proxmark3/bootrom/bootrom.c
Philippe Teuwen 51e4df533e New button behaviour in bootloader mode:
- Keep button pressed when powering to force entering bootloader
  - Once in bootloader more, you can release the button
- When in bootloader mode (no matter how you entered that mode)
  - One button press to quit bootloader mode and boot main image
2019-05-26 17:48:30 +02:00

359 lines
12 KiB
C

//-----------------------------------------------------------------------------
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Main code for the bootloader
//-----------------------------------------------------------------------------
#include <proxmark3.h>
#include "usb_cdc.h"
struct common_area common_area __attribute__((section(".commonarea")));
unsigned int start_addr, end_addr, bootrom_unlocked;
extern char _bootrom_start, _bootrom_end, _flash_start, _flash_end;
extern uint32_t _osimage_entry;
static int reply_old(uint64_t cmd, uint64_t arg0, uint64_t arg1, uint64_t arg2, void *data, size_t len) {
PacketResponseOLD txcmd;
for (size_t i = 0; i < sizeof(PacketResponseOLD); i++)
((uint8_t *)&txcmd)[i] = 0x00;
// Compose the outgoing command frame
txcmd.cmd = cmd;
txcmd.arg[0] = arg0;
txcmd.arg[1] = arg1;
txcmd.arg[2] = arg2;
// Add the (optional) content to the frame, with a maximum size of PM3_CMD_DATA_SIZE
if (data && len) {
len = MIN(len, PM3_CMD_DATA_SIZE);
for (size_t i = 0; i < len; i++) {
txcmd.d.asBytes[i] = ((uint8_t *)data)[i];
}
}
int result = PM3_EUNDEF;
// Send frame and make sure all bytes are transmitted
result = usb_write((uint8_t *)&txcmd, sizeof(PacketResponseOLD));
return result;
}
void DbpString(char *str) {
uint8_t len = 0;
while (str[len] != 0x00)
len++;
reply_old(CMD_DEBUG_PRINT_STRING, len, 0, 0, (uint8_t *)str, len);
}
static void ConfigClocks(void) {
// we are using a 16 MHz crystal as the basis for everything
// slow clock runs at 32Khz typical regardless of crystal
// enable system clock and USB clock
AT91C_BASE_PMC->PMC_SCER |= AT91C_PMC_PCK | AT91C_PMC_UDP;
// enable the clock to the following peripherals
AT91C_BASE_PMC->PMC_PCER =
(1 << AT91C_ID_PIOA) |
(1 << AT91C_ID_ADC) |
(1 << AT91C_ID_SPI) |
(1 << AT91C_ID_SSC) |
(1 << AT91C_ID_PWMC) |
(1 << AT91C_ID_UDP);
// worst case scenario, with MAINCK = 16Mhz xtal, startup delay is 1.4ms
// if SLCK slow clock runs at its worst case (max) frequency of 42khz
// max startup delay = (1.4ms*42k)/8 = 7.356 so round up to 8
// enable main oscillator and set startup delay
AT91C_BASE_PMC->PMC_MOR =
AT91C_CKGR_MOSCEN |
PMC_MAIN_OSC_STARTUP_DELAY(8);
// wait for main oscillator to stabilize
while (!(AT91C_BASE_PMC->PMC_SR & AT91C_PMC_MOSCS)) {};
// PLL output clock frequency in range 80 - 160 MHz needs CKGR_PLL = 00
// PLL output clock frequency in range 150 - 180 MHz needs CKGR_PLL = 10
// PLL output is MAINCK * multiplier / divisor = 16Mhz * 12 / 2 = 96Mhz
AT91C_BASE_PMC->PMC_PLLR =
PMC_PLL_DIVISOR(2) |
//PMC_PLL_COUNT_BEFORE_LOCK(0x10) |
PMC_PLL_COUNT_BEFORE_LOCK(0x3F) |
PMC_PLL_FREQUENCY_RANGE(0) |
PMC_PLL_MULTIPLIER(12) |
PMC_PLL_USB_DIVISOR(1);
// wait for PLL to lock
while (!(AT91C_BASE_PMC->PMC_SR & AT91C_PMC_LOCK)) {};
// we want a master clock (MCK) to be PLL clock / 2 = 96Mhz / 2 = 48Mhz
// datasheet recommends that this register is programmed in two operations
// when changing to PLL, program the prescaler first then the source
AT91C_BASE_PMC->PMC_MCKR = AT91C_PMC_PRES_CLK_2;
// wait for main clock ready signal
while (!(AT91C_BASE_PMC->PMC_SR & AT91C_PMC_MCKRDY)) {};
// set the source to PLL
AT91C_BASE_PMC->PMC_MCKR = AT91C_PMC_PRES_CLK_2 | AT91C_PMC_CSS_PLL_CLK;
// wait for main clock ready signal
while (!(AT91C_BASE_PMC->PMC_SR & AT91C_PMC_MCKRDY)) {};
}
static void Fatal(void) {
for (;;) {};
}
void UsbPacketReceived(uint8_t *packet, int len) {
int i, dont_ack = 0;
PacketCommandOLD *c = (PacketCommandOLD *)packet;
volatile uint32_t *p;
//if ( len != sizeof(PacketCommandOLD`)) Fatal();
uint32_t arg0 = (uint32_t)c->arg[0];
switch (c->cmd) {
case CMD_DEVICE_INFO: {
dont_ack = 1;
arg0 = DEVICE_INFO_FLAG_BOOTROM_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_BOOTROM |
DEVICE_INFO_FLAG_UNDERSTANDS_START_FLASH;
if (common_area.flags.osimage_present)
arg0 |= DEVICE_INFO_FLAG_OSIMAGE_PRESENT;
reply_old(CMD_DEVICE_INFO, arg0, 1, 2, 0, 0);
}
break;
case CMD_SETUP_WRITE: {
/* The temporary write buffer of the embedded flash controller is mapped to the
* whole memory region, only the last 8 bits are decoded.
*/
p = (volatile uint32_t *)&_flash_start;
for (i = 0; i < 12; i++)
p[i + arg0] = c->d.asDwords[i];
}
break;
case CMD_FINISH_WRITE: {
uint32_t *flash_mem = (uint32_t *)(&_flash_start);
for (int j = 0; j < 2; j++) {
for (i = 0 + (64 * j); i < 64 + (64 * j); i++) {
flash_mem[i] = c->d.asDwords[i];
}
uint32_t flash_address = arg0 + (0x100 * j);
/* Check that the address that we are supposed to write to is within our allowed region */
if (((flash_address + AT91C_IFLASH_PAGE_SIZE - 1) >= end_addr) || (flash_address < start_addr)) {
/* Disallow write */
dont_ack = 1;
reply_old(CMD_NACK, 0, 0, 0, 0, 0);
} else {
uint32_t page_n = (flash_address - ((uint32_t)flash_mem)) / AT91C_IFLASH_PAGE_SIZE;
/* Translate address to flash page and do flash, update here for the 512k part */
AT91C_BASE_EFC0->EFC_FCR = MC_FLASH_COMMAND_KEY |
MC_FLASH_COMMAND_PAGEN(page_n) |
AT91C_MC_FCMD_START_PROG;
}
// Wait until flashing of page finishes
uint32_t sr;
while (!((sr = AT91C_BASE_EFC0->EFC_FSR) & AT91C_MC_FRDY));
if (sr & (AT91C_MC_LOCKE | AT91C_MC_PROGE)) {
dont_ack = 1;
reply_old(CMD_NACK, sr, 0, 0, 0, 0);
}
}
}
break;
case CMD_HARDWARE_RESET: {
usb_disable();
AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
}
break;
case CMD_START_FLASH: {
if (c->arg[2] == START_FLASH_MAGIC)
bootrom_unlocked = 1;
else
bootrom_unlocked = 0;
int prot_start = (int)&_bootrom_start;
int prot_end = (int)&_bootrom_end;
int allow_start = (int)&_flash_start;
int allow_end = (int)&_flash_end;
int cmd_start = c->arg[0];
int cmd_end = c->arg[1];
/* Only allow command if the bootrom is unlocked, or the parameters are outside of the protected
* bootrom area. In any case they must be within the flash area.
*/
if ((bootrom_unlocked || ((cmd_start >= prot_end) || (cmd_end < prot_start))) &&
(cmd_start >= allow_start) &&
(cmd_end <= allow_end)) {
start_addr = cmd_start;
end_addr = cmd_end;
} else {
start_addr = end_addr = 0;
dont_ack = 1;
reply_old(CMD_NACK, 0, 0, 0, 0, 0);
}
}
break;
default: {
Fatal();
}
break;
}
if (!dont_ack)
reply_old(CMD_ACK, arg0, 0, 0, 0, 0);
}
static void flash_mode(void) {
start_addr = 0;
end_addr = 0;
bootrom_unlocked = 0;
uint8_t rx[sizeof(PacketCommandOLD)];
common_area.command = COMMON_AREA_COMMAND_NONE;
if (!common_area.flags.button_pressed && BUTTON_PRESS())
common_area.flags.button_pressed = 1;
usb_enable();
// wait for reset to be complete?
for (volatile size_t i = 0; i < 0x100000; i++) {};
for (;;) {
WDT_HIT();
// Check if there is a usb packet available
if (usb_poll_validate_length()) {
if (usb_read(rx, sizeof(rx))) {
UsbPacketReceived(rx, sizeof(rx));
}
}
if (common_area.flags.button_pressed && !BUTTON_PRESS()) {
common_area.flags.button_pressed = 0;
}
if (!common_area.flags.button_pressed && BUTTON_PRESS()) {
/* Perform a reset to leave flash mode */
common_area.flags.button_pressed = 1;
usb_disable();
LED_B_ON();
AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
for (;;) {};
}
}
}
void BootROM(void) {
//------------
// First set up all the I/O pins; GPIOs configured directly, other ones
// just need to be assigned to the appropriate peripheral.
// Kill all the pullups, especially the one on USB D+; leave them for
// the unused pins, though.
AT91C_BASE_PIOA->PIO_PPUDR =
GPIO_USB_PU |
GPIO_LED_A |
GPIO_LED_B |
GPIO_LED_C |
GPIO_LED_D |
GPIO_FPGA_DIN |
GPIO_FPGA_DOUT |
GPIO_FPGA_CCLK |
GPIO_FPGA_NINIT |
GPIO_FPGA_NPROGRAM |
GPIO_FPGA_DONE |
GPIO_MUXSEL_HIPKD |
GPIO_MUXSEL_HIRAW |
GPIO_MUXSEL_LOPKD |
GPIO_MUXSEL_LORAW |
GPIO_RELAY |
GPIO_NVDD_ON;
// (and add GPIO_FPGA_ON)
// These pins are outputs
AT91C_BASE_PIOA->PIO_OER =
GPIO_LED_A |
GPIO_LED_B |
GPIO_LED_C |
GPIO_LED_D |
GPIO_RELAY |
GPIO_NVDD_ON;
// PIO controls the following pins
AT91C_BASE_PIOA->PIO_PER =
GPIO_USB_PU |
GPIO_LED_A |
GPIO_LED_B |
GPIO_LED_C |
GPIO_LED_D;
// USB_D_PLUS_PULLUP_OFF();
usb_disable();
LED_D_OFF();
LED_C_ON();
LED_B_OFF();
LED_A_OFF();
// Set the first 256kb memory flashspeed
AT91C_BASE_EFC0->EFC_FMR = AT91C_MC_FWS_1FWS | MC_FLASH_MODE_MASTER_CLK_IN_MHZ(48);
// 9 = 256, 10+ is 512kb
uint8_t id = (*(AT91C_DBGU_CIDR) & 0xF00) >> 8;
if (id > 9)
AT91C_BASE_EFC1->EFC_FMR = AT91C_MC_FWS_1FWS | MC_FLASH_MODE_MASTER_CLK_IN_MHZ(48);
// Initialize all system clocks
ConfigClocks();
LED_A_ON();
int common_area_present = 0;
switch (AT91C_BASE_RSTC->RSTC_RSR & AT91C_RSTC_RSTTYP) {
case AT91C_RSTC_RSTTYP_WATCHDOG:
case AT91C_RSTC_RSTTYP_SOFTWARE:
case AT91C_RSTC_RSTTYP_USER:
/* In these cases the common_area in RAM should be ok, retain it if it's there */
if (common_area.magic == COMMON_AREA_MAGIC && common_area.version == 1)
common_area_present = 1;
break;
default: /* Otherwise, initialize it from scratch */
break;
}
if (!common_area_present) {
/* Common area not ok, initialize it */
int i;
/* Makeshift memset, no need to drag util.c into this */
for (i = 0; i < sizeof(common_area); i++)
((char *)&common_area)[i] = 0;
common_area.magic = COMMON_AREA_MAGIC;
common_area.version = 1;
}
common_area.flags.bootrom_present = 1;
if ((common_area.command == COMMON_AREA_COMMAND_ENTER_FLASH_MODE) ||
(!common_area.flags.button_pressed && BUTTON_PRESS()) ||
(_osimage_entry == 0xffffffffU)) {
flash_mode();
} else {
// clear button status, even if button still pressed
common_area.flags.button_pressed = 0;
// jump to Flash address of the osimage entry point (LSBit set for thumb mode)
__asm("bx %0\n" : : "r"(((int)&_osimage_entry) | 0x1));
}
}