usage_hf_mfu_info();
TagTypeUL_t tagtype = GetHF14AMfU_Type();
if (tagtype == UL_ERROR) return PM3_ESOFT;
PrintAndLogEx(NORMAL, "\n--- Tag Information ---------");
PrintAndLogEx(NORMAL, "-------------------------------------------------------------");
ul_print_type(tagtype, 6);
// Swap endianness
if (swapEndian && hasAuthKey) authkeyptr = SwapEndian64(authenticationkey, dataLen, (dataLen == 16) ? 8 : 4);
if (ul_auth_select(&card, tagtype, hasAuthKey, authkeyptr, pack, sizeof(pack)) == PM3_ESOFT) return PM3_ESOFT;
// read pages 0,1,2,3 (should read 4pages)
status = ul_read(0, data, sizeof(data));
if (status == -1) {
DropField();
PrintAndLogEx(ERR, "Error: tag didn't answer to READ");
return PM3_ESOFT;
} else if (status == 16) {
memcpy(uid, data, 3);
memcpy(uid + 3, data + 4, 4);
ul_print_default(data);
ndef_print_CC(data + 12);
} else {
locked = true;
}
// UL_C Specific
if ((tagtype & UL_C)) {
// read pages 0x28, 0x29, 0x2A, 0x2B
uint8_t ulc_conf[16] = {0x00};
status = ul_read(0x28, ulc_conf, sizeof(ulc_conf));
if (status == -1) {
PrintAndLogEx(ERR, "Error: tag didn't answer to READ UL-C");
DropField();
return PM3_ESOFT;
}
if (status == 16)
ulc_print_configuration(ulc_conf);
else
locked = true;
if ((tagtype & MAGIC)) {
//just read key
uint8_t ulc_deskey[16] = {0x00};
status = ul_read(0x2C, ulc_deskey, sizeof(ulc_deskey));
if (status == -1) {
DropField();
PrintAndLogEx(ERR, "Error: tag didn't answer to READ magic");
return PM3_ESOFT;
}
if (status == 16) ulc_print_3deskey(ulc_deskey);
} else {
DropField();
// if we called info with key, just return
if (hasAuthKey) return PM3_SUCCESS;
// also try to diversify default keys.. look into CmdHF14AMfGenDiverseKeys
PrintAndLogEx(INFO, "Trying some default 3des keys");
for (uint8_t i = 0; i < ARRAYLEN(default_3des_keys); ++i) {
key = default_3des_keys[i];
if (ulc_authentication(key, true)) {
PrintAndLogEx(SUCCESS, "Found default 3des key: ");
uint8_t keySwap[16];
memcpy(keySwap, SwapEndian64(key, 16, 8), 16);
ulc_print_3deskey(keySwap);
return PM3_SUCCESS;
}
}
return PM3_SUCCESS;
}
}
// do counters and signature first (don't neet auth)
// ul counters are different than ntag counters
if ((tagtype & (UL_EV1_48 | UL_EV1_128 | UL_EV1))) {
if (ulev1_print_counters() != 3) {
// failed - re-select
if (ul_auth_select(&card, tagtype, hasAuthKey, authkeyptr, pack, sizeof(pack)) == PM3_ESOFT) return PM3_ESOFT;
}
}
// NTAG counters?
// Read signature
if ((tagtype & (UL_EV1_48 | UL_EV1_128 | UL_EV1 | UL_NANO_40 | NTAG_213 | NTAG_213_F | NTAG_215 | NTAG_216 | NTAG_216_F | NTAG_I2C_1K | NTAG_I2C_2K | NTAG_I2C_1K_PLUS | NTAG_I2C_2K_PLUS))) {
uint8_t ulev1_signature[32] = {0x00};
status = ulev1_readSignature(ulev1_signature, sizeof(ulev1_signature));
if (status == -1) {
PrintAndLogEx(ERR, "Error: tag didn't answer to READ SIGNATURE");
DropField();
return PM3_ESOFT;
}
if (status == 32) {
ulev1_print_signature(tagtype, uid, ulev1_signature, sizeof(ulev1_signature));
} else {
// re-select
if (ul_auth_select(&card, tagtype, hasAuthKey, authkeyptr, pack, sizeof(pack)) == PM3_ESOFT) return PM3_ESOFT;
}
}
// Get Version
if ((tagtype & (UL_EV1_48 | UL_EV1_128 | UL_EV1 | UL_NANO_40 | NTAG_213 | NTAG_213_F | NTAG_215 | NTAG_216 | NTAG_216_F | NTAG_I2C_1K | NTAG_I2C_2K | NTAG_I2C_1K_PLUS | NTAG_I2C_2K_PLUS))) {
uint8_t version[10] = {0x00};
status = ulev1_getVersion(version, sizeof(version));
if (status == -1) {
PrintAndLogEx(ERR, "Error: tag didn't answer to GETVERSION");
DropField();
return PM3_ESOFT;
} else if (status == 10) {
ulev1_print_version(version);
} else {
locked = true;
if (ul_auth_select(&card, tagtype, hasAuthKey, authkeyptr, pack, sizeof(pack)) == PM3_ESOFT) return PM3_ESOFT;
}
uint8_t startconfigblock = 0;
uint8_t ulev1_conf[16] = {0x00};
// config blocks always are last 4 pages
for (uint8_t i = 0; i < ARRAYLEN(UL_TYPES_ARRAY); i++) {
if (tagtype & UL_TYPES_ARRAY[i]) {
startconfigblock = UL_MEMORY_ARRAY[i] - 3;
break;
}
}
if (startconfigblock) { // if we know where the config block is...
status = ul_read(startconfigblock, ulev1_conf, sizeof(ulev1_conf));
if (status == -1) {
PrintAndLogEx(ERR, "Error: tag didn't answer to READ EV1");
DropField();
return PM3_ESOFT;
} else if (status == 16) {
// save AUTHENTICATION LIMITS for later:
authlim = (ulev1_conf[4] & 0x07);
// add pwd / pack if used from cli
if (hasAuthKey) {
memcpy(ulev1_conf + 8, authkeyptr, 4);
memcpy(ulev1_conf + 12, pack, 2);
}
ulev1_print_configuration(tagtype, ulev1_conf, startconfigblock);
}
}
// AUTHLIMIT, (number of failed authentications)
// 0 = limitless.
// 1-7 = limit. No automatic tries then.
// hasAuthKey, if we was called with key, skip test.
if (!authlim && !hasAuthKey) {
PrintAndLogEx(NORMAL, "\n--- Known EV1/NTAG passwords.");
// test pwd gen A
num_to_bytes(ul_ev1_pwdgenA(card.uid), 4, key);
len = ulev1_requestAuthentication(key, pack, sizeof(pack));
if (len > -1) {
PrintAndLogEx(SUCCESS, "Found a default password: %s || Pack: %02X %02X", sprint_hex(key, 4), pack[0], pack[1]);
goto out;
}
if (ul_auth_select(&card, tagtype, hasAuthKey, authkeyptr, pack, sizeof(pack)) == PM3_ESOFT) return PM3_ESOFT;
// test pwd gen B
num_to_bytes(ul_ev1_pwdgenB(card.uid), 4, key);
len = ulev1_requestAuthentication(key, pack, sizeof(pack));
if (len > -1) {
PrintAndLogEx(SUCCESS, "Found a default password: %s || Pack: %02X %02X", sprint_hex(key, 4), pack[0], pack[1]);
goto out;
}
if (ul_auth_select(&card, tagtype, hasAuthKey, authkeyptr, pack, sizeof(pack)) == PM3_ESOFT) return PM3_ESOFT;
// test pwd gen C
num_to_bytes(ul_ev1_pwdgenC(card.uid), 4, key);
len = ulev1_requestAuthentication(key, pack, sizeof(pack));
if (len > -1) {
PrintAndLogEx(SUCCESS, "Found a default password: %s || Pack: %02X %02X", sprint_hex(key, 4), pack[0], pack[1]);
goto out;
}
if (ul_auth_select(&card, tagtype, hasAuthKey, authkeyptr, pack, sizeof(pack)) == PM3_ESOFT) return PM3_ESOFT;
// test pwd gen D
num_to_bytes(ul_ev1_pwdgenD(card.uid), 4, key);
len = ulev1_requestAuthentication(key, pack, sizeof(pack));
if (len > -1) {
PrintAndLogEx(SUCCESS, "Found a default password: %s || Pack: %02X %02X", sprint_hex(key, 4), pack[0], pack[1]);
goto out;
}
if (ul_auth_select(&card, tagtype, hasAuthKey, authkeyptr, pack, sizeof(pack)) == PM3_ESOFT) return PM3_ESOFT;
for (uint8_t i = 0; i < ARRAYLEN(default_pwd_pack); ++i) {
key = default_pwd_pack[i];
len = ulev1_requestAuthentication(key, pack, sizeof(pack));
if (len > -1) {
PrintAndLogEx(SUCCESS, "Found a default password: %s || Pack: %02X %02X", sprint_hex(key, 4), pack[0], pack[1]);
break;
} else {
if (ul_auth_select(&card, tagtype, hasAuthKey, authkeyptr, pack, sizeof(pack)) == PM3_ESOFT) return PM3_ESOFT;
}
}
if (len < 1) PrintAndLogEx(WARNING, "password not known");
}
}
out:
DropField();
if (locked) PrintAndLogEx(FAILED, "\nTag appears to be locked, try using the key to get more info");
PrintAndLogEx(NORMAL, "");
return PM3_SUCCESS;
}
//
// Write Single Block
//
static int CmdHF14AMfUWrBl(const char *Cmd) {
int blockNo = -1;
bool errors = false;
bool hasAuthKey = false;
bool hasPwdKey = false;
bool swapEndian = false;
uint8_t cmdp = 0;
uint8_t keylen = 0;
uint8_t blockdata[20] = {0x00};
uint8_t data[16] = {0x00};
uint8_t authenticationkey[16] = {0x00};
uint8_t *authKeyPtr = authenticationkey;
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (tolower(param_getchar(Cmd, cmdp))) {
case 'h':
return usage_hf_mfu_wrbl();
case 'k':
// EV1/NTAG size key
keylen = param_gethex(Cmd, cmdp + 1, data, 8);
if (!keylen) {
memcpy(authenticationkey, data, 4);
cmdp += 2;
hasPwdKey = true;
break;
}
// UL-C size key
keylen = param_gethex(Cmd, cmdp + 1, data, 32);
if (!keylen) {
memcpy(authenticationkey, data, 16);
cmdp += 2;
hasAuthKey = true;
break;
}
PrintAndLogEx(WARNING, "ERROR: Key is incorrect length\n");
errors = true;
break;
case 'b':
blockNo = param_get8(Cmd, cmdp + 1);
if (blockNo < 0) {
PrintAndLogEx(WARNING, "Wrong block number");
errors = true;
}
cmdp += 2;
break;
case 'l':
swapEndian = true;
cmdp++;
break;
case 'd':
if (param_gethex(Cmd, cmdp + 1, blockdata, 8)) {
PrintAndLogEx(WARNING, "Block data must include 8 HEX symbols");
errors = true;
break;
}
cmdp += 2;
break;
default:
PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = true;
break;
}
}
//Validations
if (errors || cmdp == 0) return usage_hf_mfu_wrbl();
if (blockNo == -1) return usage_hf_mfu_wrbl();
// starting with getting tagtype
TagTypeUL_t tagtype = GetHF14AMfU_Type();
if (tagtype == UL_ERROR) return -1;
uint8_t maxblockno = 0;
for (uint8_t idx = 0; idx < ARRAYLEN(UL_TYPES_ARRAY); idx++) {
if (tagtype & UL_TYPES_ARRAY[idx]) {
maxblockno = UL_MEMORY_ARRAY[idx];
break;
}
}
if (blockNo > maxblockno) {
PrintAndLogEx(WARNING, "block number too large. Max block is %u/0x%02X \n", maxblockno, maxblockno);
return usage_hf_mfu_wrbl();
}
// Swap endianness
if (swapEndian && hasAuthKey) authKeyPtr = SwapEndian64(authenticationkey, 16, 8);
if (swapEndian && hasPwdKey) authKeyPtr = SwapEndian64(authenticationkey, 4, 4);
if (blockNo <= 3)
PrintAndLogEx(NORMAL, "Special Block: %0d (0x%02X) [ %s]", blockNo, blockNo, sprint_hex(blockdata, 4));
else
PrintAndLogEx(NORMAL, "Block: %0d (0x%02X) [ %s]", blockNo, blockNo, sprint_hex(blockdata, 4));
//Send write Block
uint8_t cmddata[20];
memcpy(cmddata, blockdata, 4);
uint8_t datalen = 4;
uint8_t keytype = 0;
if (hasAuthKey) {
keytype = 1;
memcpy(cmddata + datalen, authKeyPtr, 16);
datalen += 16;
} else if (hasPwdKey) {
keytype = 2;
memcpy(cmddata + datalen, authKeyPtr, 4);
datalen += 4;
}
clearCommandBuffer();
SendCommandOLD(CMD_HF_MIFAREU_WRITEBL, blockNo, keytype, 0, cmddata, datalen);
PacketResponseNG resp;
if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
uint8_t isOK = resp.oldarg[0] & 0xff;
PrintAndLogEx(SUCCESS, "isOk:%02x", isOK);
} else {
PrintAndLogEx(WARNING, "Command execute timeout");
}
return 0;
}
//
// Read Single Block
//
static int CmdHF14AMfURdBl(const char *Cmd) {
int blockNo = -1;
bool errors = false;
bool hasAuthKey = false;
bool hasPwdKey = false;
bool swapEndian = false;
uint8_t cmdp = 0;
uint8_t keylen = 0;
uint8_t data[16] = {0x00};
uint8_t authenticationkey[16] = {0x00};
uint8_t *authKeyPtr = authenticationkey;
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (tolower(param_getchar(Cmd, cmdp))) {
case 'h':
return usage_hf_mfu_rdbl();
case 'k':
// EV1/NTAG size key
keylen = param_gethex(Cmd, cmdp + 1, data, 8);
if (!keylen) {
memcpy(authenticationkey, data, 4);
cmdp += 2;
hasPwdKey = true;
break;
}
// UL-C size key
keylen = param_gethex(Cmd, cmdp + 1, data, 32);
if (!keylen) {
memcpy(authenticationkey, data, 16);
cmdp += 2;
hasAuthKey = true;
break;
}
PrintAndLogEx(WARNING, "ERROR: Key is incorrect length\n");
errors = true;
break;
case 'b':
blockNo = param_get8(Cmd, cmdp + 1);
if (blockNo < 0) {
PrintAndLogEx(WARNING, "Wrong block number");
errors = true;
}
cmdp += 2;
break;
case 'l':
swapEndian = true;
cmdp++;
break;
default:
PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = true;
break;
}
}
//Validations
if (errors || cmdp == 0) return usage_hf_mfu_rdbl();
if (blockNo == -1) return usage_hf_mfu_rdbl();
// start with getting tagtype
TagTypeUL_t tagtype = GetHF14AMfU_Type();
if (tagtype == UL_ERROR) return -1;
uint8_t maxblockno = 0;
for (uint8_t idx = 0; idx < ARRAYLEN(UL_TYPES_ARRAY); idx++) {
if (tagtype & UL_TYPES_ARRAY[idx]) {
maxblockno = UL_MEMORY_ARRAY[idx];
break;
}
}
if (blockNo > maxblockno) {
PrintAndLogEx(WARNING, "block number to large. Max block is %u/0x%02X \n", maxblockno, maxblockno);
return usage_hf_mfu_rdbl();
}
// Swap endianness
if (swapEndian && hasAuthKey) authKeyPtr = SwapEndian64(authenticationkey, 16, 8);
if (swapEndian && hasPwdKey) authKeyPtr = SwapEndian64(authenticationkey, 4, 4);
//Read Block
uint8_t keytype = 0;
uint8_t datalen = 0;
if (hasAuthKey) {
keytype = 1;
datalen = 16;
} else if (hasPwdKey) {
keytype = 2;
datalen = 4;
}
clearCommandBuffer();
SendCommandOLD(CMD_HF_MIFAREU_READBL, blockNo, keytype, 0, authKeyPtr, datalen);
PacketResponseNG resp;
if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
uint8_t isOK = resp.oldarg[0] & 0xff;
if (isOK) {
uint8_t *d = resp.data.asBytes;
PrintAndLogEx(NORMAL, "\nBlock# | Data | Ascii");
PrintAndLogEx(NORMAL, "-----------------------------");
PrintAndLogEx(NORMAL, "%02d/0x%02X | %s| %s\n", blockNo, blockNo, sprint_hex(d, 4), sprint_ascii(d, 4));
} else {
PrintAndLogEx(WARNING, "Failed reading block: (%02x)", isOK);
}
} else {
PrintAndLogEx(WARNING, "Command execute time-out");
}
return 0;
}
void printMFUdump(mfu_dump_t *card) {
printMFUdumpEx(card, 255, 0);
}
void printMFUdumpEx(mfu_dump_t *card, uint16_t pages, uint8_t startpage) {
PrintAndLogEx(NORMAL, "\n*special* data\n");
PrintAndLogEx(NORMAL, "\nDataType | Data | Ascii");
PrintAndLogEx(NORMAL, "----------+-------------------------+---------");
PrintAndLogEx(NORMAL, "Version | %s| %s", sprint_hex(card->version, sizeof(card->version)), sprint_ascii(card->version, sizeof(card->version)));
PrintAndLogEx(NORMAL, "TBD | %-24s| %s", sprint_hex(card->tbo, sizeof(card->tbo)), sprint_ascii(card->tbo, sizeof(card->tbo)));
PrintAndLogEx(NORMAL, "TBD | %-24s| %s", sprint_hex(card->tbo1, sizeof(card->tbo1)), sprint_ascii(card->tbo1, sizeof(card->tbo1)));
PrintAndLogEx(NORMAL, "Signature1| %s| %s", sprint_hex(card->signature, 16), sprint_ascii(card->signature, 16));
PrintAndLogEx(NORMAL, "Signature2| %s| %s", sprint_hex(card->signature + 16, 16), sprint_ascii(card->signature + 16, 16));
for (uint8_t i = 0; i < 3; i ++) {
PrintAndLogEx(NORMAL, "Counter%d | %-24s| %s", i, sprint_hex(card->counter_tearing[i], 3), sprint_ascii(card->counter_tearing[i], 3));
PrintAndLogEx(NORMAL, "Tearing%d | %-24s| %s", i, sprint_hex(card->counter_tearing[i] + 3, 1), sprint_ascii(card->counter_tearing[i] + 3, 1));
}
PrintAndLogEx(NORMAL, "-------------------------------------------------------------");
PrintAndLogEx(NORMAL, "\nBlock# | Data |lck| Ascii");
PrintAndLogEx(NORMAL, "---------+-------------+---+------");
uint8_t j = 0;
bool lckbit = false;
uint8_t *data = card->data;
uint8_t lockbytes_sta[] = {0, 0};
uint8_t lockbytes_dyn[] = {0, 0, 0};
bool bit_stat[16] = {0};
bool bit_dyn[16] = {0};
// Load static lock bytes.
memcpy(lockbytes_sta, data + 10, sizeof(lockbytes_sta));
for (j = 0; j < 16; j++) {
bit_stat[j] = lockbytes_sta[j / 8] & (1 << (7 - j % 8));
}
// Load dynamic lockbytes if available
// TODO -- FIGURE OUT LOCK BYTES FOR TO EV1 and/or NTAG
if (pages == 44) {
memcpy(lockbytes_dyn, data + (40 * 4), sizeof(lockbytes_dyn));
for (j = 0; j < 16; j++) {
bit_dyn[j] = lockbytes_dyn[j / 8] & (1 << (7 - j % 8));
}
PrintAndLogEx(NORMAL, "DYNAMIC LOCK: %s\n", sprint_hex(lockbytes_dyn, 3));
}
for (uint8_t i = 0; i < pages; ++i) {
if (i < 3) {
PrintAndLogEx(NORMAL, "%3d/0x%02X | %s| | %s", i + startpage, i + startpage, sprint_hex(data + i * 4, 4), sprint_ascii(data + i * 4, 4));
continue;
}
switch (i) {
case 3:
lckbit = bit_stat[4];
break;
case 4:
lckbit = bit_stat[3];
break;
case 5:
lckbit = bit_stat[2];
break;
case 6:
lckbit = bit_stat[1];
break;
case 7:
lckbit = bit_stat[0];
break;
case 8:
lckbit = bit_stat[15];
break;
case 9:
lckbit = bit_stat[14];
break;
case 10:
lckbit = bit_stat[13];
break;
case 11:
lckbit = bit_stat[12];
break;
case 12:
lckbit = bit_stat[11];
break;
case 13:
lckbit = bit_stat[10];
break;
case 14:
lckbit = bit_stat[9];
break;
case 15:
lckbit = bit_stat[8];
break;
case 16:
case 17:
case 18:
case 19:
lckbit = bit_dyn[6];
break;
case 20:
case 21:
case 22:
case 23:
lckbit = bit_dyn[5];
break;
case 24:
case 25:
case 26:
case 27:
lckbit = bit_dyn[4];
break;
case 28:
case 29:
case 30:
case 31:
lckbit = bit_dyn[2];
break;
case 32:
case 33:
case 34:
case 35:
lckbit = bit_dyn[1];
break;
case 36:
case 37:
case 38:
case 39:
lckbit = bit_dyn[0];
break;
case 40:
lckbit = bit_dyn[12];
break;
case 41:
lckbit = bit_dyn[11];
break;
case 42:
lckbit = bit_dyn[10];
break; //auth0
case 43:
lckbit = bit_dyn[9];
break; //auth1
default:
break;
}
PrintAndLogEx(NORMAL, "%3d/0x%02X | %s| %d | %s", i + startpage, i + startpage, sprint_hex(data + i * 4, 4), lckbit, sprint_ascii(data + i * 4, 4));
}
PrintAndLogEx(NORMAL, "---------------------------------");
}
//
// Mifare Ultralight / Ultralight-C / Ultralight-EV1
// Read and Dump Card Contents, using auto detection of tag size.
static int CmdHF14AMfUDump(const char *Cmd) {
uint8_t fileNameLen = 0;
char filename[FILE_PATH_SIZE] = {0x00};
char *fptr = filename;
uint8_t data[1024] = {0x00};
memset(data, 0x00, sizeof(data));
bool hasAuthKey = false;
int pages = 16;
uint8_t dataLen = 0;
uint8_t cmdp = 0;
uint8_t authenticationkey[16] = {0x00};
memset(authenticationkey, 0x00, sizeof(authenticationkey));
uint8_t *authKeyPtr = authenticationkey;
bool errors = false;
bool swapEndian = false;
bool manualPages = false;
uint8_t startPage = 0;
uint8_t card_mem_size = 0;
char tempStr[50];
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (tolower(param_getchar(Cmd, cmdp))) {
case 'h':
return usage_hf_mfu_dump();
case 'k':
dataLen = param_getstr(Cmd, cmdp + 1, tempStr, sizeof(tempStr));
if (dataLen == 32 || dataLen == 8) { //ul-c or ev1/ntag key length
errors = param_gethex(tempStr, 0, authenticationkey, dataLen);
dataLen /= 2;
} else {
PrintAndLogEx(WARNING, "ERROR: Key is incorrect length\n");
errors = true;
}
cmdp += 2;
hasAuthKey = true;
break;
case 'l':
swapEndian = true;
cmdp++;
break;
case 'f':
fileNameLen = param_getstr(Cmd, cmdp + 1, filename, sizeof(filename));
cmdp += 2;
break;
case 'p': //set start page
startPage = param_get8(Cmd, cmdp + 1);
manualPages = true;
cmdp += 2;
break;
case 'q':
pages = param_get8(Cmd, cmdp + 1);
cmdp += 2;
manualPages = true;
break;
default:
PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = true;
break;
}
}
//Validations
if (errors) return usage_hf_mfu_dump();
//if we entered a key in little endian and set the swapEndian switch - switch it...
if (swapEndian && hasAuthKey)
authKeyPtr = SwapEndian64(authenticationkey, dataLen, (dataLen == 16) ? 8 : 4);
TagTypeUL_t tagtype = GetHF14AMfU_Type();
if (tagtype == UL_ERROR) return -1;
//get number of pages to read
if (!manualPages) {
for (uint8_t idx = 0; idx < ARRAYLEN(UL_TYPES_ARRAY); idx++) {
if (tagtype & UL_TYPES_ARRAY[idx]) {
//add one as maxblks starts at 0
card_mem_size = pages = UL_MEMORY_ARRAY[idx] + 1;
break;
}
}
}
ul_print_type(tagtype, 0);
PrintAndLogEx(SUCCESS, "Reading tag memory...");
uint8_t keytype = 0;
if (hasAuthKey) {
if (tagtype & UL_C)
keytype = 1; //UL_C auth
else
keytype = 2; //UL_EV1/NTAG auth
}
clearCommandBuffer();
SendCommandOLD(CMD_HF_MIFAREU_READCARD, startPage, pages, keytype, authKeyPtr, dataLen);
PacketResponseNG resp;
if (!WaitForResponseTimeout(CMD_ACK, &resp, 2500)) {
PrintAndLogEx(WARNING, "Command execute time-out");
return 1;
}
if (resp.oldarg[0] != 1) {
PrintAndLogEx(WARNING, "Failed dumping card");
return 1;
}
uint32_t startindex = resp.oldarg[2];
uint32_t bufferSize = resp.oldarg[1];
if (bufferSize > sizeof(data)) {
PrintAndLogEx(FAILED, "Data exceeded Buffer size!");
bufferSize = sizeof(data);
}
if (!GetFromDevice(BIG_BUF, data, bufferSize, startindex, NULL, 0, NULL, 2500, false)) {
PrintAndLogEx(WARNING, "command execution time out");
return 1;
}
bool is_partial = (pages != bufferSize / 4);
pages = bufferSize / 4;
iso14a_card_select_t card;
mfu_dump_t dump_file_data;
uint8_t get_version[] = {0, 0, 0, 0, 0, 0, 0, 0};
uint8_t get_counter_tearing[][4] = {{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}};
uint8_t get_signature[32];
memset(get_signature, 0, sizeof(get_signature));
// not ul_c and not std ul then attempt to collect info like
// VERSION, SIGNATURE, COUNTERS, TEARING, PACK,
if (!(tagtype & UL_C || tagtype & UL)) {
//attempt to read pack
uint8_t get_pack[] = {0, 0};
if (!ul_auth_select(&card, tagtype, true, authKeyPtr, get_pack, sizeof(get_pack))) {
//reset pack
get_pack[0] = 0;
get_pack[1] = 0;
}
DropField();
// only add pack if not partial read, and complete pages read.
if (!is_partial && pages == card_mem_size) {
// add pack to block read
memcpy(data + (pages * 4) - 4, get_pack, sizeof(get_pack));
}
if (hasAuthKey) {
uint8_t dummy_pack[] = {0, 0};
ul_auth_select(&card, tagtype, hasAuthKey, authKeyPtr, dummy_pack, sizeof(dummy_pack));
} else
ul_select(&card);
ulev1_getVersion(get_version, sizeof(get_version));
for (uint8_t n = 0; n < 3; ++n) {
ulev1_readTearing(n, &get_counter_tearing[n][3], 1);
ulev1_readCounter(n, &get_counter_tearing[n][0], 3);
}
DropField();
if (hasAuthKey) {
uint8_t dummy_pack[] = {0, 0};
ul_auth_select(&card, tagtype, hasAuthKey, authKeyPtr, dummy_pack, sizeof(dummy_pack));
} else
ul_select(&card);
ulev1_readSignature(get_signature, sizeof(get_signature));
DropField();
}
// format and add keys to block dump output
// only add keys if not partial read, and complete pages read
if (!is_partial && pages == card_mem_size && hasAuthKey) {
// if we didn't swapendian before - do it now for the sprint_hex call
// NOTE: default entry is bigendian (unless swapped), sprint_hex outputs little endian
// need to swap to keep it the same
if (!swapEndian) {
authKeyPtr = SwapEndian64(authenticationkey, dataLen, (dataLen == 16) ? 8 : 4);
} else {
authKeyPtr = authenticationkey;
}
if (tagtype & UL_C) { //add 4 pages
memcpy(data + pages * 4, authKeyPtr, dataLen);
pages += dataLen / 4;
} else { // 2nd page from end
memcpy(data + (pages * 4) - 8, authenticationkey, dataLen);
}
}
//add *special* blocks to dump
// pack and pwd saved into last pages of dump, if was not partial read
dump_file_data.pages = pages - 1;
memcpy(dump_file_data.version, get_version, sizeof(dump_file_data.version));
memcpy(dump_file_data.signature, get_signature, sizeof(dump_file_data.signature));
memcpy(dump_file_data.counter_tearing, get_counter_tearing, sizeof(dump_file_data.counter_tearing));
memcpy(dump_file_data.data, data, pages * 4);
printMFUdumpEx(&dump_file_data, pages, startPage);
// user supplied filename?
if (fileNameLen < 1) {
PrintAndLogEx(INFO, "Using UID as filename");
uint8_t uid[7] = {0};
memcpy(uid, (uint8_t *)&dump_file_data.data, 3);
memcpy(uid + 3, (uint8_t *)&dump_file_data.data + 4, 4);
fptr += sprintf(fptr, "hf-mfu-");
FillFileNameByUID(fptr, uid, "-dump", sizeof(uid));
}
uint16_t datalen = pages * 4 + MFU_DUMP_PREFIX_LENGTH;
saveFile(filename, ".bin", (uint8_t *)&dump_file_data, datalen);
saveFileJSON(filename, jsfMfuMemory, (uint8_t *)&dump_file_data, datalen);
if (is_partial)
PrintAndLogEx(WARNING, "Partial dump created. (%d of %d blocks)", pages, card_mem_size);
return 0;
}
static void wait4response(uint8_t b) {
PacketResponseNG resp;
if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
uint8_t isOK = resp.oldarg[0] & 0xff;
if (!isOK)
PrintAndLogEx(WARNING, "failed to write block %d", b);
} else {
PrintAndLogEx(WARNING, "Command execute timeout");
}
}
//
// Restore dump file onto tag
//
static int CmdHF14AMfURestore(const char *Cmd) {
char tempStr[50] = {0};
char filename[FILE_PATH_SIZE] = {0};
uint8_t authkey[16] = {0};
uint8_t *p_authkey = authkey;
uint8_t cmdp = 0, keylen = 0;
bool hasKey = false;
bool swapEndian = false;
bool errors = false;
bool write_special = false;
bool write_extra = false;
bool read_key = false;
size_t filelen = 0;
FILE *f;
memset(authkey, 0x00, sizeof(authkey));
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (tolower(param_getchar(Cmd, cmdp))) {
case 'h':
return usage_hf_mfu_restore();
case 'k':
keylen = param_getstr(Cmd, cmdp + 1, tempStr, sizeof(tempStr));
if (keylen == 32 || keylen == 8) { //ul-c or ev1/ntag key length
errors = param_gethex(tempStr, 0, authkey, keylen);
keylen /= 2;
} else {
PrintAndLogEx(WARNING, "ERROR: Key is incorrect length\n");
errors = true;
}
cmdp += 2;
hasKey = true;
break;
case 'l':
swapEndian = true;
cmdp++;
break;
case 'f':
filelen = param_getstr(Cmd, cmdp + 1, filename, FILE_PATH_SIZE);
if (filelen > FILE_PATH_SIZE - 5)
filelen = FILE_PATH_SIZE - 5;
if (filelen < 1)
sprintf(filename, "dumpdata.bin");
cmdp += 2;
break;
case 's':
cmdp++;
write_special = true;
break;
case 'e':
cmdp++;
write_extra = true;
break;
case 'r':
cmdp++;
read_key = true;
break;
default:
PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = true;
break;
}
}
//Validations
if (errors || cmdp == 0) return usage_hf_mfu_restore();
if ((f = fopen(filename, "rb")) == NULL) {
PrintAndLogEx(WARNING, "Could not find file " _YELLOW_("%s"), filename);
return 1;
}
// get filesize to know how memory to allocate
fseek(f, 0, SEEK_END);
long fsize = ftell(f);
fseek(f, 0, SEEK_SET);
if (fsize <= 0) {
PrintAndLogEx(ERR, "Error, when getting filesize");
fclose(f);
return 1;
}
uint8_t *dump = calloc(fsize, sizeof(uint8_t));
if (!dump) {
PrintAndLogEx(WARNING, "Failed to allocate memory");
fclose(f);
return 1;
}
// read all data
size_t bytes_read = fread(dump, 1, fsize, f);
fclose(f);
if (bytes_read < MFU_DUMP_PREFIX_LENGTH) {
PrintAndLogEx(ERR, "Error, dump file is too small");
free(dump);
return 1;
}
// convert old format to new format, if need
int res = convertOldMfuDump(&dump, &bytes_read);
if (res) {
PrintAndLogEx(WARNING, "Failed convert on load to new Ultralight/NTAG format");
free(dump);
return res;
}
mfu_dump_t *mem = (mfu_dump_t *)dump;
uint8_t pages = (bytes_read - MFU_DUMP_PREFIX_LENGTH) / 4;
if (pages - 1 != mem->pages) {
PrintAndLogEx(ERR, "Error, invalid dump, wrong page count");
free(dump);
return 1;
}
PrintAndLogEx(INFO, "Restoring " _YELLOW_("%s")" to card", filename);
// print dump
printMFUdumpEx(mem, pages, 0);
// Swap endianness
if (swapEndian && hasKey) {
if (keylen == 16)
p_authkey = SwapEndian64(authkey, keylen, 8);
else
p_authkey = SwapEndian64(authkey, keylen, 4);
}
uint8_t data[20] = {0};
uint8_t keytype = 0;
// set key - only once
if (hasKey) {
keytype = (keylen == 16) ? 1 : 2;
memcpy(data + 4, p_authkey, keylen);
}
// write version, signature, pack
// only magic NTAG cards
if (write_extra) {
#define MFU_NTAG_SPECIAL_PWD 0xF0
#define MFU_NTAG_SPECIAL_PACK 0xF1
#define MFU_NTAG_SPECIAL_VERSION 0xFA
#define MFU_NTAG_SPECIAL_SIGNATURE 0xF2
// pwd
if (hasKey || read_key) {
if (read_key) {
// try reading key from dump and use.
memcpy(data, mem->data + (bytes_read - MFU_DUMP_PREFIX_LENGTH - 8), 4);
} else {
memcpy(data, p_authkey, 4);
}
PrintAndLogEx(NORMAL, "special PWD block written 0x%X - %s\n", MFU_NTAG_SPECIAL_PWD, sprint_hex(data, 4));
clearCommandBuffer();
SendCommandOLD(CMD_HF_MIFAREU_WRITEBL, MFU_NTAG_SPECIAL_PWD, keytype, 0, data, sizeof(data));
wait4response(MFU_NTAG_SPECIAL_PWD);
// copy the new key
keytype = 2;
memcpy(authkey, data, 4);
memcpy(data + 4, authkey, 4);
}
// pack
memcpy(data, mem->data + (bytes_read - MFU_DUMP_PREFIX_LENGTH - 4), 2);
data[2] = 0;
data[3] = 0;
PrintAndLogEx(NORMAL, "special PACK block written 0x%X - %s\n", MFU_NTAG_SPECIAL_PACK, sprint_hex(data, 4));
clearCommandBuffer();
SendCommandOLD(CMD_HF_MIFAREU_WRITEBL, MFU_NTAG_SPECIAL_PACK, keytype, 0, data, sizeof(data));
wait4response(MFU_NTAG_SPECIAL_PACK);
// Signature
for (uint8_t s = MFU_NTAG_SPECIAL_SIGNATURE, i = 0; s < MFU_NTAG_SPECIAL_SIGNATURE + 8; s++, i += 4) {
memcpy(data, mem->signature + i, 4);
PrintAndLogEx(NORMAL, "special SIG block written 0x%X - %s\n", s, sprint_hex(data, 4));
clearCommandBuffer();
SendCommandOLD(CMD_HF_MIFAREU_WRITEBL, s, keytype, 0, data, sizeof(data));
wait4response(s);
}
// Version
for (uint8_t s = MFU_NTAG_SPECIAL_VERSION, i = 0; s < MFU_NTAG_SPECIAL_VERSION + 2; s++, i += 4) {
memcpy(data, mem->version + i, 4);
PrintAndLogEx(NORMAL, "special VERSION block written 0x%X - %s\n", s, sprint_hex(data, 4));
clearCommandBuffer();
SendCommandOLD(CMD_HF_MIFAREU_WRITEBL, s, keytype, 0, data, sizeof(data));
wait4response(s);
}
}
PrintAndLogEx(INFO, "Restoring data blocks.");
// write all other data
// Skip block 0,1,2,3 (only magic tags can write to them)
// Skip last 5 blocks usually is configuration
for (uint8_t b = 4; b < pages - 5; b++) {
//Send write Block
memcpy(data, mem->data + (b * 4), 4);
clearCommandBuffer();
SendCommandOLD(CMD_HF_MIFAREU_WRITEBL, b, keytype, 0, data, sizeof(data));
wait4response(b);
printf(".");
fflush(stdout);
}
PrintAndLogEx(NORMAL, "\n");
// write special data last
if (write_special) {
PrintAndLogEx(INFO, "Restoring configuration blocks.\n");
PrintAndLogEx(NORMAL, "authentication with keytype[%x] %s\n", (uint8_t)(keytype & 0xff), sprint_hex(p_authkey, 4));
// otp, uid, lock, cfg1, cfg0, dynlockbits
uint8_t blocks[] = {3, 0, 1, 2, pages - 5, pages - 4, pages - 3};
for (uint8_t i = 0; i < ARRAYLEN(blocks); i++) {
uint8_t b = blocks[i];
memcpy(data, mem->data + (b * 4), 4);
clearCommandBuffer();
SendCommandOLD(CMD_HF_MIFAREU_WRITEBL, b, keytype, 0, data, sizeof(data));
wait4response(b);
PrintAndLogEx(NORMAL, "special block written %u - %s\n", b, sprint_hex(data, 4));
}
}
DropField();
free(dump);
PrintAndLogEx(INFO, "Finish restore");
return 0;
}
//
// Load emulator with dump file
//
static int CmdHF14AMfUeLoad(const char *Cmd) {
char c = tolower(param_getchar(Cmd, 0));
if (c == 'h' || c == 0x00) return usage_hf_mfu_eload();
return CmdHF14AMfELoad(Cmd);
}
//
// Simulate tag
//
static int CmdHF14AMfUSim(const char *Cmd) {
char c = tolower(param_getchar(Cmd, 0));
if (c == 'h' || c == 0x00) return usage_hf_mfu_sim();
return CmdHF14ASim(Cmd);
}
//-------------------------------------------------------------------------------
// Ultralight C Methods
//-------------------------------------------------------------------------------
//
// Ultralight C Authentication Demo {currently uses hard-coded key}
//
static int CmdHF14AMfUCAuth(const char *Cmd) {
uint8_t keyNo = 3;
bool errors = false;
char cmdp = tolower(param_getchar(Cmd, 0));
//Change key to user defined one
if (cmdp == 'k') {
keyNo = param_get8(Cmd, 1);
if (keyNo >= ARRAYLEN(default_3des_keys))
errors = true;
}
if (cmdp == 'h') errors = true;
if (errors) return usage_hf_mfu_ucauth();
uint8_t *key = default_3des_keys[keyNo];
if (ulc_authentication(key, true))
PrintAndLogEx(SUCCESS, "Authentication successful. 3des key: %s", sprint_hex(key, 16));
else
PrintAndLogEx(WARNING, "Authentication failed");
return 0;
}
/**
A test function to validate that the polarssl-function works the same
was as the openssl-implementation.
Commented out, since it requires openssl
static int CmdTestDES(const char * cmd)
{
uint8_t key[16] = {0x00};
memcpy(key,key3_3des_data,16);
DES_cblock RndA, RndB;
PrintAndLogEx(NORMAL, "----------OpenSSL DES implementation----------");
{
uint8_t e_RndB[8] = {0x00};
unsigned char RndARndB[16] = {0x00};
DES_cblock iv = { 0 };
DES_key_schedule ks1,ks2;
DES_cblock key1,key2;
memcpy(key,key3_3des_data,16);
memcpy(key1,key,8);
memcpy(key2,key+8,8);
DES_set_key((DES_cblock *)key1,&ks1);
DES_set_key((DES_cblock *)key2,&ks2);
DES_random_key(&RndA);
PrintAndLogEx(NORMAL, " RndA:%s",sprint_hex(RndA, 8));
PrintAndLogEx(NORMAL, " e_RndB:%s",sprint_hex(e_RndB, 8));
//void DES_ede2_cbc_encrypt(const unsigned char *input,
// unsigned char *output, long length, DES_key_schedule *ks1,
// DES_key_schedule *ks2, DES_cblock *ivec, int enc);
DES_ede2_cbc_encrypt(e_RndB,RndB,sizeof(e_RndB),&ks1,&ks2,&iv,0);
PrintAndLogEx(NORMAL, " RndB:%s",sprint_hex(RndB, 8));
rol(RndB,8);
memcpy(RndARndB,RndA,8);
memcpy(RndARndB+8,RndB,8);
PrintAndLogEx(NORMAL, " RA+B:%s",sprint_hex(RndARndB, 16));
DES_ede2_cbc_encrypt(RndARndB,RndARndB,sizeof(RndARndB),&ks1,&ks2,&e_RndB,1);
PrintAndLogEx(NORMAL, "enc(RA+B):%s",sprint_hex(RndARndB, 16));
}
PrintAndLogEx(NORMAL, "----------PolarSSL implementation----------");
{
uint8_t random_a[8] = { 0 };
uint8_t enc_random_a[8] = { 0 };
uint8_t random_b[8] = { 0 };
uint8_t enc_random_b[8] = { 0 };
uint8_t random_a_and_b[16] = { 0 };
des3_context ctx = { 0 };
memcpy(random_a, RndA,8);
uint8_t output[8] = { 0 };
uint8_t iv[8] = { 0 };
PrintAndLogEx(NORMAL, " RndA :%s",sprint_hex(random_a, 8));
PrintAndLogEx(NORMAL, " e_RndB:%s",sprint_hex(enc_random_b, 8));
des3_set2key_dec(&ctx, key);
des3_crypt_cbc(&ctx // des3_context *ctx
, DES_DECRYPT // int mode
, sizeof(random_b) // size_t length
, iv // unsigned char iv[8]
, enc_random_b // const unsigned char *input
, random_b // unsigned char *output
);
PrintAndLogEx(NORMAL, " RndB:%s",sprint_hex(random_b, 8));
rol(random_b,8);
memcpy(random_a_and_b ,random_a,8);
memcpy(random_a_and_b+8,random_b,8);
PrintAndLogEx(NORMAL, " RA+B:%s",sprint_hex(random_a_and_b, 16));
des3_set2key_enc(&ctx, key);
des3_crypt_cbc(&ctx // des3_context *ctx
, DES_ENCRYPT // int mode
, sizeof(random_a_and_b) // size_t length
, enc_random_b // unsigned char iv[8]
, random_a_and_b // const unsigned char *input
, random_a_and_b // unsigned char *output
);
PrintAndLogEx(NORMAL, "enc(RA+B):%s",sprint_hex(random_a_and_b, 16));
}
return 0;
}
**/
//
// Mifare Ultralight C - Set password
//
static int CmdHF14AMfUCSetPwd(const char *Cmd) {
uint8_t pwd[16] = {0x00};
char cmdp = tolower(param_getchar(Cmd, 0));
if (strlen(Cmd) == 0 || cmdp == 'h') return usage_hf_mfu_ucsetpwd();
if (param_gethex(Cmd, 0, pwd, 32)) {
PrintAndLogEx(WARNING, "Password must include 32 HEX symbols");
return 1;
}
clearCommandBuffer();
SendCommandOLD(CMD_HF_MIFAREUC_SETPWD, 0, 0, 0, pwd, 16);
PacketResponseNG resp;
if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
if ((resp.oldarg[0] & 0xff) == 1) {
PrintAndLogEx(INFO, "Ultralight-C new password: %s", sprint_hex(pwd, 16));
} else {
PrintAndLogEx(WARNING, "Failed writing at block %d", resp.oldarg[1] & 0xff);
return 1;
}
} else {
PrintAndLogEx(WARNING, "command execution time out");
return 1;
}
return 0;
}
//
// Magic UL / UL-C tags - Set UID
//
static int CmdHF14AMfUCSetUid(const char *Cmd) {
PacketResponseNG resp;
uint8_t uid[7] = {0x00};
char cmdp = tolower(param_getchar(Cmd, 0));
if (strlen(Cmd) == 0 || cmdp == 'h') return usage_hf_mfu_ucsetuid();
if (param_gethex(Cmd, 0, uid, 14)) {
PrintAndLogEx(WARNING, "UID must include 14 HEX symbols");
return 1;
}
// read block2.
clearCommandBuffer();
SendCommandMIX(CMD_HF_MIFAREU_READBL, 2, 0, 0, NULL, 0);
if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
PrintAndLogEx(WARNING, "Command execute timeout");
return 2;
}
// save old block2.
uint8_t oldblock2[4] = {0x00};
memcpy(resp.data.asBytes, oldblock2, 4);
// block 0.
uint8_t data[4];
data[0] = uid[0];
data[1] = uid[1];
data[2] = uid[2];
data[3] = 0x88 ^ uid[0] ^ uid[1] ^ uid[2];
clearCommandBuffer();
SendCommandOLD(CMD_HF_MIFAREU_WRITEBL, 0, 0, 0, data, sizeof(data));
if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
PrintAndLogEx(WARNING, "Command execute timeout");
return 3;
}
// block 1.
data[0] = uid[3];
data[1] = uid[4];
data[2] = uid[5];
data[3] = uid[6];
clearCommandBuffer();
SendCommandOLD(CMD_HF_MIFAREU_WRITEBL, 1, 0, 0, data, sizeof(data));
if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
PrintAndLogEx(WARNING, "Command execute timeout");
return 4;
}
// block 2.
data[0] = uid[3] ^ uid[4] ^ uid[5] ^ uid[6];
data[1] = oldblock2[1];
data[2] = oldblock2[2];
data[3] = oldblock2[3];
clearCommandBuffer();
SendCommandOLD(CMD_HF_MIFAREU_WRITEBL, 2, 0, 0, data, sizeof(data));
if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
PrintAndLogEx(WARNING, "Command execute timeout");
return 5;
}
return 0;
}
static int CmdHF14AMfUGenDiverseKeys(const char *Cmd) {
uint8_t uid[4];
char cmdp = tolower(param_getchar(Cmd, 0));
if (strlen(Cmd) == 0 || cmdp == 'h') return usage_hf_mfu_gendiverse();
if (cmdp == 'r') {
// read uid from tag
clearCommandBuffer();
SendCommandMIX(CMD_HF_ISO14443A_READER, ISO14A_CONNECT | ISO14A_NO_RATS, 0, 0, NULL, 0);
PacketResponseNG resp;
WaitForResponse(CMD_ACK, &resp);
iso14a_card_select_t card;
memcpy(&card, (iso14a_card_select_t *)resp.data.asBytes, sizeof(iso14a_card_select_t));
uint64_t select_status = resp.oldarg[0];
// 0: couldn't read,
// 1: OK, with ATS
// 2: OK, no ATS
// 3: proprietary Anticollision
if (select_status == 0) {
PrintAndLogEx(WARNING, "iso14443a card select failed");
return 1;
}
if (card.uidlen != 4) {
PrintAndLogEx(WARNING, "Wrong sized UID, expected 4bytes got %d", card.uidlen);
return 1;
}
memcpy(uid, card.uid, sizeof(uid));
} else {
if (param_gethex(Cmd, 0, uid, 8)) return usage_hf_mfu_gendiverse();
}
uint8_t iv[8] = { 0x00 };
uint8_t block = 0x01;
uint8_t mifarekeyA[] = { 0xA0, 0xA1, 0xA2, 0xA3, 0xA4, 0xA5 };
uint8_t mifarekeyB[] = { 0xB0, 0xB1, 0xB2, 0xB3, 0xB4, 0xB5 };
uint8_t dkeyA[8] = { 0x00 };
uint8_t dkeyB[8] = { 0x00 };
uint8_t masterkey[] = { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff };
uint8_t mix[8] = { 0x00 };
uint8_t divkey[8] = { 0x00 };
memcpy(mix, mifarekeyA, 4);
mix[4] = mifarekeyA[4] ^ uid[0];
mix[5] = mifarekeyA[5] ^ uid[1];
mix[6] = block ^ uid[2];
mix[7] = uid[3];
mbedtls_des3_context ctx;
mbedtls_des3_set2key_enc(&ctx, masterkey);
mbedtls_des3_crypt_cbc(&ctx // des3_context
, MBEDTLS_DES_ENCRYPT // int mode
, sizeof(mix) // length
, iv // iv[8]
, mix // input
, divkey // output
);
PrintAndLogEx(NORMAL, "-- 3DES version");
PrintAndLogEx(NORMAL, "Masterkey :\t %s", sprint_hex(masterkey, sizeof(masterkey)));
PrintAndLogEx(NORMAL, "UID :\t %s", sprint_hex(uid, sizeof(uid)));
PrintAndLogEx(NORMAL, "block :\t %0d", block);
PrintAndLogEx(NORMAL, "Mifare key :\t %s", sprint_hex(mifarekeyA, sizeof(mifarekeyA)));
PrintAndLogEx(NORMAL, "Message :\t %s", sprint_hex(mix, sizeof(mix)));
PrintAndLogEx(NORMAL, "Diversified key: %s", sprint_hex(divkey + 1, 6));
for (int i = 0; i < ARRAYLEN(mifarekeyA); ++i) {
dkeyA[i] = (mifarekeyA[i] << 1) & 0xff;
dkeyA[6] |= ((mifarekeyA[i] >> 7) & 1) << (i + 1);
}
for (int i = 0; i < ARRAYLEN(mifarekeyB); ++i) {
dkeyB[1] |= ((mifarekeyB[i] >> 7) & 1) << (i + 1);
dkeyB[2 + i] = (mifarekeyB[i] << 1) & 0xff;
}
uint8_t zeros[8] = {0x00};
uint8_t newpwd[8] = {0x00};
uint8_t dmkey[24] = {0x00};
memcpy(dmkey, dkeyA, 8);
memcpy(dmkey + 8, dkeyB, 8);
memcpy(dmkey + 16, dkeyA, 8);
memset(iv, 0x00, 8);
mbedtls_des3_set3key_enc(&ctx, dmkey);
mbedtls_des3_crypt_cbc(&ctx // des3_context
, MBEDTLS_DES_ENCRYPT // int mode
, sizeof(newpwd) // length
, iv // iv[8]
, zeros // input
, newpwd // output
);
PrintAndLogEx(NORMAL, "\n-- DES version");
PrintAndLogEx(NORMAL, "Mifare dkeyA :\t %s", sprint_hex(dkeyA, sizeof(dkeyA)));
PrintAndLogEx(NORMAL, "Mifare dkeyB :\t %s", sprint_hex(dkeyB, sizeof(dkeyB)));
PrintAndLogEx(NORMAL, "Mifare ABA :\t %s", sprint_hex(dmkey, sizeof(dmkey)));
PrintAndLogEx(NORMAL, "Mifare Pwd :\t %s", sprint_hex(newpwd, sizeof(newpwd)));
// next. from the diversify_key method.
return 0;
}
static int CmdHF14AMfUPwdGen(const char *Cmd) {
uint8_t uid[7] = {0x00};
char cmdp = tolower(param_getchar(Cmd, 0));
if (strlen(Cmd) == 0 || cmdp == 'h') return usage_hf_mfu_pwdgen();
if (cmdp == 't') return ul_ev1_pwdgen_selftest();
if (cmdp == 'r') {
// read uid from tag
clearCommandBuffer();
SendCommandMIX(CMD_HF_ISO14443A_READER, ISO14A_CONNECT | ISO14A_NO_RATS, 0, 0, NULL, 0);
PacketResponseNG resp;
WaitForResponse(CMD_ACK, &resp);
iso14a_card_select_t card;
memcpy(&card, (iso14a_card_select_t *)resp.data.asBytes, sizeof(iso14a_card_select_t));
uint64_t select_status = resp.oldarg[0];
// 0: couldn't read
// 1: OK with ATS
// 2: OK, no ATS
// 3: proprietary Anticollision
if (select_status == 0) {
PrintAndLogEx(WARNING, "iso14443a card select failed");
return 1;
}
if (card.uidlen != 7) {
PrintAndLogEx(WARNING, "Wrong sized UID, expected 7bytes got %d", card.uidlen);
return 1;
}
memcpy(uid, card.uid, sizeof(uid));
} else {
if (param_gethex(Cmd, 0, uid, 14)) return usage_hf_mfu_pwdgen();
}
PrintAndLogEx(NORMAL, "---------------------------------");
PrintAndLogEx(NORMAL, " Using UID : %s", sprint_hex(uid, 7));
PrintAndLogEx(NORMAL, "---------------------------------");
PrintAndLogEx(NORMAL, " algo | pwd | pack");
PrintAndLogEx(NORMAL, "------+----------+-----");
PrintAndLogEx(NORMAL, " EV1 | %08X | %04X", ul_ev1_pwdgenA(uid), ul_ev1_packgenA(uid));
PrintAndLogEx(NORMAL, " Ami | %08X | %04X", ul_ev1_pwdgenB(uid), ul_ev1_packgenB(uid));
PrintAndLogEx(NORMAL, " LD | %08X | %04X", ul_ev1_pwdgenC(uid), ul_ev1_packgenC(uid));
PrintAndLogEx(NORMAL, " XYZ | %08X | %04X", ul_ev1_pwdgenD(uid), ul_ev1_packgenD(uid));
PrintAndLogEx(NORMAL, "------+----------+-----");
PrintAndLogEx(NORMAL, " Vingcard algo");
PrintAndLogEx(NORMAL, "--------------------");
return 0;
}
//------------------------------------
// Menu Stuff
//------------------------------------
static command_t CommandTable[] = {
{"help", CmdHelp, AlwaysAvailable, "This help"},
{"info", CmdHF14AMfUInfo, IfPm3Iso14443a, "Tag information"},
{"dump", CmdHF14AMfUDump, IfPm3Iso14443a, "Dump Ultralight / Ultralight-C / NTAG tag to binary file"},
{"restore", CmdHF14AMfURestore, IfPm3Iso14443a, "Restore a dump onto a MFU MAGIC tag"},
{"eload", CmdHF14AMfUeLoad, IfPm3Iso14443a, "load Ultralight .eml dump file into emulator memory"},
{"rdbl", CmdHF14AMfURdBl, IfPm3Iso14443a, "Read block"},
{"wrbl", CmdHF14AMfUWrBl, IfPm3Iso14443a, "Write block"},
{"cauth", CmdHF14AMfUCAuth, IfPm3Iso14443a, "Authentication - Ultralight C"},
{"setpwd", CmdHF14AMfUCSetPwd, IfPm3Iso14443a, "Set 3des password - Ultralight-C"},
{"setuid", CmdHF14AMfUCSetUid, IfPm3Iso14443a, "Set UID - MAGIC tags only"},
{"sim", CmdHF14AMfUSim, IfPm3Iso14443a, "Simulate Ultralight from emulator memory"},
{"gen", CmdHF14AMfUGenDiverseKeys, AlwaysAvailable, "Generate 3des mifare diversified keys"},
{"pwdgen", CmdHF14AMfUPwdGen, AlwaysAvailable, "Generate pwd from known algos"},
{NULL, NULL, NULL, NULL}
};
static int CmdHelp(const char *Cmd) {
(void)Cmd; // Cmd is not used so far
CmdsHelp(CommandTable);
return 0;
}
int CmdHFMFUltra(const char *Cmd) {
clearCommandBuffer();
return CmdsParse(CommandTable, Cmd);
}