proxmark3/client/cmdsmartcard.c
2019-08-30 22:13:51 +02:00

1233 lines
37 KiB
C

//-----------------------------------------------------------------------------
// Copyright (C) 2018 iceman
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Proxmark3 RDV40 Smartcard module commands
//-----------------------------------------------------------------------------
#include "cmdsmartcard.h"
#include <ctype.h>
#include <string.h>
#include "cmdparser.h" // command_t
#include "commonutil.h" // ARRAYLEN
#include "protocols.h"
#include "cmdtrace.h"
#include "proxmark3.h"
#include "comms.h" // getfromdevice
#include "emv/emvcore.h" // decodeTVL
#include "crypto/libpcrypto.h" // sha512hash
#include "emv/dump.h"
#include "ui.h"
#include "fileutils.h"
static int CmdHelp(const char *Cmd);
static int usage_sm_raw(void) {
PrintAndLogEx(NORMAL, "Usage: sc raw [h|r|c] d <0A 0B 0C ... hex>");
PrintAndLogEx(NORMAL, " h : this help");
PrintAndLogEx(NORMAL, " r : do not read response");
PrintAndLogEx(NORMAL, " a : active smartcard without select (reset sc module)");
PrintAndLogEx(NORMAL, " s : active smartcard with select (get ATR)");
PrintAndLogEx(NORMAL, " t : executes TLV decoder if it possible");
PrintAndLogEx(NORMAL, " 0 : use protocol T=0");
PrintAndLogEx(NORMAL, " d <bytes> : bytes to send");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " sc raw s 0 d 00a404000e315041592e5359532e4444463031 - `1PAY.SYS.DDF01` PPSE directory with get ATR");
PrintAndLogEx(NORMAL, " sc raw 0 d 00a404000e325041592e5359532e4444463031 - `2PAY.SYS.DDF01` PPSE directory");
PrintAndLogEx(NORMAL, " sc raw 0 t d 00a4040007a0000000041010 - Mastercard");
PrintAndLogEx(NORMAL, " sc raw 0 t d 00a4040007a0000000031010 - Visa");
return 0;
}
static int usage_sm_reader(void) {
PrintAndLogEx(NORMAL, "Usage: sc reader [h|s]");
PrintAndLogEx(NORMAL, " h : this help");
PrintAndLogEx(NORMAL, " s : silent (no messages)");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " sc reader");
return 0;
}
static int usage_sm_info(void) {
PrintAndLogEx(NORMAL, "Usage: s info [h|s]");
PrintAndLogEx(NORMAL, " h : this help");
PrintAndLogEx(NORMAL, " s : silent (no messages)");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " sc info");
return 0;
}
static int usage_sm_upgrade(void) {
PrintAndLogEx(NORMAL, "Upgrade RDV4.0 Sim module firmware");
PrintAndLogEx(NORMAL, "Usage: sc upgrade f <file name>");
PrintAndLogEx(NORMAL, " h : this help");
PrintAndLogEx(NORMAL, " f <filename> : firmware file name");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " sc upgrade f ../tools/simmodule/sim011.bin");
return 0;
}
static int usage_sm_setclock(void) {
PrintAndLogEx(NORMAL, "Usage: sc setclock [h] c <clockspeed>");
PrintAndLogEx(NORMAL, " h : this help");
PrintAndLogEx(NORMAL, " c <> : clockspeed (0 = 16MHz, 1=8MHz, 2=4MHz) ");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " sc setclock c 2");
return 0;
}
static int usage_sm_brute(void) {
PrintAndLogEx(NORMAL, "Tries to bruteforce SFI, using a known list of AID's ");
PrintAndLogEx(NORMAL, "Usage: sc brute [h]");
PrintAndLogEx(NORMAL, " h : this help");
PrintAndLogEx(NORMAL, " t : executes TLV decoder if it possible");
// PrintAndLogEx(NORMAL, " 0 : use protocol T=0");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " sc brute t");
return 0;
}
static int smart_loadjson(const char *preferredName, json_t **root) {
json_error_t error;
if (preferredName == NULL) return 1;
char *path;
int res = searchFile(&path, RESOURCES_SUBDIR, preferredName, ".json", false);
if (res != PM3_SUCCESS) {
return PM3_EFILE;
}
int retval = PM3_SUCCESS;
*root = json_load_file(path, 0, &error);
if (!*root) {
PrintAndLogEx(ERR, "json (%s) error on line %d: %s", path, error.line, error.text);
retval = PM3_ESOFT;
goto out;
}
if (!json_is_array(*root)) {
PrintAndLogEx(ERR, "Invalid json (%s) format. root must be an array.", path);
retval = PM3_ESOFT;
goto out;
}
PrintAndLogEx(SUCCESS, "Loaded file (%s) OK.", path);
out:
free(path);
return retval;
}
static uint8_t GetATRTA1(uint8_t *atr, size_t atrlen) {
if (atrlen > 2) {
uint8_t T0 = atr[1];
if (T0 & 0x10)
return atr[2];
}
return 0x11; // default value is 0x11, corresponding to fmax=5 MHz, Fi=372, Di=1.
}
int DiArray[] = {
0, // b0000 RFU
1, // b0001
2,
4,
8,
16,
32, // b0110
64, // b0111. This was RFU in ISO/IEC 7816-3:1997 and former. Some card readers or drivers may erroneously reject cards using this value
12,
20,
0, // b1010 RFU
0,
0, // ...
0,
0,
0 // b1111 RFU
};
int FiArray[] = {
372, // b0000 Historical note: in ISO/IEC 7816-3:1989, this was assigned to cards with internal clock
372, // b0001
558, // b0010
744, // b0011
1116, // b0100
1488, // b0101
1860, // b0110
0, // b0111 RFU
0, // b1000 RFU
512, // b1001
768, // b1010
1024, // b1011
1536, // b1100
2048, // b1101
0, // b1110 RFU
0 // b1111 RFU
};
float FArray[] = {
4, // b0000 Historical note: in ISO/IEC 7816-3:1989, this was assigned to cards with internal clock
5, // b0001
6, // b0010
8, // b0011
12, // b0100
16, // b0101
20, // b0110
0, // b0111 RFU
0, // b1000 RFU
5, // b1001
7.5, // b1010
10, // b1011
15, // b1100
20, // b1101
0, // b1110 RFU
0 // b1111 RFU
};
static int GetATRDi(uint8_t *atr, size_t atrlen) {
uint8_t TA1 = GetATRTA1(atr, atrlen);
return DiArray[TA1 & 0x0F]; // The 4 low-order bits of TA1 (4th MSbit to 1st LSbit) encode Di
}
static int GetATRFi(uint8_t *atr, size_t atrlen) {
uint8_t TA1 = GetATRTA1(atr, atrlen);
return FiArray[TA1 >> 4]; // The 4 high-order bits of TA1 (8th MSbit to 5th LSbit) encode fmax and Fi
}
static float GetATRF(uint8_t *atr, size_t atrlen) {
uint8_t TA1 = GetATRTA1(atr, atrlen);
return FArray[TA1 >> 4]; // The 4 high-order bits of TA1 (8th MSbit to 5th LSbit) encode fmax and Fi
}
static int PrintATR(uint8_t *atr, size_t atrlen) {
uint8_t T0 = atr[1];
uint8_t K = T0 & 0x0F;
uint8_t T1len = 0, TD1len = 0, TDilen = 0;
bool protocol_T0_present = true;
bool protocol_T15_present = false;
if (T0 & 0x10) {
PrintAndLogEx(NORMAL, "\t- TA1 (Maximum clock frequency, proposed bit duration) [ 0x%02x ]", atr[2 + T1len]);
T1len++;
}
if (T0 & 0x20) {
PrintAndLogEx(NORMAL, "\t- TB1 (Deprecated: VPP requirements) [ 0x%02x ]", atr[2 + T1len]);
T1len++;
}
if (T0 & 0x40) {
PrintAndLogEx(NORMAL, "\t- TC1 (Extra delay between bytes required by card) [ 0x%02x ]", atr[2 + T1len]);
T1len++;
}
if (T0 & 0x80) {
uint8_t TD1 = atr[2 + T1len];
PrintAndLogEx(NORMAL, "\t- TD1 (First offered transmission protocol, presence of TA2..TD2) [ 0x%02x ] Protocol T%d", TD1, TD1 & 0x0f);
protocol_T0_present = false;
if ((TD1 & 0x0f) == 0) {
protocol_T0_present = true;
}
if ((TD1 & 0x0f) == 15) {
protocol_T15_present = true;
}
T1len++;
if (TD1 & 0x10) {
PrintAndLogEx(NORMAL, "\t- TA2 (Specific protocol and parameters to be used after the ATR) [ 0x%02x ]", atr[2 + T1len + TD1len]);
TD1len++;
}
if (TD1 & 0x20) {
PrintAndLogEx(NORMAL, "\t- TB2 (Deprecated: VPP precise voltage requirement) [ 0x%02x ]", atr[2 + T1len + TD1len]);
TD1len++;
}
if (TD1 & 0x40) {
PrintAndLogEx(NORMAL, "\t- TC2 (Maximum waiting time for protocol T=0) [ 0x%02x ]", atr[2 + T1len + TD1len]);
TD1len++;
}
if (TD1 & 0x80) {
uint8_t TDi = atr[2 + T1len + TD1len];
PrintAndLogEx(NORMAL, "\t- TD2 (A supported protocol or more global parameters, presence of TA3..TD3) [ 0x%02x ] Protocol T%d", TDi, TDi & 0x0f);
if ((TDi & 0x0f) == 0) {
protocol_T0_present = true;
}
if ((TDi & 0x0f) == 15) {
protocol_T15_present = true;
}
TD1len++;
bool nextCycle = true;
uint8_t vi = 3;
while (nextCycle) {
nextCycle = false;
if (TDi & 0x10) {
PrintAndLogEx(NORMAL, "\t- TA%d: 0x%02x", vi, atr[2 + T1len + TD1len + TDilen]);
TDilen++;
}
if (TDi & 0x20) {
PrintAndLogEx(NORMAL, "\t- TB%d: 0x%02x", vi, atr[2 + T1len + TD1len + TDilen]);
TDilen++;
}
if (TDi & 0x40) {
PrintAndLogEx(NORMAL, "\t- TC%d: 0x%02x", vi, atr[2 + T1len + TD1len + TDilen]);
TDilen++;
}
if (TDi & 0x80) {
TDi = atr[2 + T1len + TD1len + TDilen];
PrintAndLogEx(NORMAL, "\t- TD%d [ 0x%02x ] Protocol T%d", vi, TDi, TDi & 0x0f);
TDilen++;
nextCycle = true;
vi++;
}
}
}
}
if (!protocol_T0_present || protocol_T15_present) { // there is CRC Check Byte TCK
uint8_t vxor = 0;
for (int i = 1; i < atrlen; i++)
vxor ^= atr[i];
if (vxor)
PrintAndLogEx(WARNING, "Invalid check sum. Must be 0 got 0x%02X", vxor);
else
PrintAndLogEx(INFO, "Check sum OK.");
}
if (atr[0] != 0x3b)
PrintAndLogEx(WARNING, "Not a direct convention [ 0x%02x ]", atr[0]);
uint8_t calen = 2 + T1len + TD1len + TDilen + K;
if (atrlen != calen && atrlen != calen + 1) // may be CRC
PrintAndLogEx(WARNING, "Invalid ATR length. len: %d, T1len: %d, TD1len: %d, TDilen: %d, K: %d", atrlen, T1len, TD1len, TDilen, K);
if (K > 0)
PrintAndLogEx(INFO, "\nHistorical bytes | len 0x%02d | format %02x", K, atr[2 + T1len + TD1len + TDilen]);
if (K > 1) {
PrintAndLogEx(INFO, "\tHistorical bytes");
dump_buffer(&atr[2 + T1len + TD1len + TDilen], K, NULL, 1);
}
return 0;
}
static int smart_wait(uint8_t *data, bool silent) {
PacketResponseNG resp;
if (!WaitForResponseTimeout(CMD_ACK, &resp, 2500)) {
if (!silent) PrintAndLogEx(WARNING, "smart card response timeout");
return -1;
}
uint32_t len = resp.oldarg[0];
if (!len) {
if (!silent) PrintAndLogEx(WARNING, "smart card response failed");
return -2;
}
memcpy(data, resp.data.asBytes, len);
if (len >= 2) {
if (!silent) PrintAndLogEx(SUCCESS, "%02X%02X | %s", data[len - 2], data[len - 1], GetAPDUCodeDescription(data[len - 2], data[len - 1]));
} else {
if (!silent) PrintAndLogEx(SUCCESS, " %d | %s", len, sprint_hex_inrow_ex(data, len, 8));
}
return len;
}
static int smart_responseEx(uint8_t *data, bool silent) {
int datalen = smart_wait(data, silent);
bool needGetData = false;
if (datalen < 2) {
goto out;
}
if (data[datalen - 2] == 0x61 || data[datalen - 2] == 0x9F) {
needGetData = true;
}
if (needGetData) {
int len = data[datalen - 1];
if (!silent) PrintAndLogEx(INFO, "Requesting 0x%02X bytes response", len);
uint8_t getstatus[] = {0x00, ISO7816_GET_RESPONSE, 0x00, 0x00, len};
clearCommandBuffer();
SendCommandOLD(CMD_SMART_RAW, SC_RAW, sizeof(getstatus), 0, getstatus, sizeof(getstatus));
datalen = smart_wait(data, silent);
if (datalen < 2) {
goto out;
}
// data wo ACK
if (datalen != len + 2) {
// data with ACK
if (datalen == len + 2 + 1) { // 2 - response, 1 - ACK
if (data[0] != ISO7816_GET_RESPONSE) {
if (!silent) {
PrintAndLogEx(ERR, "GetResponse ACK error. len 0x%x | data[0] %02X", len, data[0]);
}
datalen = 0;
goto out;
}
datalen--;
memmove(data, &data[1], datalen);
} else {
// wrong length
if (!silent) {
PrintAndLogEx(WARNING, "GetResponse wrong length. Must be 0x%02X got 0x%02X", len, datalen - 3);
}
}
}
}
out:
return datalen;
}
static int smart_response(uint8_t *data) {
return smart_responseEx(data, false);
}
static int CmdSmartRaw(const char *Cmd) {
int hexlen = 0;
bool active = false;
bool active_select = false;
bool useT0 = false;
uint8_t cmdp = 0;
bool errors = false, reply = true, decodeTLV = false, breakloop = false;
uint8_t data[PM3_CMD_DATA_SIZE] = {0x00};
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (tolower(param_getchar(Cmd, cmdp))) {
case 'h':
return usage_sm_raw();
case 'r':
reply = false;
cmdp++;
break;
case 'a':
active = true;
cmdp++;
break;
case 's':
active_select = true;
cmdp++;
break;
case 't':
decodeTLV = true;
cmdp++;
break;
case '0':
useT0 = true;
cmdp++;
break;
case 'd': {
switch (param_gethex_to_eol(Cmd, cmdp + 1, data, sizeof(data), &hexlen)) {
case 1:
PrintAndLogEx(WARNING, "Invalid HEX value.");
return 1;
case 2:
PrintAndLogEx(WARNING, "Too many bytes. Max %d bytes", sizeof(data));
return 1;
case 3:
PrintAndLogEx(WARNING, "Hex must have even number of digits.");
return 1;
}
cmdp++;
breakloop = true;
break;
}
default:
PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = true;
break;
}
if (breakloop)
break;
}
//Validations
if (errors || cmdp == 0) return usage_sm_raw();
uint8_t flags = 0;
if (active || active_select) {
flags |= SC_CONNECT;
if (active_select)
flags |= SC_SELECT;
}
if (hexlen > 0) {
if (useT0)
flags |= SC_RAW_T0;
else
flags |= SC_RAW;
}
clearCommandBuffer();
SendCommandOLD(CMD_SMART_RAW, flags, hexlen, 0, data, hexlen);
// reading response from smart card
if (reply) {
uint8_t *buf = calloc(PM3_CMD_DATA_SIZE, sizeof(uint8_t));
if (!buf)
return 1;
int len = smart_response(buf);
if (len < 0) {
free(buf);
return 2;
}
if (buf[0] == 0x6C) {
data[4] = buf[1];
clearCommandBuffer();
SendCommandOLD(CMD_SMART_RAW, 0, hexlen, 0, data, hexlen);
len = smart_response(buf);
data[4] = 0;
}
if (decodeTLV && len > 4)
TLVPrintFromBuffer(buf, len - 2);
free(buf);
}
return 0;
}
static int CmdSmartUpgrade(const char *Cmd) {
PrintAndLogEx(WARNING, "WARNING - Sim module firmware upgrade.");
PrintAndLogEx(WARNING, "A dangerous command, do wrong and you could brick the sim module");
PrintAndLogEx(NORMAL, "");
FILE *f;
char filename[FILE_PATH_SIZE] = {0};
uint8_t cmdp = 0;
bool errors = false;
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (tolower(param_getchar(Cmd, cmdp))) {
case 'f':
//File handling and reading
if (param_getstr(Cmd, cmdp + 1, filename, FILE_PATH_SIZE) >= FILE_PATH_SIZE) {
PrintAndLogEx(FAILED, "Filename too long");
errors = true;
break;
}
cmdp += 2;
break;
case 'h':
return usage_sm_upgrade();
default:
PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = true;
break;
}
}
//Validations
if (errors || cmdp == 0) return usage_sm_upgrade();
char sha512filename[FILE_PATH_SIZE] = {'\0'};
char *bin_extension = filename;
char *dot_position = NULL;
while ((dot_position = strchr(bin_extension, '.')) != NULL) {
bin_extension = dot_position + 1;
}
if (!strcmp(bin_extension, "BIN")
#ifdef _WIN32
|| !strcmp(bin_extension, "bin")
#endif
) {
memcpy(sha512filename, filename, strlen(filename) - strlen("bin"));
strcat(sha512filename, "sha512.txt");
} else {
PrintAndLogEx(FAILED, "Filename extension of firmware upgrade file must be .BIN");
return 1;
}
PrintAndLogEx(INFO, "firmware file : " _YELLOW_("%s"), filename);
PrintAndLogEx(INFO, "Checking integrity : " _YELLOW_("%s"), sha512filename);
// load firmware file
f = fopen(filename, "rb");
if (!f) {
PrintAndLogEx(FAILED, "Firmware file " _YELLOW_("%s") " not found or locked.", filename);
return PM3_EFILE;
}
// get filesize in order to malloc memory
fseek(f, 0, SEEK_END);
long fsize = ftell(f);
fseek(f, 0, SEEK_SET);
if (fsize <= 0) {
PrintAndLogEx(ERR, "error, when getting filesize");
fclose(f);
return 1;
}
uint8_t *dump = calloc(fsize, sizeof(uint8_t));
if (!dump) {
PrintAndLogEx(ERR, "error, cannot allocate memory ");
fclose(f);
return 1;
}
size_t firmware_size = fread(dump, 1, fsize, f);
fclose(f);
// load sha512 file
f = fopen(sha512filename, "rb");
if (!f) {
PrintAndLogEx(FAILED, "SHA-512 file not found or locked.");
free(dump);
return PM3_EFILE;
}
// get filesize in order to malloc memory
fseek(f, 0, SEEK_END);
fsize = ftell(f);
fseek(f, 0, SEEK_SET);
if (fsize < 0) {
PrintAndLogEx(FAILED, "Could not determine size of SHA-512 file");
fclose(f);
free(dump);
return 1;
}
if (fsize < 128) {
PrintAndLogEx(FAILED, "SHA-512 file too short");
fclose(f);
free(dump);
return 1;
}
char hashstring[129];
size_t bytes_read = fread(hashstring, 1, 128, f);
hashstring[128] = '\0';
fclose(f);
uint8_t hash_1[64];
if (bytes_read != 128 || param_gethex(hashstring, 0, hash_1, 128)) {
PrintAndLogEx(FAILED, "Couldn't read SHA-512 file");
free(dump);
return 1;
}
uint8_t hash_2[64];
if (sha512hash(dump, firmware_size, hash_2)) {
PrintAndLogEx(FAILED, "Couldn't calculate SHA-512 of firmware");
free(dump);
return 1;
}
if (memcmp(hash_1, hash_2, 64)) {
PrintAndLogEx(FAILED, "Couldn't verify integrity of firmware file " _RED_("(wrong SHA-512 hash)"));
free(dump);
return 1;
}
PrintAndLogEx(SUCCESS, "Sim module firmware uploading to PM3");
//Send to device
uint32_t index = 0;
uint32_t bytes_sent = 0;
uint32_t bytes_remaining = firmware_size;
// fast push mode
conn.block_after_ACK = true;
while (bytes_remaining > 0) {
uint32_t bytes_in_packet = MIN(PM3_CMD_DATA_SIZE, bytes_remaining);
if (bytes_in_packet == bytes_remaining) {
// Disable fast mode on last packet
conn.block_after_ACK = false;
}
clearCommandBuffer();
SendCommandOLD(CMD_SMART_UPLOAD, index + bytes_sent, bytes_in_packet, 0, dump + bytes_sent, bytes_in_packet);
if (!WaitForResponseTimeout(CMD_ACK, NULL, 2000)) {
PrintAndLogEx(WARNING, "timeout while waiting for reply.");
free(dump);
return 1;
}
bytes_remaining -= bytes_in_packet;
bytes_sent += bytes_in_packet;
printf(".");
fflush(stdout);
}
free(dump);
printf("\n");
PrintAndLogEx(SUCCESS, "Sim module firmware updating, don\'t turn off your PM3!");
// trigger the firmware upgrade
clearCommandBuffer();
SendCommandMIX(CMD_SMART_UPGRADE, firmware_size, 0, 0, NULL, 0);
PacketResponseNG resp;
if (!WaitForResponseTimeout(CMD_ACK, &resp, 2500)) {
PrintAndLogEx(WARNING, "timeout while waiting for reply.");
return 1;
}
if ((resp.oldarg[0] & 0xFF)) {
PrintAndLogEx(SUCCESS, "Sim module firmware upgrade " _GREEN_("successful"));
PrintAndLogEx(SUCCESS, "\n run " _YELLOW_("`hw status`") " to validate the fw version ");
} else {
PrintAndLogEx(FAILED, "Sim module firmware upgrade " _RED_("failed"));
}
return PM3_SUCCESS;
}
static int CmdSmartInfo(const char *Cmd) {
uint8_t cmdp = 0;
bool errors = false, silent = false;
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (tolower(param_getchar(Cmd, cmdp))) {
case 'h':
return usage_sm_info();
case 's':
silent = true;
break;
default:
PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = true;
break;
}
cmdp++;
}
//Validations
if (errors) return usage_sm_info();
clearCommandBuffer();
SendCommandNG(CMD_SMART_ATR, NULL, 0);
PacketResponseNG resp;
if (!WaitForResponseTimeout(CMD_ACK, &resp, 2500)) {
if (!silent) PrintAndLogEx(WARNING, "smart card select failed");
return 1;
}
uint8_t isok = resp.oldarg[0] & 0xFF;
if (!isok) {
if (!silent) PrintAndLogEx(WARNING, "smart card select failed");
return 1;
}
smart_card_atr_t card;
memcpy(&card, (smart_card_atr_t *)resp.data.asBytes, sizeof(smart_card_atr_t));
// print header
PrintAndLogEx(INFO, "--- Smartcard Information ---------");
PrintAndLogEx(INFO, "-------------------------------------------------------------");
PrintAndLogEx(INFO, "ISO7618-3 ATR : %s", sprint_hex(card.atr, card.atr_len));
PrintAndLogEx(INFO, "\nhttp://smartcard-atr.appspot.com/parse?ATR=%s", sprint_hex_inrow(card.atr, card.atr_len));
// print ATR
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(INFO, "ATR");
PrintATR(card.atr, card.atr_len);
// print D/F (brom byte TA1 or defaults)
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(INFO, "D/F (TA1)");
int Di = GetATRDi(card.atr, card.atr_len);
int Fi = GetATRFi(card.atr, card.atr_len);
float F = GetATRF(card.atr, card.atr_len);
if (GetATRTA1(card.atr, card.atr_len) == 0x11)
PrintAndLogEx(INFO, "Using default values...");
PrintAndLogEx(NORMAL, "\t- Di %d", Di);
PrintAndLogEx(NORMAL, "\t- Fi %d", Fi);
PrintAndLogEx(NORMAL, "\t- F %.1f MHz", F);
if (Di && Fi) {
PrintAndLogEx(NORMAL, "\t- Cycles/ETU %d", Fi / Di);
PrintAndLogEx(NORMAL, "\t- %.1f bits/sec at 4 MHz", (float)4000000 / (Fi / Di));
PrintAndLogEx(NORMAL, "\t- %.1f bits/sec at Fmax (%.1fMHz)", (F * 1000000) / (Fi / Di), F);
} else {
PrintAndLogEx(WARNING, "\t- Di or Fi is RFU.");
};
return 0;
}
static int CmdSmartReader(const char *Cmd) {
uint8_t cmdp = 0;
bool errors = false, silent = false;
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (tolower(param_getchar(Cmd, cmdp))) {
case 'h':
return usage_sm_reader();
case 's':
silent = true;
break;
default:
PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = true;
break;
}
cmdp++;
}
//Validations
if (errors) return usage_sm_reader();
clearCommandBuffer();
SendCommandNG(CMD_SMART_ATR, NULL, 0);
PacketResponseNG resp;
if (!WaitForResponseTimeout(CMD_ACK, &resp, 2500)) {
if (!silent) PrintAndLogEx(WARNING, "smart card select failed");
return 1;
}
uint8_t isok = resp.oldarg[0] & 0xFF;
if (!isok) {
if (!silent) PrintAndLogEx(WARNING, "smart card select failed");
return 1;
}
smart_card_atr_t card;
memcpy(&card, (smart_card_atr_t *)resp.data.asBytes, sizeof(smart_card_atr_t));
PrintAndLogEx(INFO, "ISO7816-3 ATR : %s", sprint_hex(card.atr, card.atr_len));
return 0;
}
static int CmdSmartSetClock(const char *Cmd) {
uint8_t cmdp = 0;
bool errors = false;
uint8_t clock1 = 0;
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (tolower(param_getchar(Cmd, cmdp))) {
case 'h':
return usage_sm_setclock();
case 'c':
clock1 = param_get8ex(Cmd, cmdp + 1, 2, 10);
if (clock1 > 2)
errors = true;
cmdp += 2;
break;
default:
PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = true;
break;
}
}
//Validations
if (errors || cmdp == 0) return usage_sm_setclock();
clearCommandBuffer();
SendCommandMIX(CMD_SMART_SETCLOCK, clock1, 0, 0, NULL, 0);
PacketResponseNG resp;
if (!WaitForResponseTimeout(CMD_ACK, &resp, 2500)) {
PrintAndLogEx(WARNING, "smart card select failed");
return 1;
}
uint8_t isok = resp.oldarg[0] & 0xFF;
if (!isok) {
PrintAndLogEx(WARNING, "smart card set clock failed");
return 1;
}
switch (clock1) {
case 0:
PrintAndLogEx(SUCCESS, "Clock changed to 16MHz giving 10800 baudrate");
break;
case 1:
PrintAndLogEx(SUCCESS, "Clock changed to 8MHz giving 21600 baudrate");
break;
case 2:
PrintAndLogEx(SUCCESS, "Clock changed to 4MHz giving 86400 baudrate");
break;
default:
break;
}
return 0;
}
static int CmdSmartList(const char *Cmd) {
(void)Cmd; // Cmd is not used so far
CmdTraceList("7816");
return 0;
}
static void smart_brute_prim() {
uint8_t *buf = calloc(PM3_CMD_DATA_SIZE, sizeof(uint8_t));
if (!buf)
return;
uint8_t get_card_data[] = {
0x80, 0xCA, 0x9F, 0x13, 0x00,
0x80, 0xCA, 0x9F, 0x17, 0x00,
0x80, 0xCA, 0x9F, 0x36, 0x00,
0x80, 0xCA, 0x9F, 0x4f, 0x00
};
PrintAndLogEx(INFO, "Reading primitives");
for (int i = 0; i < ARRAYLEN(get_card_data); i += 5) {
clearCommandBuffer();
SendCommandOLD(CMD_SMART_RAW, SC_RAW_T0, 5, 0, get_card_data + i, 5);
int len = smart_responseEx(buf, true);
if (len > 2) {
// if ( decodeTLV ) {
// if (!TLVPrintFromBuffer(buf, len-2)) {
PrintAndLogEx(SUCCESS, "\tHEX %d |: %s", len, sprint_hex(buf, len));
// }
// }
}
}
free(buf);
}
static int smart_brute_sfi(bool decodeTLV) {
uint8_t *buf = calloc(PM3_CMD_DATA_SIZE, sizeof(uint8_t));
if (!buf)
return 1;
int len;
// READ RECORD
uint8_t READ_RECORD[] = {0x00, 0xB2, 0x00, 0x00, 0x00};
PrintAndLogEx(INFO, "Start SFI brute forcing");
for (uint8_t sfi = 1; sfi <= 31; sfi++) {
printf(".");
fflush(stdout);
for (uint16_t rec = 1; rec <= 255; rec++) {
if (kbd_enter_pressed()) {
PrintAndLogEx(WARNING, "\naborted via keyboard!\n");
free(buf);
return 1;
}
READ_RECORD[2] = rec;
READ_RECORD[3] = (sfi << 3) | 4;
clearCommandBuffer();
SendCommandOLD(CMD_SMART_RAW, SC_RAW_T0, sizeof(READ_RECORD), 0, READ_RECORD, sizeof(READ_RECORD));
len = smart_responseEx(buf, true);
if (buf[0] == 0x6C) {
READ_RECORD[4] = buf[1];
clearCommandBuffer();
SendCommandOLD(CMD_SMART_RAW, SC_RAW_T0, sizeof(READ_RECORD), 0, READ_RECORD, sizeof(READ_RECORD));
len = smart_responseEx(buf, true);
READ_RECORD[4] = 0;
}
if (len > 4) {
PrintAndLogEx(SUCCESS, "\n\t file %02d, record %02d found", sfi, rec);
uint8_t modifier = (buf[0] == 0xC0) ? 1 : 0;
if (decodeTLV) {
if (!TLVPrintFromBuffer(buf + modifier, len - 2 - modifier)) {
PrintAndLogEx(SUCCESS, "\tHEX: %s", sprint_hex(buf, len));
}
}
}
memset(buf, 0x00, PM3_CMD_DATA_SIZE);
}
}
free(buf);
return 0;
}
static void smart_brute_options(bool decodeTLV) {
uint8_t *buf = calloc(PM3_CMD_DATA_SIZE, sizeof(uint8_t));
if (!buf)
return;
uint8_t GET_PROCESSING_OPTIONS[] = {0x80, 0xA8, 0x00, 0x00, 0x02, 0x83, 0x00, 0x00};
// Get processing options command
clearCommandBuffer();
SendCommandOLD(CMD_SMART_RAW, SC_RAW_T0, sizeof(GET_PROCESSING_OPTIONS), 0, GET_PROCESSING_OPTIONS, sizeof(GET_PROCESSING_OPTIONS));
int len = smart_responseEx(buf, true);
if (len > 4) {
PrintAndLogEx(SUCCESS, "Got processing options");
if (decodeTLV) {
TLVPrintFromBuffer(buf, len - 2);
}
} else {
PrintAndLogEx(FAILED, "Getting processing options failed");
}
free(buf);
}
static int CmdSmartBruteforceSFI(const char *Cmd) {
uint8_t cmdp = 0;
bool errors = false, decodeTLV = false; //, useT0 = false;
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (tolower(param_getchar(Cmd, cmdp))) {
case 'h':
return usage_sm_brute();
case 't':
decodeTLV = true;
cmdp++;
break;
/*
case '0':
useT0 = true;
cmdp++;
break;
*/
default:
PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = true;
break;
}
}
//Validations
if (errors) return usage_sm_brute();
const char *SELECT = "00a40400%02zu%s";
// uint8_t GENERATE_AC[] = {0x80, 0xAE};
// uint8_t GET_CHALLENGE[] = {0x00, 0x84, 0x00};
// uint8_t GET_DATA[] = {0x80, 0xCA, 0x00, 0x00, 0x00};
// uint8_t SELECT[] = {0x00, 0xA4, 0x04, 0x00};
// uint8_t UNBLOCK_PIN[] = {0x84, 0x24, 0x00, 0x00, 0x00};
// uint8_t VERIFY[] = {0x00, 0x20, 0x00, 0x80};
PrintAndLogEx(INFO, "Importing AID list");
json_t *root = NULL;
smart_loadjson("aidlist", &root);
uint8_t *buf = calloc(PM3_CMD_DATA_SIZE, sizeof(uint8_t));
if (!buf)
return 1;
PrintAndLogEx(INFO, "Selecting card");
if (!smart_select(false, NULL)) {
free(buf);
return 1;
}
char *caid = NULL;
for (int i = 0; i < json_array_size(root); i++) {
printf("+");
fflush(stdout);
if (caid)
free(caid);
json_t *data, *jaid;
data = json_array_get(root, i);
if (!json_is_object(data)) {
PrintAndLogEx(ERR, "data %d is not an object\n", i + 1);
json_decref(root);
return 1;
}
jaid = json_object_get(data, "AID");
if (!json_is_string(jaid)) {
PrintAndLogEx(ERR, "AID data [%d] is not a string", i + 1);
json_decref(root);
return 1;
}
const char *aid = json_string_value(jaid);
if (!aid)
continue;
size_t aidlen = strlen(aid);
caid = calloc(8 + 2 + aidlen + 1, sizeof(uint8_t));
snprintf(caid, 8 + 2 + aidlen + 1, SELECT, aidlen >> 1, aid);
int hexlen = 0;
uint8_t cmddata[PM3_CMD_DATA_SIZE];
int res = param_gethex_to_eol(caid, 0, cmddata, sizeof(cmddata), &hexlen);
if (res)
continue;
clearCommandBuffer();
SendCommandOLD(CMD_SMART_RAW, SC_RAW_T0, hexlen, 0, cmddata, hexlen);
int len = smart_responseEx(buf, true);
if (len < 3)
continue;
json_t *jvendor, *jname;
jvendor = json_object_get(data, "Vendor");
if (!json_is_string(jvendor)) {
PrintAndLogEx(ERR, "Vendor data [%d] is not a string", i + 1);
continue;
}
const char *vendor = json_string_value(jvendor);
if (!vendor)
continue;
jname = json_object_get(data, "Name");
if (!json_is_string(jname)) {
PrintAndLogEx(ERR, "Name data [%d] is not a string", i + 1);
continue;
}
const char *name = json_string_value(jname);
if (!name)
continue;
PrintAndLogEx(SUCCESS, "\nAID %s | %s | %s", aid, vendor, name);
smart_brute_options(decodeTLV);
smart_brute_prim();
smart_brute_sfi(decodeTLV);
PrintAndLogEx(SUCCESS, "\nSFI brute force done\n");
}
if (caid)
free(caid);
free(buf);
json_decref(root);
PrintAndLogEx(SUCCESS, "\nSearch completed.");
return 0;
}
static command_t CommandTable[] = {
{"help", CmdHelp, AlwaysAvailable, "This help"},
{"list", CmdSmartList, IfPm3Smartcard, "List ISO 7816 history"},
{"info", CmdSmartInfo, IfPm3Smartcard, "Tag information"},
{"reader", CmdSmartReader, IfPm3Smartcard, "Act like an IS07816 reader"},
{"raw", CmdSmartRaw, IfPm3Smartcard, "Send raw hex data to tag"},
{"upgrade", CmdSmartUpgrade, AlwaysAvailable, "Upgrade sim module firmware"},
{"setclock", CmdSmartSetClock, IfPm3Smartcard, "Set clock speed"},
{"brute", CmdSmartBruteforceSFI, IfPm3Smartcard, "Bruteforce SFI"},
{NULL, NULL, NULL, NULL}
};
static int CmdHelp(const char *Cmd) {
(void)Cmd; // Cmd is not used so far
CmdsHelp(CommandTable);
return 0;
}
int CmdSmartcard(const char *Cmd) {
clearCommandBuffer();
return CmdsParse(CommandTable, Cmd);
}
int ExchangeAPDUSC(uint8_t *datain, int datainlen, bool activateCard, bool leaveSignalON, uint8_t *dataout, int maxdataoutlen, int *dataoutlen) {
*dataoutlen = 0;
if (activateCard)
smart_select(false, NULL);
PrintAndLogEx(DEBUG, "APDU SC");
uint8_t flags = SC_RAW_T0;
if (activateCard) {
flags |= SC_SELECT | SC_CONNECT;
}
clearCommandBuffer();
SendCommandOLD(CMD_SMART_RAW, flags, datainlen, 0, datain, datainlen);
int len = smart_responseEx(dataout, true);
if (len < 0) {
return 1;
}
// retry
if (len > 1 && dataout[len - 2] == 0x6c && datainlen > 4) {
uint8_t data [5];
memcpy(data, datain, 5);
// transfer length via T=0
data[4] = dataout[len - 1];
clearCommandBuffer();
// something fishy: we have only 5 bytes but we put datainlen in arg1?
SendCommandOLD(CMD_SMART_RAW, SC_RAW_T0, datainlen, 0, data, sizeof(data));
len = smart_responseEx(dataout, true);
}
*dataoutlen = len;
return 0;
}
bool smart_select(bool silent, smart_card_atr_t *atr) {
if (atr)
memset(atr, 0, sizeof(smart_card_atr_t));
clearCommandBuffer();
SendCommandNG(CMD_SMART_ATR, NULL, 0);
PacketResponseNG resp;
if (!WaitForResponseTimeout(CMD_ACK, &resp, 2500)) {
if (!silent) PrintAndLogEx(WARNING, "smart card select failed");
return false;
}
uint8_t isok = resp.oldarg[0] & 0xFF;
if (!isok) {
if (!silent) PrintAndLogEx(WARNING, "smart card select failed");
return false;
}
smart_card_atr_t card;
memcpy(&card, (smart_card_atr_t *)resp.data.asBytes, sizeof(smart_card_atr_t));
if (atr)
memcpy(atr, &card, sizeof(smart_card_atr_t));
if (!silent)
PrintAndLogEx(INFO, "ISO7816-3 ATR : %s", sprint_hex(card.atr, card.atr_len));
return true;
}