mirror of
https://github.com/RfidResearchGroup/proxmark3.git
synced 2025-01-10 18:24:27 +08:00
155 lines
5.9 KiB
C
155 lines
5.9 KiB
C
/* crypto1.c
|
|
|
|
This program is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public License
|
|
as published by the Free Software Foundation; either version 2
|
|
of the License, or (at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
|
|
MA 02110-1301, US
|
|
|
|
Copyright (C) 2008-2008 bla <blapost@gmail.com>
|
|
*/
|
|
#include <stdlib.h>
|
|
#include "crapto1.h"
|
|
#include "parity.h"
|
|
|
|
#ifdef __OPTIMIZE_SIZE__
|
|
int filter(uint32_t const x) {
|
|
uint32_t f;
|
|
|
|
f = 0xf22c0 >> (x & 0xf) & 16;
|
|
f |= 0x6c9c0 >> (x >> 4 & 0xf) & 8;
|
|
f |= 0x3c8b0 >> (x >> 8 & 0xf) & 4;
|
|
f |= 0x1e458 >> (x >> 12 & 0xf) & 2;
|
|
f |= 0x0d938 >> (x >> 16 & 0xf) & 1;
|
|
return BIT(0xEC57E80A, f);
|
|
}
|
|
#endif
|
|
|
|
#define SWAPENDIAN(x)\
|
|
(x = (x >> 8 & 0xff00ff) | (x & 0xff00ff) << 8, x = x >> 16 | x << 16)
|
|
|
|
void crypto1_init(struct Crypto1State *state, uint64_t key) {
|
|
if (state == NULL)
|
|
return;
|
|
state->odd = 0;
|
|
state->even = 0;
|
|
for (int i = 47; i > 0; i -= 2) {
|
|
state->odd = state->odd << 1 | BIT(key, (i - 1) ^ 7);
|
|
state->even = state->even << 1 | BIT(key, i ^ 7);
|
|
}
|
|
}
|
|
|
|
void crypto1_deinit(struct Crypto1State *state) {
|
|
state->odd = 0;
|
|
state->even = 0;
|
|
}
|
|
|
|
#if !defined(__arm__) || defined(__linux__) || defined(_WIN32) || defined(__APPLE__) // bare metal ARM Proxmark lacks calloc()/free()
|
|
struct Crypto1State *crypto1_create(uint64_t key) {
|
|
struct Crypto1State *state = calloc(sizeof(*state), sizeof(uint8_t));
|
|
if (!state) return NULL;
|
|
crypto1_init(state, key);
|
|
return state;
|
|
}
|
|
|
|
void crypto1_destroy(struct Crypto1State *state) {
|
|
free(state);
|
|
}
|
|
#endif
|
|
|
|
void crypto1_get_lfsr(struct Crypto1State *state, uint64_t *lfsr) {
|
|
int i;
|
|
for (*lfsr = 0, i = 23; i >= 0; --i) {
|
|
*lfsr = *lfsr << 1 | BIT(state->odd, i ^ 3);
|
|
*lfsr = *lfsr << 1 | BIT(state->even, i ^ 3);
|
|
}
|
|
}
|
|
uint8_t crypto1_bit(struct Crypto1State *s, uint8_t in, int is_encrypted) {
|
|
uint32_t feedin, t;
|
|
uint8_t ret = filter(s->odd);
|
|
|
|
feedin = ret & (!!is_encrypted);
|
|
feedin ^= !!in;
|
|
feedin ^= LF_POLY_ODD & s->odd;
|
|
feedin ^= LF_POLY_EVEN & s->even;
|
|
s->even = s->even << 1 | (evenparity32(feedin));
|
|
|
|
t = s->odd;
|
|
s->odd = s->even;
|
|
s->even = t;
|
|
|
|
return ret;
|
|
}
|
|
uint8_t crypto1_byte(struct Crypto1State *s, uint8_t in, int is_encrypted) {
|
|
uint8_t ret = 0;
|
|
ret |= crypto1_bit(s, BIT(in, 0), is_encrypted) << 0;
|
|
ret |= crypto1_bit(s, BIT(in, 1), is_encrypted) << 1;
|
|
ret |= crypto1_bit(s, BIT(in, 2), is_encrypted) << 2;
|
|
ret |= crypto1_bit(s, BIT(in, 3), is_encrypted) << 3;
|
|
ret |= crypto1_bit(s, BIT(in, 4), is_encrypted) << 4;
|
|
ret |= crypto1_bit(s, BIT(in, 5), is_encrypted) << 5;
|
|
ret |= crypto1_bit(s, BIT(in, 6), is_encrypted) << 6;
|
|
ret |= crypto1_bit(s, BIT(in, 7), is_encrypted) << 7;
|
|
return ret;
|
|
}
|
|
uint32_t crypto1_word(struct Crypto1State *s, uint32_t in, int is_encrypted) {
|
|
uint32_t ret = 0;
|
|
// note: xor args have been swapped because some compilers emit a warning
|
|
// for 10^x and 2^x as possible misuses for exponentiation. No comment.
|
|
ret |= crypto1_bit(s, BEBIT(in, 0), is_encrypted) << (24 ^ 0);
|
|
ret |= crypto1_bit(s, BEBIT(in, 1), is_encrypted) << (24 ^ 1);
|
|
ret |= crypto1_bit(s, BEBIT(in, 2), is_encrypted) << (24 ^ 2);
|
|
ret |= crypto1_bit(s, BEBIT(in, 3), is_encrypted) << (24 ^ 3);
|
|
ret |= crypto1_bit(s, BEBIT(in, 4), is_encrypted) << (24 ^ 4);
|
|
ret |= crypto1_bit(s, BEBIT(in, 5), is_encrypted) << (24 ^ 5);
|
|
ret |= crypto1_bit(s, BEBIT(in, 6), is_encrypted) << (24 ^ 6);
|
|
ret |= crypto1_bit(s, BEBIT(in, 7), is_encrypted) << (24 ^ 7);
|
|
|
|
ret |= crypto1_bit(s, BEBIT(in, 8), is_encrypted) << (24 ^ 8);
|
|
ret |= crypto1_bit(s, BEBIT(in, 9), is_encrypted) << (24 ^ 9);
|
|
ret |= crypto1_bit(s, BEBIT(in, 10), is_encrypted) << (24 ^ 10);
|
|
ret |= crypto1_bit(s, BEBIT(in, 11), is_encrypted) << (24 ^ 11);
|
|
ret |= crypto1_bit(s, BEBIT(in, 12), is_encrypted) << (24 ^ 12);
|
|
ret |= crypto1_bit(s, BEBIT(in, 13), is_encrypted) << (24 ^ 13);
|
|
ret |= crypto1_bit(s, BEBIT(in, 14), is_encrypted) << (24 ^ 14);
|
|
ret |= crypto1_bit(s, BEBIT(in, 15), is_encrypted) << (24 ^ 15);
|
|
|
|
ret |= crypto1_bit(s, BEBIT(in, 16), is_encrypted) << (24 ^ 16);
|
|
ret |= crypto1_bit(s, BEBIT(in, 17), is_encrypted) << (24 ^ 17);
|
|
ret |= crypto1_bit(s, BEBIT(in, 18), is_encrypted) << (24 ^ 18);
|
|
ret |= crypto1_bit(s, BEBIT(in, 19), is_encrypted) << (24 ^ 19);
|
|
ret |= crypto1_bit(s, BEBIT(in, 20), is_encrypted) << (24 ^ 20);
|
|
ret |= crypto1_bit(s, BEBIT(in, 21), is_encrypted) << (24 ^ 21);
|
|
ret |= crypto1_bit(s, BEBIT(in, 22), is_encrypted) << (24 ^ 22);
|
|
ret |= crypto1_bit(s, BEBIT(in, 23), is_encrypted) << (24 ^ 23);
|
|
|
|
ret |= crypto1_bit(s, BEBIT(in, 24), is_encrypted) << (24 ^ 24);
|
|
ret |= crypto1_bit(s, BEBIT(in, 25), is_encrypted) << (24 ^ 25);
|
|
ret |= crypto1_bit(s, BEBIT(in, 26), is_encrypted) << (24 ^ 26);
|
|
ret |= crypto1_bit(s, BEBIT(in, 27), is_encrypted) << (24 ^ 27);
|
|
ret |= crypto1_bit(s, BEBIT(in, 28), is_encrypted) << (24 ^ 28);
|
|
ret |= crypto1_bit(s, BEBIT(in, 29), is_encrypted) << (24 ^ 29);
|
|
ret |= crypto1_bit(s, BEBIT(in, 30), is_encrypted) << (24 ^ 30);
|
|
ret |= crypto1_bit(s, BEBIT(in, 31), is_encrypted) << (24 ^ 31);
|
|
return ret;
|
|
}
|
|
|
|
/* prng_successor
|
|
* helper used to obscure the keystream during authentication
|
|
*/
|
|
uint32_t prng_successor(uint32_t x, uint32_t n) {
|
|
SWAPENDIAN(x);
|
|
while (n--)
|
|
x = x >> 1 | (x >> 16 ^ x >> 18 ^ x >> 19 ^ x >> 21) << 31;
|
|
|
|
return SWAPENDIAN(x);
|
|
}
|