mirror of
https://github.com/RfidResearchGroup/proxmark3.git
synced 2025-01-23 08:27:51 +08:00
141 lines
4.6 KiB
Verilog
141 lines
4.6 KiB
Verilog
//-----------------------------------------------------------------------------
|
|
// Pretend to be an ISO 14443 tag. We will do this by alternately short-
|
|
// circuiting and open-circuiting the antenna coil, with the tri-state
|
|
// pins.
|
|
//
|
|
// We communicate over the SSP, as a bitstream (i.e., might as well be
|
|
// unframed, though we still generate the word sync signal). The output
|
|
// (ARM -> FPGA) tells us whether to modulate or not. The input (FPGA
|
|
// -> ARM) is us using the A/D as a fancy comparator; this is with
|
|
// (software-added) hysteresis, to undo the high-pass filter.
|
|
//
|
|
// At this point only Type A is implemented. This means that we are using a
|
|
// bit rate of 106 kbit/s, or fc/128. Oversample by 4, which ought to make
|
|
// things practical for the ARM (fc/32, 423.8 kbits/s, ~50 kbytes/s)
|
|
//
|
|
// Jonathan Westhues, October 2006
|
|
//-----------------------------------------------------------------------------
|
|
|
|
module hi_simulate(
|
|
pck0, ck_1356meg, ck_1356megb,
|
|
pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4,
|
|
adc_d, adc_clk,
|
|
ssp_frame, ssp_din, ssp_dout, ssp_clk,
|
|
cross_hi, cross_lo,
|
|
dbg,
|
|
mod_type
|
|
);
|
|
input pck0, ck_1356meg, ck_1356megb;
|
|
output pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4;
|
|
input [7:0] adc_d;
|
|
output adc_clk;
|
|
input ssp_dout;
|
|
output ssp_frame, ssp_din, ssp_clk;
|
|
input cross_hi, cross_lo;
|
|
output dbg;
|
|
input [2:0] mod_type;
|
|
|
|
// Power amp goes between LOW and tri-state, so pwr_hi (and pwr_lo) can
|
|
// always be low.
|
|
assign pwr_hi = 1'b0;
|
|
assign pwr_lo = 1'b0;
|
|
|
|
// The comparator with hysteresis on the output from the peak detector.
|
|
reg after_hysteresis;
|
|
assign adc_clk = ck_1356meg;
|
|
|
|
always @(negedge adc_clk)
|
|
begin
|
|
if(& adc_d[7:5]) after_hysteresis = 1'b1;
|
|
else if(~(| adc_d[7:5])) after_hysteresis = 1'b0;
|
|
end
|
|
|
|
|
|
// Divide 13.56 MHz by 32 to produce the SSP_CLK
|
|
// The register is bigger to allow higher division factors of up to /128
|
|
reg [10:0] ssp_clk_divider;
|
|
|
|
always @(posedge adc_clk)
|
|
ssp_clk_divider <= (ssp_clk_divider + 1);
|
|
|
|
reg ssp_clk;
|
|
reg ssp_frame;
|
|
always @(negedge adc_clk)
|
|
begin
|
|
//If we're in 101, we only need a new bit every 8th carrier bit (53Hz). Otherwise, get next bit at 424Khz
|
|
if(mod_type == 3'b101)
|
|
begin
|
|
if(ssp_clk_divider[7:0] == 8'b00000000)
|
|
ssp_clk <= 1'b0;
|
|
if(ssp_clk_divider[7:0] == 8'b10000000)
|
|
ssp_clk <= 1'b1;
|
|
|
|
end
|
|
else
|
|
begin
|
|
if(ssp_clk_divider[4:0] == 5'd0)//[4:0] == 5'b00000)
|
|
ssp_clk <= 1'b1;
|
|
if(ssp_clk_divider[4:0] == 5'd16) //[4:0] == 5'b10000)
|
|
ssp_clk <= 1'b0;
|
|
end
|
|
end
|
|
|
|
|
|
//assign ssp_clk = ssp_clk_divider[4];
|
|
|
|
// Divide SSP_CLK by 8 to produce the byte framing signal; the phase of
|
|
// this is arbitrary, because it's just a bitstream.
|
|
// One nasty issue, though: I can't make it work with both rx and tx at
|
|
// once. The phase wrt ssp_clk must be changed. TODO to find out why
|
|
// that is and make a better fix.
|
|
reg [2:0] ssp_frame_divider_to_arm;
|
|
always @(posedge ssp_clk)
|
|
ssp_frame_divider_to_arm <= (ssp_frame_divider_to_arm + 1);
|
|
reg [2:0] ssp_frame_divider_from_arm;
|
|
always @(negedge ssp_clk)
|
|
ssp_frame_divider_from_arm <= (ssp_frame_divider_from_arm + 1);
|
|
|
|
|
|
|
|
always @(ssp_frame_divider_to_arm or ssp_frame_divider_from_arm or mod_type)
|
|
if(mod_type == 3'b000) // not modulating, so listening, to ARM
|
|
ssp_frame = (ssp_frame_divider_to_arm == 3'b000);
|
|
else
|
|
ssp_frame = (ssp_frame_divider_from_arm == 3'b000);
|
|
|
|
// Synchronize up the after-hysteresis signal, to produce DIN.
|
|
reg ssp_din;
|
|
always @(posedge ssp_clk)
|
|
ssp_din = after_hysteresis;
|
|
|
|
// Modulating carrier frequency is fc/16, reuse ssp_clk divider for that
|
|
reg modulating_carrier;
|
|
always @(mod_type or ssp_clk or ssp_dout)
|
|
if(mod_type == 3'b000)
|
|
modulating_carrier <= 1'b0; // no modulation
|
|
else if(mod_type == 3'b001)
|
|
modulating_carrier <= ssp_dout ^ ssp_clk_divider[3]; // XOR means BPSK
|
|
else if(mod_type == 3'b010)
|
|
modulating_carrier <= ssp_dout & ssp_clk_divider[5]; // switch 212kHz subcarrier on/off
|
|
else if(mod_type == 3'b100 || mod_type == 3'b101)
|
|
modulating_carrier <= ssp_dout & ssp_clk_divider[4]; // switch 424kHz modulation on/off
|
|
else
|
|
modulating_carrier <= 1'b0; // yet unused
|
|
|
|
// This one is all LF, so doesn't matter
|
|
assign pwr_oe2 = modulating_carrier;
|
|
|
|
// Toggle only one of these, since we are already producing much deeper
|
|
// modulation than a real tag would.
|
|
assign pwr_oe1 = modulating_carrier;
|
|
assign pwr_oe4 = modulating_carrier;
|
|
|
|
// This one is always on, so that we can watch the carrier.
|
|
assign pwr_oe3 = 1'b0;
|
|
|
|
assign dbg = modulating_carrier;
|
|
//reg dbg;
|
|
//always @(ssp_dout)
|
|
// dbg <= ssp_dout;
|
|
|
|
endmodule
|