proxmark3/client/util.c
Chris dc67b5d7c9 chg: revert fpga_major mode in LF.
chg: 'lf t55xx deviceconfig'  - persistence to flashmem is now option with param P
2018-09-23 05:29:55 +02:00

853 lines
No EOL
21 KiB
C

//-----------------------------------------------------------------------------
// Copyright (C) 2010 iZsh <izsh at fail0verflow.com>
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// utilities
//-----------------------------------------------------------------------------
#include "util.h"
// global client debug variable
uint8_t g_debugMode = 0;
#ifdef _WIN32
#include <windows.h>
#endif
#define MAX_BIN_BREAK_LENGTH (3072+384+1)
#ifndef _WIN32
#include <termios.h>
#include <sys/ioctl.h>
#include <unistd.h>
int ukbhit(void) {
int cnt = 0;
int error;
static struct termios Otty, Ntty;
if ( tcgetattr(STDIN_FILENO, &Otty) == -1) return -1;
Ntty = Otty;
Ntty.c_iflag = 0x0000; // input mode
Ntty.c_oflag = 0x0000; // output mode
Ntty.c_lflag &= ~ICANON; // control mode = raw
Ntty.c_cc[VMIN] = 1; // return if at least 1 character is in the queue
Ntty.c_cc[VTIME] = 0; // no timeout. Wait forever
if (0 == (error = tcsetattr(STDIN_FILENO, TCSANOW, &Ntty))) { // set new attributes
error += ioctl(STDIN_FILENO, FIONREAD, &cnt); // get number of characters available
error += tcsetattr(STDIN_FILENO, TCSANOW, &Otty); // reset attributes
}
return ( error == 0 ? cnt : -1 );
}
#else
#include <conio.h>
int ukbhit(void) {
return kbhit();
}
#endif
// log files functions
// open, appped and close logfile
void AddLogLine(char *fn, char *data, char *c) {
FILE *f = NULL;
char filename[FILE_PATH_SIZE] = {0x00};
int len = 0;
len = strlen(fn);
if (len > FILE_PATH_SIZE)
len = FILE_PATH_SIZE;
memcpy(filename, fn, len);
f = fopen(filename, "a");
if (!f) {
printf("Could not append log file %s", filename);
return;
}
fprintf(f, "%s", data);
fprintf(f, "%s\n", c);
fflush(f);
fclose(f);
}
void AddLogHex(char *fn, char *extData, const uint8_t * data, const size_t len){
AddLogLine(fn, extData, sprint_hex(data, len));
}
void AddLogUint64(char *fn, char *data, const uint64_t value) {
char buf[20] = {0};
memset(buf, 0x00, sizeof(buf));
sprintf(buf, "%016" PRIx64 "", value);
AddLogLine(fn, data, buf);
}
void AddLogCurrentDT(char *fn) {
char buf[20];
memset(buf, 0x00, sizeof(buf));
struct tm *curTime;
time_t now = time(0);
curTime = gmtime(&now);
strftime (buf, sizeof(buf), "%Y-%m-%d %H:%M:%S", curTime);
AddLogLine(fn, "\nanticollision: ", buf);
}
// create filename on hex uid.
// param *fn - pointer to filename char array
// param *uid - pointer to uid byte array
// param *ext - ".log"
// param uidlen - length of uid array.
void FillFileNameByUID(char *filenamePrefix, uint8_t *uid, const char *ext, int uidlen) {
if ( filenamePrefix == NULL || uid == NULL || ext == NULL ){
printf("[!] error parameter is NULL\n");
return;
}
int len = 0;
len = strlen(filenamePrefix);
//memset(fn, 0x00, FILE_PATH_SIZE);
for (int j = 0; j < uidlen; j++)
sprintf(filenamePrefix + len + j * 2, "%02X", uid[j]);
strcat(filenamePrefix, ext);
}
void hex_to_buffer(const uint8_t *buf, const uint8_t *hex_data, const size_t hex_len, const size_t hex_max_len,
const size_t min_str_len, const size_t spaces_between, bool uppercase) {
char *tmp = (char *)buf;
size_t i;
memset(tmp, 0x00, hex_max_len);
int maxLen = ( hex_len > hex_max_len) ? hex_max_len : hex_len;
for (i = 0; i < maxLen; ++i, tmp += 2 + spaces_between) {
sprintf(tmp, (uppercase) ? "%02X" : "%02x", (unsigned int) hex_data[i]);
for (int j = 0; j < spaces_between; j++)
sprintf(tmp + 2 + j, " ");
}
i *= (2 + spaces_between);
int minStrLen = min_str_len > i ? min_str_len : 0;
if (minStrLen > hex_max_len)
minStrLen = hex_max_len;
for(; i < minStrLen; i++, tmp += 1)
sprintf(tmp, " ");
return;
}
// printing and converting functions
void print_hex(const uint8_t *data, const size_t len) {
size_t i;
for (i=0; i < len; i++)
printf("%02x ", data[i]);
printf("\n");
}
void print_hex_break(const uint8_t *data, const size_t len, uint8_t breaks) {
int rownum = 0;
printf("[%02d] | ", rownum);
for (int i = 0; i < len; ++i) {
printf("%02X ", data[i]);
// check if a line break is needed
if ( breaks > 0 && !((i+1) % breaks) && (i+1 < len) ) {
++rownum;
printf("\n[%02d] | ", rownum);
}
}
printf("\n");
}
char *sprint_hex(const uint8_t *data, const size_t len) {
static char buf[1025] = {0};
hex_to_buffer((uint8_t *)buf, data, len, sizeof(buf) - 1, 0, 1, true);
return buf;
}
char *sprint_hex_inrow_ex(const uint8_t *data, const size_t len, const size_t min_str_len) {
static char buf[1025] = {0};
hex_to_buffer((uint8_t *)buf, data, len, sizeof(buf) - 1, min_str_len, 0, true);
return buf;
}
char *sprint_hex_inrow(const uint8_t *data, const size_t len) {
return sprint_hex_inrow_ex(data, len, 0);
}
char *sprint_hex_inrow_spaces(const uint8_t *data, const size_t len, size_t spaces_between) {
static char buf[1025] = {0};
hex_to_buffer((uint8_t *)buf, data, len, sizeof(buf) - 1, 0, spaces_between, true);
return buf;
}
char *sprint_bin_break(const uint8_t *data, const size_t len, const uint8_t breaks) {
// make sure we don't go beyond our char array memory
size_t in_index = 0, out_index = 0;
int rowlen = (len > MAX_BIN_BREAK_LENGTH ) ? MAX_BIN_BREAK_LENGTH : len;
if ( breaks > 0 && len % breaks != 0)
rowlen = ( len+(len/breaks) > MAX_BIN_BREAK_LENGTH ) ? MAX_BIN_BREAK_LENGTH : len+(len/breaks);
//printf("(sprint_bin_break) rowlen %d\n", rowlen);
static char buf[MAX_BIN_BREAK_LENGTH]; // 3072 + end of line characters if broken at 8 bits
//clear memory
memset(buf, 0x00, sizeof(buf));
char *tmp = buf;
// loop through the out_index to make sure we don't go too far
for (out_index=0; out_index < rowlen; out_index++) {
// set character
sprintf(tmp++, "%u", data[in_index]);
// check if a line break is needed and we have room to print it in our array
if ( (breaks > 0) && !((in_index+1) % breaks) && (out_index+1 != rowlen) ) {
// increment and print line break
out_index++;
sprintf(tmp++, "%s","\n");
}
in_index++;
}
return buf;
}
/*
void sprint_bin_break_ex(uint8_t *src, size_t srclen, char *dest , uint8_t breaks) {
if ( src == NULL ) return;
if ( srclen < 1 ) return;
// make sure we don't go beyond our char array memory
size_t in_index = 0, out_index = 0;
int rowlen;
if (breaks==0)
rowlen = ( len > MAX_BIN_BREAK_LENGTH ) ? MAX_BIN_BREAK_LENGTH : len;
else
rowlen = ( len+(len/breaks) > MAX_BIN_BREAK_LENGTH ) ? MAX_BIN_BREAK_LENGTH : len+(len/breaks);
printf("(sprint_bin_break) rowlen %d\n", rowlen);
// 3072 + end of line characters if broken at 8 bits
dest = (char *)malloc(MAX_BIN_BREAK_LENGTH);
if (dest == NULL) return;
//clear memory
memset(dest, 0x00, sizeof(dest));
// loop through the out_index to make sure we don't go too far
for (out_index=0; out_index < rowlen-1; out_index++) {
// set character
sprintf(dest++, "%u", src[in_index]);
// check if a line break is needed and we have room to print it in our array
if ( (breaks > 0) && !((in_index+1) % breaks) && (out_index+1 != rowlen) ) {
// increment and print line break
out_index++;
sprintf(dest++, "%s","\n");
}
in_index++;
}
// last char.
sprintf(dest++, "%u", src[in_index]);
}
*/
char *sprint_bin(const uint8_t *data, const size_t len) {
return sprint_bin_break(data, len, 0);
}
char *sprint_hex_ascii(const uint8_t *data, const size_t len) {
static char buf[1024];
char *tmp = buf;
memset(buf, 0x00, 1024);
size_t max_len = (len > 1010) ? 1010 : len;
sprintf(tmp, "%s| ", sprint_hex(data, max_len) );
size_t i = 0;
size_t pos = (max_len * 3)+2;
while(i < max_len){
char c = data[i];
if ( (c < 32) || (c == 127))
c = '.';
sprintf(tmp+pos+i, "%c", c);
++i;
}
return buf;
}
char *sprint_ascii_ex(const uint8_t *data, const size_t len, const size_t min_str_len) {
static char buf[1024];
char *tmp = buf;
memset(buf, 0x00, 1024);
size_t max_len = (len > 1010) ? 1010 : len;
size_t i = 0;
while(i < max_len){
char c = data[i];
tmp[i] = ((c < 32) || (c == 127)) ? '.' : c;
++i;
}
int m = min_str_len > i ? min_str_len : 0;
for(; i < m; ++i)
tmp[i] = ' ';
return buf;
}
char *sprint_ascii(const uint8_t *data, const size_t len) {
return sprint_ascii_ex(data, len, 0);
}
void print_blocks(uint32_t *data, size_t len) {
PrintAndLogEx(NORMAL, "Blk | Data ");
PrintAndLogEx(NORMAL, "----+------------");
if ( !data ) {
PrintAndLogEx(ERR, "..empty data");
} else {
for (uint8_t i=0; i<len; i++)
PrintAndLogEx(NORMAL, "%02d | 0x%08X", i, data[i]);
}
}
void num_to_bytes(uint64_t n, size_t len, uint8_t* dest) {
while (len--) {
dest[len] = n & 0xFF;
n >>= 8;
}
}
uint64_t bytes_to_num(uint8_t* src, size_t len) {
uint64_t num = 0;
while (len--) {
num = (num << 8) | (*src);
src++;
}
return num;
}
// takes a number (uint64_t) and creates a binarray in dest.
void num_to_bytebits(uint64_t n, size_t len, uint8_t *dest) {
while (len--) {
dest[len] = n & 1;
n >>= 1;
}
}
//least significant bit first
void num_to_bytebitsLSBF(uint64_t n, size_t len, uint8_t *dest) {
for(int i = 0 ; i < len ; ++i) {
dest[i] = n & 1;
n >>= 1;
}
}
// aa,bb,cc,dd,ee,ff,gg,hh, ii,jj,kk,ll,mm,nn,oo,pp
// to
// hh,gg,ff,ee,dd,cc,bb,aa, pp,oo,nn,mm,ll,kk,jj,ii
// up to 64 bytes or 512 bits
uint8_t *SwapEndian64(const uint8_t *src, const size_t len, const uint8_t blockSize){
static uint8_t buf[64];
memset(buf, 0x00, 64);
uint8_t *tmp = buf;
for (uint8_t block=0; block < (uint8_t)(len/blockSize); block++){
for (size_t i = 0; i < blockSize; i++){
tmp[i+(blockSize*block)] = src[(blockSize-1-i)+(blockSize*block)];
}
}
return buf;
}
// takes a uint8_t src array, for len items and reverses the byte order in blocksizes (8,16,32,64),
// returns: the dest array contains the reordered src array.
void SwapEndian64ex(const uint8_t *src, const size_t len, const uint8_t blockSize, uint8_t *dest){
for (uint8_t block=0; block < (uint8_t)(len/blockSize); block++){
for (size_t i = 0; i < blockSize; i++){
dest[i+(blockSize*block)] = src[(blockSize-1-i)+(blockSize*block)];
}
}
}
// -------------------------------------------------------------------------
// string parameters lib
// -------------------------------------------------------------------------
// -------------------------------------------------------------------------
// line - param line
// bg, en - symbol numbers in param line of beginning and ending parameter
// paramnum - param number (from 0)
// -------------------------------------------------------------------------
int param_getptr(const char *line, int *bg, int *en, int paramnum)
{
int i;
int len = strlen(line);
*bg = 0;
*en = 0;
// skip spaces
while (line[*bg] ==' ' || line[*bg]=='\t') (*bg)++;
if (*bg >= len) {
return 1;
}
for (i = 0; i < paramnum; i++) {
while (line[*bg]!=' ' && line[*bg]!='\t' && line[*bg] != '\0') (*bg)++;
while (line[*bg]==' ' || line[*bg]=='\t') (*bg)++;
if (line[*bg] == '\0') return 1;
}
*en = *bg;
while (line[*en] != ' ' && line[*en] != '\t' && line[*en] != '\0') (*en)++;
(*en)--;
return 0;
}
int param_getlength(const char *line, int paramnum)
{
int bg, en;
if (param_getptr(line, &bg, &en, paramnum)) return 0;
return en - bg + 1;
}
char param_getchar(const char *line, int paramnum) {
return param_getchar_indx(line, 0, paramnum);
}
char param_getchar_indx(const char *line, int indx, int paramnum) {
int bg, en;
if (param_getptr(line, &bg, &en, paramnum)) return 0x00;
if (bg + indx > en)
return '\0';
return line[bg + indx];
}
uint8_t param_get8(const char *line, int paramnum)
{
return param_get8ex(line, paramnum, 0, 10);
}
/**
* @brief Reads a decimal integer (actually, 0-254, not 255)
* @param line
* @param paramnum
* @return -1 if error
*/
uint8_t param_getdec(const char *line, int paramnum, uint8_t *destination)
{
uint8_t val = param_get8ex(line, paramnum, 255, 10);
if( (int8_t) val == -1) return 1;
(*destination) = val;
return 0;
}
/**
* @brief Checks if param is decimal
* @param line
* @param paramnum
* @return
*/
uint8_t param_isdec(const char *line, int paramnum)
{
int bg, en;
//TODO, check more thorougly
if (!param_getptr(line, &bg, &en, paramnum)) return 1;
// return strtoul(&line[bg], NULL, 10) & 0xff;
return 0;
}
uint8_t param_get8ex(const char *line, int paramnum, int deflt, int base)
{
int bg, en;
if (!param_getptr(line, &bg, &en, paramnum))
return strtoul(&line[bg], NULL, base) & 0xff;
else
return deflt;
}
uint32_t param_get32ex(const char *line, int paramnum, int deflt, int base)
{
int bg, en;
if (!param_getptr(line, &bg, &en, paramnum))
return strtoul(&line[bg], NULL, base);
else
return deflt;
}
uint64_t param_get64ex(const char *line, int paramnum, int deflt, int base)
{
int bg, en;
if (!param_getptr(line, &bg, &en, paramnum))
return strtoull(&line[bg], NULL, base);
else
return deflt;
}
int param_gethex(const char *line, int paramnum, uint8_t * data, int hexcnt) {
int bg, en, i;
uint32_t temp;
if (hexcnt & 1) return 1;
if (param_getptr(line, &bg, &en, paramnum)) return 1;
if (en - bg + 1 != hexcnt) return 1;
for(i = 0; i < hexcnt; i += 2) {
if (!(isxdigit(line[bg + i]) && isxdigit(line[bg + i + 1])) ) return 1;
sscanf((char[]){line[bg + i], line[bg + i + 1], 0}, "%X", &temp);
data[i / 2] = temp & 0xff;
}
return 0;
}
int param_gethex_ex(const char *line, int paramnum, uint8_t * data, int *hexcnt) {
int bg, en, i;
uint32_t temp;
if (param_getptr(line, &bg, &en, paramnum)) return 1;
*hexcnt = en - bg + 1;
if (*hexcnt % 2) //error if not complete hex bytes
return 1;
for(i = 0; i < *hexcnt; i += 2) {
if (!(isxdigit(line[bg + i]) && isxdigit(line[bg + i + 1])) ) return 1;
sscanf((char[]){line[bg + i], line[bg + i + 1], 0}, "%X", &temp);
data[i / 2] = temp & 0xff;
}
return 0;
}
int param_gethex_to_eol(const char *line, int paramnum, uint8_t * data, int maxdatalen, int *datalen) {
int bg, en;
uint32_t temp;
char buf[5] = {0};
if (param_getptr(line, &bg, &en, paramnum)) return 1;
*datalen = 0;
int indx = bg;
while (line[indx]) {
if (line[indx] == '\t' || line[indx] == ' ') {
indx++;
continue;
}
if (isxdigit(line[indx])) {
buf[strlen(buf) + 1] = 0x00;
buf[strlen(buf)] = line[indx];
} else {
// if we have symbols other than spaces and hex
return 1;
}
if (*datalen >= maxdatalen) {
// if we dont have space in buffer and have symbols to translate
return 2;
}
if (strlen(buf) >= 2) {
sscanf(buf, "%x", &temp);
data[*datalen] = (uint8_t)(temp & 0xff);
*buf = 0;
(*datalen)++;
}
indx++;
}
if (strlen(buf) > 0)
//error when not completed hex bytes
return 3;
return 0;
}
int param_getstr(const char *line, int paramnum, char * str, size_t buffersize)
{
int bg, en;
if (param_getptr(line, &bg, &en, paramnum)) {
return 0;
}
// Prevent out of bounds errors
if (en - bg + 1 >= buffersize) {
printf("out of bounds error: want %d bytes have %zu bytes\n", en - bg + 1 + 1, buffersize);
return 0;
}
memcpy(str, line + bg, en - bg + 1);
str[en - bg + 1] = 0;
return en - bg + 1;
}
/*
The following methods comes from Rfidler sourcecode.
https://github.com/ApertureLabsLtd/RFIDler/blob/master/firmware/Pic32/RFIDler.X/src/
*/
// convert hex to sequence of 0/1 bit values
// returns number of bits converted
int hextobinarray(char *target, char *source)
{
int length, i, count= 0;
char* start = source;
char x;
length = strlen(source);
// process 4 bits (1 hex digit) at a time
while(length--)
{
x= *(source++);
// capitalize
if (x >= 'a' && x <= 'f')
x -= 32;
// convert to numeric value
if (x >= '0' && x <= '9')
x -= '0';
else if (x >= 'A' && x <= 'F')
x -= 'A' - 10;
else {
printf("Discovered unknown character %c %d at idx %d of %s\n", x, x, (int16_t)(source - start), start);
return 0;
}
// output
for(i= 0 ; i < 4 ; ++i, ++count)
*(target++)= (x >> (3 - i)) & 1;
}
return count;
}
// convert hex to human readable binary string
int hextobinstring(char *target, char *source)
{
int length;
if(!(length= hextobinarray(target, source)))
return 0;
binarraytobinstring(target, target, length);
return length;
}
// convert binary array of 0x00/0x01 values to hex (safe to do in place as target will always be shorter than source)
// return number of bits converted
int binarraytohex(char *target, char *source, int length)
{
unsigned char i, x;
int j = length;
if(j % 4)
return 0;
while(j)
{
for(i= x= 0 ; i < 4 ; ++i)
x += ( source[i] << (3 - i));
sprintf(target,"%X", x);
++target;
source += 4;
j -= 4;
}
return length;
}
// convert binary array to human readable binary
void binarraytobinstring(char *target, char *source, int length)
{
int i;
for(i= 0 ; i < length ; ++i)
*(target++)= *(source++) + '0';
*target= '\0';
}
// return parity bit required to match type
uint8_t GetParity( uint8_t *bits, uint8_t type, int length)
{
int x;
for( x = 0 ; length > 0 ; --length)
x += bits[length - 1];
x %= 2;
return x ^ type;
}
// add HID parity to binary array: EVEN prefix for 1st half of ID, ODD suffix for 2nd half
void wiegand_add_parity(uint8_t *target, uint8_t *source, uint8_t length)
{
*(target++)= GetParity(source, EVEN, length / 2);
memcpy(target, source, length);
target += length;
*(target)= GetParity(source + length / 2, ODD, length / 2);
}
// xor two arrays together for len items. The dst array contains the new xored values.
void xor(unsigned char * dst, unsigned char * src, size_t len) {
for( ; len > 0; len--,dst++,src++)
*dst ^= *src;
}
int32_t le24toh (uint8_t data[3]) {
return (data[2] << 16) | (data[1] << 8) | data[0];
}
// Pack a bitarray into a uint32_t.
uint32_t PackBits(uint8_t start, uint8_t len, uint8_t* bits) {
if (len > 32) return 0;
int i = start;
int j = len-1;
uint32_t tmp = 0;
for (; j >= 0; --j, ++i)
tmp |= bits[i] << j;
return tmp;
}
// RotateLeft - Ultralight, Desfire, works on byte level
// 00-01-02 >> 01-02-00
void rol(uint8_t *data, const size_t len){
uint8_t first = data[0];
for (size_t i = 0; i < len-1; i++) {
data[i] = data[i+1];
}
data[len-1] = first;
}
/*
uint8_t pw_rev_A(uint8_t b) {
b = (b & 0xF0) >> 4 | (b & 0x0F) << 4;
b = (b & 0xCC) >> 2 | (b & 0x33) << 2;
b = (b & 0xAA) >> 1 | (b & 0x55) << 1;
return b;
}
*/
uint8_t reflect8(uint8_t b) {
return ((b * 0x80200802ULL) & 0x0884422110ULL) * 0x0101010101ULL >> 32;
}
uint16_t reflect16(uint16_t b) {
uint16_t v = 0;
v |= (b & 0x8000) >> 15;
v |= (b & 0x4000) >> 13;
v |= (b & 0x2000) >> 11;
v |= (b & 0x1000) >> 9;
v |= (b & 0x0800) >> 7;
v |= (b & 0x0400) >> 5;
v |= (b & 0x0200) >> 3;
v |= (b & 0x0100) >> 1;
v |= (b & 0x0080) << 1;
v |= (b & 0x0040) << 3;
v |= (b & 0x0020) << 5;
v |= (b & 0x0010) << 7;
v |= (b & 0x0008) << 9;
v |= (b & 0x0004) << 11;
v |= (b & 0x0002) << 13;
v |= (b & 0x0001) << 15;
return v;
}
/*
ref http://www.csm.ornl.gov/~dunigan/crc.html
Returns the value v with the bottom b [0,32] bits reflected.
Example: reflect(0x3e23L,3) == 0x3e26
*/
uint32_t reflect(uint32_t v, int b) {
uint32_t t = v;
for ( int i = 0; i < b; ++i) {
if (t & 1)
v |= BITMASK((b-1)-i);
else
v &= ~BITMASK((b-1)-i);
t>>=1;
}
return v;
}
uint64_t HornerScheme(uint64_t num, uint64_t divider, uint64_t factor) {
uint64_t remainder=0, quotient=0, result=0;
remainder = num % divider;
quotient = num / divider;
if(!(quotient == 0 && remainder == 0))
result += HornerScheme(quotient, divider, factor) * factor + remainder;
return result;
}
// determine number of logical CPU cores (use for multithreaded functions)
extern int num_CPUs(void) {
#if defined(_WIN32)
#include <sysinfoapi.h>
SYSTEM_INFO sysinfo;
GetSystemInfo(&sysinfo);
return sysinfo.dwNumberOfProcessors;
#elif defined(__linux__) || defined(__APPLE__)
#include <unistd.h>
return sysconf(_SC_NPROCESSORS_ONLN);
#else
return 1;
#endif
}
extern void str_lower(char *s ){
for(int i=0; i < strlen(s); i++)
s[i] = tolower( s[i] );
}
extern bool str_startswith(const char *s, const char *pre) {
return strncmp(pre, s, strlen(pre)) == 0;
}
// Replace unprintable characters with a dot in char buffer
extern void clean_ascii(unsigned char *buf, size_t len) {
for (size_t i = 0; i < len; i++) {
if (!isprint(buf[i]))
buf[i] = '.';
}
}
// replace \r \n to \0
extern void strcleanrn(char *buf, size_t len) {
strcreplace(buf, len, '\n', '\0');
strcreplace(buf, len, '\r', '\0');
}
// replace char in buffer
extern void strcreplace(char *buf, size_t len, char from, char to) {
for (size_t i = 0; i < len; i++) {
if (buf[i] == from)
buf[i] = to;
}
}
extern char *strmcopy(char *buf) {
char* str = NULL;
if ((str = (char*) malloc(strlen(buf) + 1)) != NULL) {
memset(str, 0, strlen(buf) + 1);
strcpy(str, buf);
}
return str;
}